
Design and analysis of static memory management policies
for CC-NUMA multiprocessors q

Ravishankar Iyer a, Hujun Wang a,b,*, Laxmi Narayan Bhuyan a,c

a Intel Corporation, 15220 N.W. Greenbrier Parkway, Beaverton, OR 97006, USA
b Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, USA

c Department of Computer Science, University of California, Riverside, CA 92521-0304, USA

Abstract

In this paper, we characterize the performance of three existing memory management techniques, namely, buddy,

round-robin, and first-touch policies. With existing memory management schemes, we find several cases where requests

from different processors arrive at the same memory simultaneously. To alleviate this problem, we present two im-

proved memory management policies called skew-mapping and prime-mapping policies. By utilizing the properties of

skewing and prime, the improved memory management designs considerably improve the application performance of

cache coherent non-uniform memory access multiprocessors. We also re-evaluate the performance of a multistage

interconnection network using these existing and improved memory management policies. Our results effectively pre-

sent the performance benefits of different memory management techniques based on the sharing patterns of applica-

tions. Applications with a low degree of sharing benefit from the data locality provided by first-touch. However, several

applications with significant sharing degrees as well as those with single processor initialization routines benefit highly

from the intelligent distribution of data provided by skew-mapping and prime-mapping schemes. Improvements due to

the new schemes are found to be as high as 35% in stall time.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Memory management; Interconnection networks; Execution-based simulation; Scientific applications; Shared-memory

multiprocessor

1. Introduction

Cache coherent non-uniform memory access
(CC-NUMA) systems have become extremely
popular since they are scalable and provide trans-

parent access to data. With multiple levels of ca-
ches, they certainly provide cached data at low
latencies. However, once the data access gets be-
yond the layers of cache, these machines pay a
high penalty and their performance deteriorates.
Cache misses are made up of local and remote
memory accesses. Local memory access latencies
are usually a magnitude higher than cache access
latencies. The access time to a remote memory in a
large system could be several orders of magnitude
higher than the cache access time because of the

Journal of Systems Architecture 48 (2002) 59–80

www.elsevier.com/locate/sysarc

q This research has been supported by NSF grant MIP

9622740.
* Corresponding author.

E-mail address: hwang@cs.tamu.edu (H. Wang).

1383-7621/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S1383-7621 (02 )00066-8

mail to: hwang@cs.tamu.edu


time spent in the interconnection network. Even
with low miss rates, the bottleneck in the perfor-
mance of NUMA systems lies in the remote
memory access latencies. Effectively, the cache
miss latencies depend heavily on the ratio of local
and remote accesses. The memory management
policy governs the placement of data in shared
memory. It specifies which memory accesses would
be local and which would be remote. In this paper,
our main aim is to present different memory
management policies and study their impact on the
application performance and interconnection net-
work performance of a CC-NUMA multiproces-
sor system.

Related work in this area can be divided into
two categories. The first category has been the
performance evaluation of memory management
policies [1–6]. Most of these studies [1–4] focused
on distributed shared memory systems without
hardware cache coherence. The effect of different
policies was studied for CC-NUMA systems in
[5,6]. Verghese et al. [5] presented significant data
on the OS/hardware support required for dynamic
page migration and replication policies. However,
their results also indicate that dynamic memory
management policies improve the performance of
parallel applications (the SPLASH workload) by
only 4% over the static schemes. Bhuyan, et al. [6]
presented the impact of existing memory manage-
ment policies and switch design alternatives on the
application performance. Hence we concentrate
only on static memory management techniques.
We propose two improved static schemes: (1) skew-
mapping, (2) prime-mapping that significantly im-
prove the performance of several applications over
the existing schemes. The skew-mapping scheme is
based on skewing pages which are allocated to
memories using the round-robin policy. It can be
specified as a function that maps logical pages onto
memories such that the required pages could be
accessed conflict-free. Several general classes of
skewing memory data accesses have been investi-
gated and characterized by previous researchers [7–
10], but not yet been developed for CC-NUMA
memory management. The prime-mapping scheme
is based on the allocation of data pages to memo-
ries according to a prime number. The use of a
prime number for effective distribution of data

accesses has been studied in a few papers [11–13].
Lawrie [11] described a memory system designed
for parallel array access which is based on the use
of a prime number of memories in SIMD com-
puters. Yang [12] presented a prime-mapped cache
in the vector processing environment. The memory
access logic of improved allocation schemes is
similar to those of the existing policies, resulting in
no additional delay for memory accesses. Further,
the prime-mapped cache for vector computers was
evaluated using a set of applications in [13]. How-
ever, they have not yet been developed for CC-
NUMA multiprocessors.

The second category of related work is the
performance evaluation of interconnection net-
works (IN’s). Performance evaluation of IN’s has
been an active area of research for a long time [14–
18]. These studies were conducted with a synthetic
workload that is more suitable for a message
passing or networking environment. Workload in
a CC-NUMA environment is characterized by
unsymmetrical bulky messages due to cache co-
herence, synchronization and memory manage-
ment. Furthermore, due to the IN advancements,
such as the use of virtual channels (VC’s), the
improvements in system performance have to be
judged from the dynamic changes during the exe-
cution of applications. The aim of this paper is to
re-evaluate the performance of an IN with realistic
application data accesses and memory manage-
ment policies governing the placement of the data
blocks. Execution-based evaluations for IN’s have
been reported [19–21] to test the effectiveness of
VC’s. While these studies provide useful data, they
do not explore different memory management
techniques as we do. We consider a multistage
interconnection network (MIN) in this paper,
similar to the one employed in Butterfly and Cedar
multiprocessors [22]. Unlike Cedar, we employ a
NUMA organization with one network (like But-
terfly) that is used for both forward and backward
(reply) messages. We evaluate two different switch
design alternatives (simple wormhole (SWH) and
buffered virtual channel (BVC)) [20] for the MIN.

To evaluate the different memory management
techniques in conjunction with different switch
architectures, we have significantly modified our
CC-NUMA simulator based on Proteus [23]. We

60 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



developed virtual memory support in the Proteus
simulator to evaluate the memory management
techniques. We have also incorporated detailed
switch models and wormhole routing with VC’s in
the network to accurately interpret the effect of
network latency on application stall time. We have
modified the directory based cache coherence
protocol [24] in the simulator to correctly account
for the possible out-of-order messages due to the
presence of VC’s in the MIN. Our simulation re-
sults show that the performance of memory man-
agement techniques depends on the application
sharing pattern. Applications with a low degree of
sharing benefit from memory management tech-
niques such as first-touch. However applications
with initialization routines or moderate to high
sharing degrees do not enjoy the same benefits.
For several such applications, skew-mapping and
prime-mapping schemes provide significant bene-
fits. The paper makes the following contributions:

• We study and evaluate a spectrum of current
static memory management schemes for CC-
NUMA multiprocessors. As a result, we present
insights regarding the bottlenecks that limit ap-
plication performance.

• We develop two improved static memory man-
agement policies, called skew-mapping and
prime-mapping, to improve the performance of
CC-NUMA systems.

• We characterize the effect of page placement on
the temporal and spatial locality of memory ac-
cess patterns for several scientific applications.

• In order to investigate the performance impact
of existing and improved memory management
policies accurately and extensively, we employ
an execution-driven simulation methodology
that fully models the interconnection network
design with several choices for crossbar switch
design.

• Finally, we analyze application performance for
these memory management policies at the sys-
tem level and the network level. Interference at
different stages in the MIN is also captured
and analyzed.

The rest of the paper is organized as follows.
Section 2 gives an overview of the existing memory

management policies and the details of two im-
proved memory management policies. Section 3
describes the experimental methodology. Section 4
presents not only the data-sharing patterns of each
application, but also temporal and spatial locality
characteristics of each application which are cor-
related with each memory management policy.
Section 4 also presents a detailed study of memory
access patterns for a single application, namely
fast Fourier transform (FFT), to accurately depict
the effect of the memory management policies on
the execution flow of the application. Section 5
presents the impact of the policies and the effect of
the switch architectures on the network latency
and application stall time. Finally, Section 6 pre-
sents the conclusions.

2. Memory management policies

Memory management policies in CC-NUMA
architectures should be targeted to address the
disparity between access times for data located in
caches, local memories and remote memories. A
typical CC-NUMA system architecture is shown
in Fig. 1. Fig. 1 also conceptually points out the
increase in data access latency as the data item gets
accessed from the L1 cache, the L2 cache, the local
memory and the remote memory.

Since caches cannot hold all the data due to
space and coherence restrictions, ideally we would
like the local memory to handle all cache misses.

Fig. 1. Conceptual view of a CC-NUMA system.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 61



Unless there is absolutely no data sharing in the
application, it is impossible to statically allocate
data in a manner in which all nodes see the re-
quired data in their respective local memories.
Finally if data is remotely allocated, we should be
careful to provide the access in such a way as to
distribute the load and reduce network interfer-
ence and memory congestion. The size of the data
chunk allocated may also play an important role in
the performance of a given memory allocation
scheme since it dictates the positioning of several
data items and their access patterns.

2.1. The existing policies

We consider the following memory manage-
ment policies to address the above issues.

Buddy allocation: This scheme is invariably used
for uniprocessors and SMP servers. In this allo-
cation scheme, the data is allocated contiguously
based solely on the requested data size and the
available memory space in the system. The entire
shared memory space is divided into buckets each
with memory capacity increasing by a power of
two. The starting address of the requested data
chunk is determined by performing a best-fit
search on the buckets with sufficient capacity.
Such an allocation scheme allows a low overhead
during data allocation. This scheme also provides
a suitable method for maintaining free lists of
unallocated memory segments. However, as we
shall see, the performance is poor in a CC-NUMA
environment since it saturates a particular memory
with multiple accesses from other processors. Data
accesses are directed towards a selected few nodes
in the system, causing severe memory and/or net-
work contention.

Round-robin allocation: In this allocation
scheme, pages of data are allocated in a round-
robin fashion across the nodes. A page i is allo-
cated to memory i Modulo N, where N is the
number of memory modules in the system. The
distribution of the pages is extremely uniform thus
smoothening out the traffic generated in the net-
work and in most cases making sure that simul-
taneous accesses to different data from different
processors are interleaved among the different
nodes. This scheme is used in the DASH [25], HP/

Exemplar [26], and SGI Origin [27] multiproces-
sors. However, the scheme does not place data
intelligently enough to reduce the number of re-
mote accesses. Since the distribution is regular in
most scientific applications, many processors tend
to access multiple pages on the same node in a
given time interval. This queues up requests at the
network interface and the memory subsystem.

First-touch allocation: In this allocation scheme,
each page is located at the processor that first ac-
cessed the page. In other words, at the time of the
first page fault, it is allocated to the local memory
of the faulting processor. The advantage to this
scheme is that each page is positioned with limited
knowledge of initial application behavior. A well-
written application can exploit the use of this
scheme and certainly gain in performance. On the
other hand, this scheme notices only the first ac-
cess to the page. Poorly written applications (eg:
initializations performed at a single processor be-
fore main parallel computation begins) will locate
pages based incorrectly on the first access and
cause remote memory accesses during later acces-
ses to the page by other processors. The first-touch
allocation scheme is the default policy which is
provided in the SGI origin system (The round-
robin policy is a choice for the user).

2.2. The improved memory management policies

For the round-robin policy, we find that re-
quests from different processors go to the same
memory at the same time giving rise to bulk of
replies (in the form of data blocks) from the same
memory [20]. The cause of this bulky response lies
in the distribution of scientific data of size of a
power of two distributed over a number of mem-
ory modules, also a power of two. This phenom-
enon builds up a large delay at the network
interface and considerably affects the performance.
In this section, we introduce two improved mem-
ory management policies which improve perfor-
mance by allocating data to memory modules in a
more intelligent fashion. The basic idea behind
these schemes is to allocate pages in a non-regular
manner so that applications with regular access
patterns do not generate multiple accesses directed
to the same memory module simultaneously.

62 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



2.2.1. Skew-mapping policy

Definition 1. A page-allocation scheme for M pa-
ges and N processors is a function

S : f0; 1; 2; . . . ;M � 1g ! f0; 1; . . . ;N � 1g ð1Þ
where SðiÞ ¼ j means page i is allocated to pro-
cessor j.

Definition 2. A round-robin scheme for M pages
and N processors can be expressed as the following
function:

SðiÞ ¼ i mod N ; ð06 i6M � 1Þ ð2Þ
A skewing scheme is a function which maps logical
pages into processors such that, hopefully, the re-
quired pages could be accessed conflict-free.

Definition 3. Given M pages and N processors, a
skewing scheme is a function

SðiÞ ¼ i
�

þ i
N

� �
þ 1

�
mod N ;

ð06 i6M � 1Þ ð3Þ

where SðiÞ skews M pages linearly in the left-to-
right direction and b i

Nc denotes the greatest integer
less than or equal to i=N . It is important to see that
the mapping could be done at the compile time, or
it can be done at the hardware level by using a
shifter.

An example of 32 pages and 4 processors is
shown in Fig. 2. Fig. 2(a) illustrates that the pages
are allocated to processors using the round-robin

policy. That is, the first 4 pages are allocated to
processor P0, P1, P2, and P3, the next 4 pages are
allocated to processors P0, P1, P2, and P3; . . . ; and so
on. Fig. 2(b) shows that the pages are allocated to
processors using the skew-mapping policy. Note
that the skew-mapping policy has the effect of
skipping one processor for every 4 pages allocated.
That is, the first 4 pages are allocated to processors
P1, P2, P3, and P0, the next 4 pages are allocated to
processors P2, P3, P0, and P1; . . . ; and so on.

2.2.2. Prime-mapping policy

Definition 4. Given M pages, N processors, and a
prime number PðN 6 P Þ, a prime-mapping scheme
can be divided into three steps:

• The M pages are allocated to P processors using
equation SðiÞ ¼ i mod P (i is a page number),
where processors PN ; PNþ1; . . . ; and PP�1 are vir-
tual. That is, the first P pages are allocated to
processors P0; P1; . . . ; and PP�1, the next P pages
are allocated to processors P0; P1; . . . ; and
PP�1; . . . ; and so on.

• We reorder those pages, which are allocated to
virtual processors, as pages 0; 1; . . . ; j. These
reordered pages are allocated to proces-
sors P0; P1; . . . ; and PP�1 using equation SðiÞ ¼
i mod P again.

• Repeat step 2 till these M pages are allocated to
processors P0; P1; . . . ; and PN�1

An example of 20 pages and 4 processors with
prime number 5 is shown in Fig. 3. Fig. 3(a)
illustrates that the 20 pages are allocated to 5
processors using the round-robin policy (i mod 5),

Fig. 2. An example of skew-mapping policy: (a) round-robin,

(b) skew-mapping scheme.

Fig. 3. An example of prime-mapping policy: (a) round-robin

to five virtual processors, (b) actual prime-mapping.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 63



where processor 4 is virtual. That is, the first 5
pages are allocated to processors P0, P1, P2, P3, and
P4, the next 5 pages are allocated to processors P0,
P1, P2, P3, and P4; . . . ; and so on. Fig. 3(b) shows
how to allocate the pages, which are allocated to
processor 4, to other processors. Note that we re-
order pages 4, 9, 14, and 19 as pages 0, 1, 2, and 3,
respectively. These reordered pages are allocated to
processors P0, P1, P2, and P3 using i mod 5 again.

3. Experimental methodology

Our simulator is based on PROTEUS [23] that
implemented MINs using an analytical model. We
have modified the simulator extensively to exactly
model the bi-directional MIN with wormhole
routing. We have also incorporated different
switch architectures with VC’s and multiflit buffers
[6,20]. For this work, all the virtual memory sup-
port needed to simulate the data allocation policies
in Section 2 has been implemented. We imple-
mented the full-map directory-based cache coher-
ence protocol [24] with some modifications for
evaluation, as described in [6]. The scheme is
similar to the scheme used in the MIT Alewife

system. The architecture under consideration can
be modeled as processor, cache, memory, network
interface and the network, as shown in Fig. 4(b).
We choose a 16-node system to limit the simula-
tion time, a larger system would need an appro-
priately larger data structure to get realistic results.
The cache parameters used in the simulation are
similar to the HP PA-8000. The system parameters
used in the simulation are listed in Table 1.

Fig. 4. Overview of the system architecture.

Table 1

Simulation parameters

Parameter Value

Number of processors 16

Shared memory size per node 512Kbytes

Cache size 32Kbytes

Cache line size 32 bytes

Number of sets 2

Cache access time 2 cycles

Memory access time 50 cycles

Switch delay 4 cycles

Switch size 2 � 2 or 4 � 4

Link width 16 bits

Flit length 16 bits

Message lengths 8 or 40 bytes

Page size 1Kbytes

Interface delay 20 cycles

64 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



3.1. Network/switch architecture

The schematic of the network is shown in Fig.
4(a). It is a MIN employing 2 � 2 switches. The
interconnection between them is a perfect shuffle.
We use wormhole routing and virtual cut-through
switching techniques because they give better per-
formance than packet switching and because they
are used in the design of current multiprocessor
switches [28,29]. There are two types of messages
that are transmitted over the MIN. One is a con-
trol message that consists of read, write and in-
validation signals that are short and 4 flits of 16
bits each long. The rddata and wrdata messages
supply the block to/from the requesting cache and
are 20 flits long for a cache line size of 32 bytes.

A SWH 2 � 2 crossbar switch is shown in Fig.
4(c). The amount of buffer needed per input and
output for wormhole routing is only one flit that is
absolutely essential for transmission over the links.
The SWH switch does not have any virtual chan-
nel. Fig. 4(d) shows a BVC switch [6,20]. The
BVC32 used in this study has a buffer size of 32
flits and 2 VC’s. VC’s [15] are used in wormhole
networks to avoid deadlocks and to improve link
utilization and network throughput. The switch
delay is modeled to be 4 cycles, which is similar to
the time taken in SGI Spider and Intel Cavallino
switches [28,29]. The SWH and BVC crossbar
switches were described in detail [6].

3.2. Benchmark applications

We have selected five numerical applications as
the workload for evaluating the cache-coherent
shared-memory multiprocessor. These applica-
tions are: (1) multiplication of two 2-D matrices
(MATMUL) which was done between two
128 � 128 double precision matrices; (2) Floyd–
Warshall’s all-pair-shortest-path algorithm (FWA)
which used a graph of 256 nodes with random
weights assigned to the edges; (3) blocked LU
factorization of a dense 2-D matrix (LU) which
was done on a 256 � 256 matrix using 8 � 8
blocks; (4) 1-D FFT where the simulations are
done on an input of 214 points; (5) simulation
of rarefied flows over objects in a wind tunnel
(MP3D) where we used 25,000 molecules with the

default geometry provided with SPLASH [30] and
the simulation was done for five time steps. These
applications were described in detail [6].

4. Application-centric results

We present data-sharing patterns, local and
remote access probabilities, interarrival rates, and
memory access patterns to compare the varied
impact of memory management policies on the
workload data access behavior.

4.1. Data sharing pattern of applications

The emphasis here is on the pattern of sharing
that is inherent in applications themselves, rather
than that caused by the underlying memory system
architecture, or the cache coherency protocol. Our
characterization of sharing serves two purposes:
(1) it provides an understanding of the memory
reference patterns of data sharing; (2) it explains
how different patterns of sharing can affect system
performance, such as stall time, etc. Data sharing
can be divided into read sharing and write sharing.
Read(write) sharing corresponds to memory ref-
erences that cause sharing misses of type read-
(write). A classification of read or write shared
data can be done based on the granularity of the
data block:

• Degree of read sharing at page level is the num-
ber of processors which read a page.

• Degree of write sharing at page level is the num-
ber of processors which write a page.

Figs. 5–9 show the read and write sharing pat-
terns, and list the degree of read and write sharing
in the left and right graph of each figure, respec-
tively. The y-axis represents the number of pages
that are shared by the number of processors on the
x-axis. Now, we examine these graphs:
FFT Application: Our simulation experiments

used a 214-pt FFT with 16 processors. Thus the
application run should consist of ten local initial
stages and four read-after-write (RAW) sharing
stages. In these initial stages, processors only read
and write their local data points. After these initial

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 65



stages are completed, these processors exchange
the data produced at the end of each RAW sharing
stage. The data point is read by a different pro-
cessor in each sharing stage. The data point,
however, is written only by one processor in each
sharing stage. Because of four RAW sharing
stages, the data point is read by four processors. In
Fig. 5(a), there are 298 and 491 pages whose de-

gree of read sharing is equal to 1 and 5, respec-
tively. In Fig. 5(b), there are 742 pages whose
degree of write sharing is equal to 1.
FWA Application: We used 256 nodes and 16

processors in the experiment. The shared 2-D ar-
rays consist of one distance matrix and another
predecessor matrix. The problem is partitioned as
per the rows in the distance matrix, so a set of

Fig. 7. Data sharing pattern for LU application: (a) read sharing at page level, (b) write sharing at page level.

Fig. 5. Data sharing pattern for FFT application: (a) read sharing at page level, (b) write sharing at page level.

Fig. 6. Data sharing pattern for FWA application: (a) read sharing at page level, (b) write sharing at page level.

66 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



vertices is statically allocated to a processor to
compute the shortest paths from them. Therefore,
the elements in the distance and predecessor ma-
trices are written by only one processor during the
whole execution. A particular row of distance and
predecessor matrix, however, is read by 16 pro-
cessors. In Fig. 6(a), there are 294 pages whose
degree of read sharing is equal to 16. In Fig. 6(b),
there are 484 pages whose degree of write sharing
is equal to 1.
LU Application: This experiment contains 2-D

arrays in which the first dimension is the block to
be operated on, and the second contains all data
points in that block. There are four rows, each of
which has four processors, and four columns, each
of which has four processors. In this manner, all
data points in a block (which are operated on by
the same processor) are allocated contiguously and
locally. For iteration kð16 k6 4Þ, there are four
steps: (1) factorize a diagonal block ðk; kÞ; (2) di-
vide column k by the diagonal block; (3) modify

row k by the diagonal block; (4) modify subse-
quent block columns. Thus, most of data points
are read by 4 or 5 processors, and are modified by
two processors as shown in Fig. 7.
MATMUL Application: Two 128 � 128 data

matrices (A and B) and 16 processors are used
here. Parallel matrix multiplication does A½128�
128
 � B½128 � 128
 ¼ C½128 � 128
. The result ma-
trix C is divided among processors and each pro-
cessor calculates its portion of matrix C. C is
divided row and column wise such that the number
of rows and columns of C computed by a pro-
cessor is almost of same size, i.e., matrix C is
equally divided into 16 portions. So, each data
point is read by four processors and is written by
one processor. In Fig. 8(a), there are 252 pages
whose degree of read sharing is equal to 4. In Fig.
8(b), there are 118 pages whose degree of write
sharing is equal to 1, and 125 pages whose degree
of write sharing is equal to 4 because there are
many data points at the boundaries of partitions.

Fig. 9. Data sharing pattern for MP3D application: (a) read sharing at page level, (b) write sharing at page level.

Fig. 8. Data sharing pattern for MATMUL application: (a) read sharing at page level, (b) write sharing at page level.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 67



MP3D Application: MP3D employs a five de-
gree-of-freedom simulation of idealized diatomic
molecules in a 3-D active space. The work is par-
titioned by the total of 25,000 molecules, which are
statically scheduled on processors. Molecules
generally flow through the tunnel in the positive x
direction. The active space is represented as a 3-D
space array of unit-sized cells. Data sharing occurs
during collisions and during accesses to the space
array. Molecules can move among cells, but are
only eligible for collision with other molecules
occupying the same cell at that time. Molecular
collisions are statistically determined using a col-
lision probability, conservation laws, and a table
of collision outcomes. In Fig. 9(a), there are 986
pages whose degree of read sharing is more than or
equal to 4. In Fig. 9(b), there are 971 pages whose
degree of write sharing is more than or equal to 4.

Above, we presented the data sharing patterns
of several scientific applications. While this data
certainly helps understand the characteristics of
the applications, it also directly relates to the
choice and performance of static memory man-

agement policies. When the data sharing degree of
applications is low, a memory management policy
such as first-touch might be appropriate since it
provides local memory access. On the other hand,
when the sharing degree is high, several processors
access a page during the execution of the appli-
cation. Thus the initial placement of pages based
on first-touch does not suffice. In such scenarios,
the problem translates to providing simultaneous
access to remote data in an efficient manner, so as
to provide fast remote access without hot-spots.
We find that most of the applications have sig-
nificant sharing degrees. Thus, these applications
should significantly benefit from memory man-
agement policies such as skew-mapping and prime-
mapping that are aimed at providing efficient
remote access by distributing data in an intelligent
manner.

4.2. Effect of memory management policies

We begin to investigate the behavior of the
memory management policies by observing how

Table 2

Variations in memory access probabilities

Appli-

cation

PID Buddy (%) Round-robin (%) First-touch (%) Skew-mapping (%) Prime-mapping (%)

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

FWA 0 0 0 0 100 24 22 24 30 95 2 2 1 20 23 30 27 43 17 18 22

1 0 0 0 100 23 23 26 27 3 94 2 1 22 24 26 28 28 27 22 23

2 0 0 0 100 24 25 24 27 3 2 93 1 22 21 31 26 29 23 24 23

3 0 0 0 100 26 23 23 29 3 2 2 93 22 21 24 33 24 20 27 29

MAT-

MUL

0 0 0 0 100 23 24 26 27 53 4 43 0 25 26 24 25 26 26 24 23

1 0 0 0 100 25 22 26 28 10 47 0 43 25 25 25 25 28 22 24 26

2 0 0 0 100 27 26 24 24 46 0 51 3 25 25 25 25 27 26 24 23

3 0 0 0 100 28 28 24 21 3 43 7 47 25 25 25 25 28 23 23 26

LU 0 0 0 0 100 30 23 24 23 97 2 1 0 25 24 25 26 25 24 25 26

1 0 0 0 100 31 21 24 23 99 1 1 0 25 22 24 29 28 25 23 24

2 0 0 0 100 30 22 24 24 98 2 1 0 23 21 27 29 26 24 24 25

3 0 0 0 100 30 22 24 24 99 0 1 0 24 25 24 27 25 25 25 25

MP3D 0 1 0 40 59 26 25 25 24 23 9 17 52 25 25 26 24 24 21 24 31

1 1 0 40 59 26 25 25 25 20 10 18 52 25 25 26 24 24 21 24 31

2 1 0 40 59 26 25 25 25 19 9 20 52 24 25 27 24 23 21 24 32

3 0 0 41 59 25 25 25 25 18 9 18 55 25 26 26 23 23 21 24 32

FFT 0 0 0 0 100 26 26 24 24 88 7 5 0 25 25 25 25 26 24 25 25

1 0 0 0 100 26 26 24 24 6 89 0 5 26 25 25 24 24 25 26 25

2 0 0 0 100 26 26 23 24 7 0 85 8 25 25 25 25 27 25 24 24

3 0 0 0 100 26 26 24 24 0 5 6 89 25 25 25 25 25 24 26 25

68 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



the memory requests are distributed in CC-
NUMA architectures for each application. Table 2
shows the percentage distribution of the data ac-
cesses for each of the workloads under different
memory management policies. The id of the pro-
cessor (PID) generating the memory accesses is
listed in the second column and the memory
modules to which the requests are addressed are
presented in the following columns. We observed
similar results for the 16-node system but chose to
show the 4-node results for brevity. For FWA,
MATMUL, LU and FFT applications, it is clear
that the whole chunk of shared data gets allocated
in a single node when the buddy memory man-
agement policy is used, so all processors access
memory module 3 all the time. We also notice that
the shared data for the MP3D application get al-
located in two nodes. This is due to the memory
size of 512Kbytes and the data size between
512Kbytes and 1024Kbytes. When we switch to
the round-robin memory management policy, we
see a uniform distribution of data over all memory
modules with an approximately 25% probability.
With first-touch we find that this local memory
access probability increases tremendously for
FWA and FFT applications. Thus, the number of
remote requests and responses that traverse the
network is reduced tremendously. This leads to a
considerable improvement in the average stall-time
performance. We find that round-robin, skew-
mapping and prime-mapping equally distribute the
accesses over different memories in the system.
However, we will observe that the skew-mapping
and prime-mapping schemes improve the perfor-
mance over round-robin due to a better temporal
distribution of processor accesses.

Having observed the spatial distribution of
memory accesses, we now concentrate on the
temporal locality of a processor’s request. The
think time of a processor is the time between when
a cache miss is satisfied and the next one is gen-
erated. The interarrival time is defined as the time
between two cache misses that includes the mem-
ory and network access time. Figs. 10–14 present
the cumulative distribution function (CDF) of the
interarrival time for different memory manage-
ment policies. Each figure consists of six curves;
one representing the workload think time and five

others representing the interarrival times for each
of the memory management policies. Fig. 10
clearly shows the difference between latencies

Fig. 10. Interarrival time distribution for the FFT application.

Fig. 11. Interarrival time distribution for the MP3D applica-

tion.

Fig. 12. Interarrival time distribution for the LU application.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 69



observed for each memory management policy for
the FFT workload, where the think-time curve is
on the extreme left. The lowest latency for memory
access is provided by first-touch with an interar-
rival time lower than 275 processor cycles during
93% of the parallel execution time. The skew-
mapping and prime-mapping policies provide la-
tencies of 375 processor cycles. On the other hand,
round-robin provides a latency of 575 processor
cycles and buddy provides a latency of approxi-
mately 875 processor cycles for the same period of
time. Compared to the buddy memory manage-
ment policy, the first-touch policy improves the
average memory access latency by approximately
69%, skew-mapping and prime-mapping policies
further improve the average memory access la-
tency by approximately 57%, and round-robin
further improves by 34%.

From Figs. 10–12, we find that temporal access
patterns for FFT, MP3D and LU applications fit
CDFs of known distributions like exponential or
hyper-exponential distribution. Similar observa-
tions were made [31]. However, FWA and MAT-
MUL applications exhibit jumps in the interarrival
times. Fig. 13 presents a probability of approxi-
mately 40% that the think time is less than 125
processor cycles and a probability of close to 50%
of a think time higher than 375 processor cycles for
the MATMUL application. This jump in think
time is due to the frequent cold misses that occur
initially while reading row and column elements of
the respective input matrices. Since the misses oc-
cur in the inner-most loop of the application, the
think time between the misses is low (6125 pro-
cessor cycles). Once these cold misses are served
and the rows/columns are read into the caches,
subsequent computation that requires these ele-
ments are cache hits. From then on, cache misses
become infrequent and occur only while perform-
ing writes to elements of the result matrix. Since
these misses are in the outer loop of the program
with dot-product computation of a row and col-
umn of the input matrices within, the think time is
high (P375 processor cycles). It is difficult to
characterize the CDF of FWA and MATMUL
applications by known distributions. In Figs. 13
and 14, we also notice that the memory manage-
ment curve crosses over the think time to give an
impression that the think time is higher than the
overall interarrival time for a realistic execution.
However, this is not the case. Since the curve
represents a CDF of interarrival time, this should
be interpreted as percentages of requests that have
a certain value for interarrival time. Since the
think time distribution progresses in an irregular
manner, it is difficult to identify exact reasons for
such an occurrence.

4.3. The FFT access pattern

Representing application behavior is not an
easy task since each application runs for millions
of processor cycles and there are several thousands
of requests. However we attempt here to present
the characteristics of a single FFT application in
order to conceptualize the data access behavior

Fig. 13. Interarrival time distribution for the MATMUL ap-

plication.

Fig. 14. Interarrival time distribution for the FWA application.

70 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



during each parallel segment of the application.
Our aim here is to present the changes in the
application data access patterns to local and/or
remote memories by varying the memory man-
agement policy.

An M-point FFT application consists of log2 N
stages of butterfly computation. Given N pro-
cessing elements for parallel computation, the bit-
reversed input data array is equally divided among
the processing elements. Thus, each processor is
responsible for the computation of M/N elements
of data. An example of a 16-pt FFT computation
using four processing elements is shown in Fig. 15.
Since the computation follows a butterfly pattern,
the application can be divided into two different
types of stages. Fig. 15 shows that the first two
(log2 ðM=NÞ) stages are performed locally on dis-
joint sets of data. Here locally means that the data
points accessed by one processor are not touched
by any other processor during these stages. We
refer to these stages as the local computation
stages. Once the local stages are complete, the in-
herent communication of the application begins.
The last two (log2 N ) stages of computation re-
quire data exchange among the processors. Each
arrow within a stage represents the data exchange,

with a read (R) at its tail and a write (W) at its
head. This causes RAW type sharing conflicts be-
tween consecutive stages. A barrier synchroniza-
tion is used between the stages to ensure the
correct ordering of the conflicting accesses. These
stages are referred to as the RAW computation
stages. Our simulation experiments used a 214-pt
FFT with 16 processors. Thus the application run
should consist of ten (log2(2

14/16)) local stages and
four(log2 16) RAW stages. The application uses
two data structures (local array and RAW array)
based on the names of the stages in which they are
accessed. Two arrays are used to avoid a large
number of conflict misses.

Fig. 16 shows the FFT memory access pattern
to memory 15 when employing the buddy memory
management policy. The contiguous allocation of
data in the buddy policy causes the local array to
get stored at a single memory, while the RAW
array is stored at a single memory (15). All other
memory modules do not hold any shared data and
are not accessed for read/write transactions by any
processor. In Fig. 16, the x-axis represents the
parallel execution time, while the y-axis represents
the ID of the processor that generated the read/
write transaction. Fig. 16 plots the accesses during
the RAW stages from all processors to the RAW
data array in memory module 15. Note that there
is a higher number of memory accesses during
these four RAW stages when compared to the few

Fig. 15. A 16-pt FFT data flow graph using four nodes.

Fig. 16. FFT memory access patterns to memory module 15

using the buddy policy.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 71



cache misses during the local stages. Since a single
memory serves all processors’ requests, the time
taken for each RAW stage to complete is as high
as 3 Mcycles; almost an order of magnitude higher
than a local stage’s average execution time. This is
due to the memory hot-spot created by the buddy
allocation policy. Finally we note that the entire
computation ends with a reorganization of data
and a parallel execution time of approximately 14
Mcycles. We will use these execution times as a
base for evaluating the performance benefits of
round-robin and first-touch memory management
policies.

Fig. 17 shows the data access patterns using the
round-robin policy. Unlike the buddy policy, the
round-robin scheme allocates the two data arrays
on a page-by-page basis distributing it evenly
across all the memory modules in the system. Thus
when compared to the buddy allocation scheme,
this scheme has much fewer data accesses to a
single memory module. Fig. 17 represents the ap-
plication access patterns to memory module 15.
All other memory modules also exhibit similar
access patterns. Though round-robin distributes
the pages evenly across all memory modules, the
distribution is very regular because a data size of a
power of 2 is serially distributed over a number of
memory modules which is also a power of 2. Thus
we find that many processors generate simulta-
neous read/write accesses to different pages on the

same memory module. Examples of several such
simultaneous accesses starting at time 1.9 Mcycles
at intervals of approximately 1.5 Mcycles can be
found in Fig. 17. The first ten local stages complete
within the same time as the buddy allocation pol-
icy since the number of cache hits is high and
memory accesses are limited. However with a
uniform access distribution, much of the hot-spots
at the memory is alleviated during the last four
RAW stages. The per-stage delay for RAW stages
is reduced to 1.5 Mcycles (when compared to 3
Mcycles for buddy), an improvement of over 50%.
Note also that the overall parallel execution time
reduces to 8.4 Mcycles; an improvement of ap-
proximately 40%.

Fig. 18 shows the memory access patterns for
the first-touch policy. We see that the FFT appli-
cation characteristic is well utilized by this policy.
As expected, we find that each memory is accessed
more frequently only by its own local processor
when the first-touch policy is employed. Since the
initial (local) FFT stages define the application
data access behavior, the first touch policy suc-
ceeds in using the first page fault as a means of
providing a high degree of data locality. As we
saw earlier in Table 2, almost 90% of the data
accesses are to the local memory when the first-
touch scheme is employed. From Fig. 18, one can
notice that the first RAW stage consists of read
data accesses to memory module M15 from a node

Fig. 17. FFT memory access patterns to memory module 15

using the round-robin policy.

Fig. 18. FFT memory access patterns to memory module 15

using the first-touch policy.

72 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



1-away (P14), while the next RAW stage accesses
data from the node that is 2-away (P13) from it.
RAW stages 3 and 4 consist of accesses from
4-away (P11) and 8-away nodes (P7) as expected.
All other memory modules (M0 to M14) also exhibit
similar patterns. By utilizing the application be-
havior and placing data intelligently, the first-
touch scheme is able to reduce the RAW stage
delay to 0.75 Mcycles. The overall parallel exe-
cution time is reduced to 4.4 Mcycles (when
compared to 14 Mcycles for the buddy policy):
an improvement of approximately 69%. The
improvement is mainly due to savings while exe-
cuting the last four stages of the butterfly com-
putation.

Figs. 19 and 20 show the data access patterns
using the skew-mapping and prime-mapping
policies, respectively. By utilizing the properties
skewing and prime, the new memory management
designs improve the performance of CC-NUMA
multiprocessors due to a more intelligent distri-
bution of data as compared to round-robin. In
Fig. 17, we observe that accesses to the memory
module from different processors occur within the
same interval of time causing bulky arrivals with
the round-robin memory management scheme.
This problem is alleviated by the improved mem-
ory management policies which essentially skew
the accesses such that requests arrive in different

time intervals (as seen in Figs. 19 and 20). The per-
stage delay for RAW stages is reduced to 1 Mcy-
cles (when compared to 3 Mcycles for buddy), an
improvement of over 67%. The overall parallel
execution time is reduced to 6.4 Mcycles (when
compared to 14 Mcycles for the buddy policy): an
improvement of approximately 54%.

For the FFT application, the parallel execution
time of the first-touch policy is smaller than that of
other memory management policies as shown from
Figs. 16–20. Similar observations are made in Fig.
10, where the average latency for memory accesses
is provided by first-touch with an interarrival time
lower than other memory management policies.
The improvement for the first-touch policy is
mainly due to: 30% (or 96%) of pages, whose
degree of read-sharing (or write-sharing) at page
level for the application, is equal to 1. For appli-
cations with higher read sharing degrees, we find
that skew-mapping and prime-mapping policies
perform much better than first-touch.

5. System-centric results

When a processor generates a read or write re-
quest, different actions are taken depending on the
status of the block in the cache. For example, if it
is a read miss and the local memory is the home
node, the request is satisfied locally with only

Fig. 19. FFT memory access patterns to memory module 15

using the skew-mapping policy.

Fig. 20. FFT memory access patterns to memory module 15

using the prime-mapping policy.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 73



necessary invalidations sent over the network.
If the home is a remote node, the request is sent
over the network to that node. At the remote node
(a) the directory is checked, (b) any necessary in-
validations are completed by sending messages
over the network, and (c) the data is supplied to
the requesting processor over the network again.
The paths taken for the forward request and the
reply message are different, as shown by bold lines
in Fig. 4. These messages encounter delays at
various stages of the network. In addition, there is
a delay at the interface to pump the message into
the first stage of the network, called stage 0. The
purpose of this section is twofold: (a) To present
and analyze the impact of memory management
policies on the stall time of all applications; (b) To
measure the effect of improved switch designs and
memory management on the waiting delays at
different network stages.

5.1. Performance metrics

In this study, we used the application stall time
and the average message latency as our primary
performance metrics. Stall time is the total amount
of time a processor waits for the completion of
read/write operations during the parallel execution
of the application. We present read, write, memory
queue, and invalidation stall times for different
applications with varied design parameters for a
better understanding of the system overhead on
application performance. Stall time is divided into
the following important components:

• Read network latency (RNL): The read network
latency includes the waiting time for the net-
work resource and the total time taken in the
network to transfer read requests from proces-
sor to memory and read replies from memory
to processor.

• Write network latency (WNL): The write net-
work latency includes the waiting time for the
network resource and the total time taken in
the network to transfer write requests from pro-
cessor to memory and write replies from mem-
ory to processor.

• Memory queue time (MQ): This is time spent in
the memory queue waiting for access to the

memory controller that processes the request
further.

• Memory Service Time (MS): This is the time
taken for both read and write requests to be ser-
viced by the memory controller thus generating
a reply. Further we would like to address the in-
validation overhead. We divided the requests
that reach memory into those that require inval-
idations and those that do not. Thus this time is
further divided into:

- Memory Service Time w/ Invalidations (IN-
VMS)

- Memory Service Time w/o Invalidations (NOI-
NVMS)

The average message latency is obtained by di-
viding the total time taken for these types of
messages by the number of such messages
throughout the execution of the program. The
average message latencies for read, write and in-
validation are plotted separately, as measured
from the simulation. We have further broken
down the network latency of a single transaction
type into the following to analyze the network
thoroughly. Consider the results for a read trans-
action as an example in Fig. 21(b). The average
message latencies for read are denoted by a suffix
of _r. Starting from the bottom, we first show
the transfer time (fw_d) over the network for the
forward message which is the read request. This is
the time without considering any waiting at
switches. The next latencies are the waiting times
that occur at stages 0 through 4, as denoted by
fw_st0 through fw_st4 for a network with 2 � 2
switches. With 4 � 4 switches, the number of
stages in the network is reduced by two. Similar to
the request message, the time taken for the reply
(backward) message over the network is plotted.
Since a data block consists of 20 flits, the response
transfer time is much bigger, as denoted by bk_d.
The next field (bk_st0) indicates the time taken at
stage 0 which is at the interface. This does not
include times for memory access, directory access
or protocol processing. We finally show the wait-
ing delays at each stage for the backward message
(bk_st0 through bk_st4) as explained for the for-
ward message.

74 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



5.2. Performance evaluation

We begin our performance evaluation by vary-
ing the memory management policies and switch
design for all applications. We consider two switch
sizes (SW2 for 2 � 2 and SW4 for 4 � 4), two
switch designs (SWH and BVC32) and the five
memory management policies and their effect
on stall time and network latency performance.
Figs. 21–25 present the stall-time performance in
graph: (a) and the average network latency for
read transactions in graph, (b) for each of the
applications.

In the stall time figures, we observe the great
impact of these five memory management policies

on the application stall time. For the FFT and
FWA applications, the performance using first-
touch is better than other memory management
policies. The improvements of stall time for the
first-touch policy are mainly due to: (1) 30% of
pages, whose degree of read-sharing at page level
for the FFT application, is equal to 1; (2) about
96% and 94% of pages, whose degree of write-
sharing at page level for the FFT and FWA ap-
plications, is equal to 1, respectively. This gains
great performance for the first-touch policy. For
the LU application, there is an enormous reduc-
tion (as high as 35%) in stall time using skew-
mapping and prime-mapping policies. For the
buddy, round-robin, and first-touch policies, the

Fig. 22. Effect of memory management policies for the FWA application: (a) Application stall time. (b) Read network latency.

Fig. 21. Effect of memory management policies for the FFT application: (a) Application stall time. (b) Read network latency.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 75



requests from different processors go to the same
memory at the same time giving rise to a bulk of

replies (in the form of data blocks) from the same
memory. The cause of this bulky response lies in

Fig. 23. Effect of memory management policies for the LU application: (a) Application stall time. (b) Read network latency.

Fig. 24. Effect of memory management policies for the MATMUL application: (a) Application stall time. (b) Read network latency.

Fig. 25. Effect of memory management policies for the MP3D application: (a) Application stall time. (b) Read network latency.

76 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



the distribution of scientific data of size of a power
of 2 distributed over a number of memory mod-
ules, also a power of 2. The improvements of stall
time for the skew-mapping and prime-mapping
policies are mainly due to better distribution of
the data. This improvement is seen in three out of
the five applications. The first-touch policy can-
not provide performance benefits because only
1% (8%) of the data pages have a degree of
read (write) sharing at page level equal to 1. Of
the components of stall time, memory service
time without invalidations (NOINVMS) is the
least affected by changes in memory management
since it comprises of a minor portion of the
stall time. On the other hand, read network la-
tency, write network latency, memory queue, and
memory service time with invalidations depend
highly on the placement of data and improve-
ments in stall-time range from 10% to 90% with
an interconnection network employing SWH
switches.

Having observed the effect of memory man-
agement on the stall time, we now concentrate on
the impact of these techniques on the average
message latency. The immediate result that can be
observed in the average message latency figures is
the large amount of delay in the backward stage 0
for buddy and round-robin policies in five appli-
cations. For first-touch, the similar phenomenon is
seen in three out of five applications. The same
situation was observed in the Cedar network [22]
where there was a large delay at the input of the
backward network. In our case, the same network
is used both for forward and backward requests
and we use wormhole or cut-through switching
instead of packet switching in Cedar. With the
buddy policy, the data is contiguously stored at a
few memory modules causing several processors to
send requests to the same memory module at any
given time. In round-robin, although the overall
requests to the memories are equally distributed
over the entire execution period, it is observed that
memory requests from many processors are di-
rected to a particular page or multiple pages in the
same memory at a certain time. Hence, at a time,
the memory or interface has to supply the data
blocks to various processors one after another in
the form of bulks. For first-touch, each page is

located at the processor that first accessed the
page. So, the higher the percentage of pages whose
degree of data sharing is equal to 1 the more
benefit the first-touch policy can gain. The back-
ward stage waiting delay is not observed in skew-
mapping and prime-mapping policies since they
reduce the amount of simultaneous remote traffic
to a single memory module by allocating data in-
telligently. For these two memory management
policies, we see that the average message latency
constitutes a smaller fraction of the waiting delay.
Much of the delay is due to the transmission delay
in the network. Apart from improvements in
memory management policy, we also observe that
the improvement in switch design (SWH to BVC)
reduces the waiting delay significantly at the
different stages of the network. The BVC switch
architecture along with skew-mapping and prime-
mapping memory management policies gives the
best performance in most cases.

Improvements in switch design with VC’s and
buffer sizes of 32 flits increase the complexity of
the switch and the cost. However the improve-
ments in performance are also quite impressive.
Stall-time improvements between the two net-
works range from 15% to 65% for the buddy
policy, round-robin, first-touch, skew-mapping,
and prime-mapping. The exception to this im-
provement is the performance of the FFT appli-
cation with the first-touch memory management
policy. Improvements due to switch design in this
case are minimal since the first-touch policy re-
duces the number of requests to the network
by almost 90% as can be seen in Table 2. With
only 10% of the requests traversing the network,
switch utilization is low and the SWH switch de-
sign is sufficient to provide good performance for
FFT with first-touch. Improvements due to in-
crease in switch size are not as impressive as im-
provements due to the switch design because
doubling the switch size effectively reduces the
transmission latency by half which does not play
an important role in wormhole routing. For the
average message latency, another exception to
such an improvement is the performance of the
MATMUL application with the skew-mapping
policy due to the better memory management
policy.

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 77



6. Conclusion

In this paper, we explored a spectrum of
memory management policies for CC-NUMA
multiprocessors. We found that existing memory
management policies, namely buddy, round-robin
and first-touch, each have their own limiting fac-
tors for providing good application performance.
The problems mainly were due to bulky arrivals of
requests to the same memory module. To alleviate
these problems, we introduced two improved
memory management policies, called skew-map-
ping and prime-mapping.

The memory access characteristics of five
memory management policies, namely buddy,
round-robin, first-touch, skew-mapping, and
prime-mapping, were analyzed in detail. Our
performance metrics covered interarrival time
distributions, application access patterns and ap-
plication stall time. A detailed analysis of the effect
of each memory management scheme on applica-
tion access patterns showed that considerable im-
provement in performance can be attained by
employing intelligent static memory management
policies. The impact of memory management on
the various components of application stall time
was analyzed and shown to be significant. The
improvements in stall time for skew-mapping and
prime-mapping policies is mainly due to a better
distribution of the data among the various mem-
ories. The data distribution induces a skewing ef-
fect on the temporal access pattern of multiple
requests from different processors to the same
memory. Improvements were found to be as high
as 35% in stall time. For the FFT and FWA ap-
plications, the performance using first-touch is
better than with the skew-mapping and prime-
mapping memory management policies due to low
sharing degrees (read or write). However, first-
touch is not effective for applications with mod-
erate to high sharing degrees.

The impact of the memory management on
network performance was also analyzed and
shown to be significant. We used two different
switch architectures (SWH and BVC) to represent
the advancements in the current interconnect
technology. Incorporating buffers and virtual
channels in the switch reduces the average message

latency tremendously, but we found that perfor-
mance improvements are very much dependent on
the memory management policy.

Acknowledgements

We would like to thank Dr. Hermann Hell-
wagner and the anonymous referees for their
helpful comments.

References

[1] R.P. Larowe, C.S. Ellis, Experimental comparisons of

memory management policies for NUMA multiprocessors,

ACM Transactions on Computer Systems 9 (4) (1991) 319–

363.

[2] C. Scheurich, M. Dubois, Dynamic page migration

in multiprocessors with distributed global memory,

IEEE Transactions on Computers c-38 (8) (1989) 1154–

1163.

[3] J. Ramanathan, L.M. Ni, Critical factors in NUMA

memory management, in: Proceedings of the 11th Inter-

national Conference on Distributed Computing Systems,

Arlington, TX, May 1991, pp. 500–507.

[4] W. Bolosky, M. Scott, R. Fitzgerald, R. Fowler, A. Cox,

NUMA policies and their relationship to memory archi-

tecture, in: Proceedings of the Fourth International Con-

ference on Architectural Support for Programming

Languages and Operating Systems, Santa Clara, CA, April

1991, pp. 212–221.

[5] B. Verghese, S. Devine, A. Gupta, M. Rosenblum,

Operating system support for improving data locality on

CC-NUMA computer servers, in: Proceedings of the Sixth

International Conference on Architectural Support for

Programming Languages and Operating Systems, Cam-

bridge, MA, October 1996, pp. 279–289.

[6] L.N. Bhuyan, R. Iyer, H. Wang, A. Kumar, Impact of CC-

NUMA memory management policies on the application

performance of multistage switching network, IEEE

Transactions on Parallel and Distributed Systems 11 (3)

(2000) 230–246.

[7] D.T. Shapiro, Theoretical limitations on the efficient use of

parallel memories, IEEE Transactions on Computers c-27

(5) (1978) 421–428.

[8] D.T. Harper III, Block, multistride vector, and FFT

accesses in parallel memory systems, IEEE Transactions

on Parallel and Distributed Systems 2 (1) (1991).

[9] A. Deb, Multiskewing––a noval technique for optimal

parallel memory access, IEEE Transactions on Parallel and

Distributed Systems 7 (6) (1996) 595–604.

[10] M.A. Trenas, J. Lopez, F. Arguello, E.L. Zapata, A

memory system supporting the efficient SIMD computa-

78 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80



tion of the two dimensional DWT, in: Proceedings of

International Conference on Acoustics, Speech, and Signal

Processing, Seattle, WA, May 1998.

[11] D.H. Lawrie, C.R. Vora, The prime memory system for

array access, IEEE Transactions on Computers c-31 (5)

(1982) 435–442.

[12] Q. Yang, Introducing a new cache design into vector

computers, IEEE Transactions on Computers c-42 (12)

(1993) 1411–1424.

[13] T. Sun, Q. Yang, A comparative analysis of cache designs

for vector processing, IEEE Transactions on Computers c-

40 (3) (1999) 331–343.

[14] L.N. Bhuyan, Q. Yang, D.P. Agrawal, Performance of

multiprocessor interconnection networks, IEEE Computer

Magazine 22 (2) (1989) 25–37.

[15] W.J. Dally, Virtual channel flow control, IEEE Transac-

tions on Parallel and Distributed Systems 3 (2) (1992) 194–

205.

[16] L.N. Bhuyan, R. Iyer, T. Askar, A.K. Nanda, M.

Kumar, Performance of multistage bus networks for a

distributed shared memory multiprocessor, IEEE Trans-

actions on Parallel and Distributed Systems 8 (1) (1997)

82–95.

[17] M. Ould-Khaoua, H. Sarbazi-Azad, An analytical model

of adaptive wormhole routing in hypercubes in the

presence of hot spot traffic, IEEE Transactions on Parallel

and Distributed Systems 12 (3) (2001) 283–292.

[18] H. Sarbazi-Azad, M. Ould-Khaoua, L.M. Mackenzie,

Analytical modelling of wormhole-routed k-ary n-cubes

in the presence of hot-spot traffic, IEEE Transactions on

Computers c-50 (7) (2001) 623–634.

[19] A. Kumar, L.N. Bhuyan, Evaluating virtual channels for

cache coherent shared memory multiprocessors, in: Pro-

ceedings of the ACM International Conference on Super-

comuting, Philadelphia, PA, May 1996, pp. 253–260.

[20] L.N. Bhuyan, H. Wang, R. Iyer, A. Kumar, Impact of

switch design on the application performance of cache-

coherent multiprocessors, in: Proceedings of IPPS/

SPDP’98, Orlando, FL, April 1998, pp. 466–475.

[21] J.F. Martinez, J. Torrellas, J. Duato, Improving the

performance of bristled CC-NUMA systems using virtual

channels and adaptivity, in: Proceedings of ACM Interna-

tional Conference on Supercomuting, Rhodes, Greece,

June 1999, pp. 202–209.

[22] J. Torrellas, Z. Zheng, The performance of the cedar

multistage switching network, IEEE Transactions on

Parallel and Distributed Systems 8 (4) (1994) 321–336.

[23] E.A. Brewer, C.N. Dellarocas, A. Colbrook, W.E. Weihl,

PROTEUS: A High-Performance Parallel-Architecture

Simulator, Technical Report MIT/LCS/TR-516, Massa-

chusetts Institute of Technology, Cambridge, MA, Sep-

tember 1991.

[24] L.M. Censier, P. Feautrier, A new solution to coherence

problems in multicache systems, IEEE Transactions on

Computers c-27 (12) (1978) 1112–1118.

[25] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A.

Gupta, J. Hennessy, The DASH prototype: logic overhead

and performance, IEEE Transactions on Parallel and

Distributed Systems 4 (1) (1993) 41–61.

[26] G.Astfalk and T.Brewer, An Overview of the HP/Convex

Exemplar Hardware, Available from <http://www.con-

vex.com/tech_cache/ps/hw_ov.ps>.

[27] J. Laudon, D. Lenoski, The SGI origin: A ccNUMA

highly scalable server, in: Proceedings of the 24th Annual

International Symposium on Computer Architecture, Den-

ver,CO, June 1997, pp. 241–251.

[28] M. Galles, Scalable pipelined interconnect for distributed

endpoint routing: the SGI SPIDER chip, in: Proceedings

of Symposium on High Performance Interconnects (Hot

Interconnects 4), Palo Alto, CA, August 1996, pp. 141–

146.

[29] J. Carbonaro, F. Verhoorn, Cavallino: The teraflops router

and NIC, in: Proceedings of Symposium on High Perfor-

mance Interconnects (Hot Interconnects 4), Palo Alto, CA,

August 1996, pp. 157–160.

[30] J.P. Singh, W.-D. Weber, A. Gupta, SPLASH: Stanford

parallel applications for shared-memory, ACM SIGARCH

Computer Architecture News 20 (1) (1992) 5–44.

[31] S. Chodnekar, V. Srinivasan, A. Vaidya, A. Siva subr-

amaniam, C. Das, Toward a communication characteriza-

tion methodology for parallel applications, in: Proceedings

of the Third International Symposium on High-Perfor-

mance Computer Architecture, San Antonio, TX, Febru-

ary 1997, p. 310.

Ravishankar Iyer received his Ph.D. in Computer Science, M.S.
in Computer Science and B.S. in Electrical Engineering in
August 1999, August 1996 and December 1994 respectively
from Texas A&M University, College Station, TX. He is cur-
rently with Intel Corporation. His research interests include
computer architecture, parallel computing and performance
evaluation.

Hujun Wang received his M.S. degree
in computer science from NanJing
University of Science and Technology,
China, in 1993, and B.S. degree in
computer science from East China
Shipbuilding Institute of Technology,
China, in 1990. He is currently work-
ing toward his Ph.D. degree in the
Department of Computer Science at
Texas A&M University. His current
research interests include memory
management, parallel applications,
and interconnection networks.

Laxmi Narayan Bhuyan received the M.Sc. degree in Electrical
Engineering from Sambalpur University, India, in 1979, and the
Ph.D. degree in Computer engineering from Wayne State
University, Detroit, MI, in 1982. At present, he is a professor of
Computer Science at University of California, Riverside, CA.
His research interests are in the areas of computer architecture,
parallel processing, interconnection networks and performance
evaluation. He has published over 100 papers in these areas. Dr.
Bhuyan has served on the editorial boards of the IEEE Com-
puter magazine, Journal of Parallel and Distributed Computing
(JPDC), IEEE Transactions on Parallel and Distributed Sys-
tems and Parallel Computing journal. He was the Founding

R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80 79

http://www.convex.com/tech_cache/ps/hw_ov.ps
http://www.convex.com/tech_cache/ps/hw_ov.ps


Program Committee Chairman of the First International
Symposium on High-Performance Computer Architecture
(HPCA), January 1995 and later Chairman of the IEEE

Computer Society Technical Committee on Computer Archi-
tecture (TCCA) between 1996–1998. He is a Fellow of the
IEEE.

80 R. Iyer et al. / Journal of Systems Architecture 48 (2002) 59–80


	Design and analysis of static memory management policies for CC-NUMA multiprocessors
	Introduction
	Memory management policies
	The existing policies
	The improved memory management policies
	Skew-mapping policy
	Prime-mapping policy


	Experimental methodology
	Network/switch architecture
	Benchmark applications

	Application-centric results
	Data sharing pattern of applications
	Effect of memory management policies
	The FFT access pattern

	System-centric results
	Performance metrics
	Performance evaluation

	Conclusion
	Acknowledgements
	References


