584 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003

Deficit Round-Robin Scheduling for
Input-Queued Switches

Xiao Zhang Student Member, IEEEBNd Laxmi N. BhuyanFellow, IEEE

_Abstract—in this paper, we address the problem of fair sched- output buffer. Therefore, applying fair scheduling at the crossbar
uling of packets in Internet routers with input-queued switches. switch should be more effective than that at the output queue.
The goal is to ensure that packets of different flows leave a router Our simulation results in this paper confirm this hypothesis.

in proportion to their reservations under heavy traffic. First, we Wi flow-based iterative deficit d-robin fai
examine the problem when fair queuing is applied only at output € propose a tow-based iterative deficit-round-robin fair

link of a router, and verify that this approach is ineffective. Second, Scheduling algorithm (iDRR) for the crossbar switch. Our ex-
we propose a flow-based iterative deficit-round-robin (iDRR) fair periments shows that it provides high throughput, low latency

scheduling algorithm for the crossbar switch that supports fair - and fair bandwidth allocation among competing flows. The
bandwidth distribution among flows, and achieves asymptotically algorithm is based on the deficit round-robin (DRR) algorithm

100% throughput under uniform traffic. Since the flow-based al- . :
gorithm is hard to implement in hardware, we finally propose a [6]. Another flow-based crossbar scheduling algorithm, called

port-based version of iDRR (called iPDRR) and describe its hard- iterative fair scheduling (iFS), was proposed in [8]. It is based
ware implementation. on virtual time [4], [5]. We believe that the DRR algorithm

Index Terms—Fair scheduling, input-queued crossbar switch, is easier to implgment in .hardware than the virtual time. We
quality-of-service (QoS). also show that iDRR delivers packets at a rate close to an
output-queued switch.

In practice, if an algorithm has to be fast, it is important
that it be simple and easy to implement in hardware. A flow-

OST OF THE commercial routers employ input-queuebased fair scheduling algorithm is desirable, but is difficult in

switches (Cisco [1], BBN [2]) because output-queuetrms of hardware implementation because of the large and vari-
switches are difficult to design. Fairness in resource allocationgble number of flows. To solve this problem, we also develop
important to support quality-of-service (QoS). In this paper, we port-based iterative deficit-round-robin fair scheduling algo-
address the problem of fair scheduling of packets in routers wiithm (iPDRR) that can work with VOQs [9]. We propose to
input-queued switches. The goal is to make sure that packetslvide the flow-based scheduling into two stages. First, a fair
different flows leave a router in proportion to their reservatiorgueuing algorithm is applied at the input buffer to resolve con-
when the bandwidth of the router cannot accommodate all ii@ntions among flows from same inputs to same outputs. Then, a
coming traffic. port-based fair scheduling algorithm is adopted to resolve con-

Generally, a router consists of line cards which contain inptgntions among ports.
and output ports, a switch fabric, and forwarding engines. Stiliadis and Varma also proposed a port-based fair sched-
When a packet arrives at an input port, its header is sent to tH#g algorithm weight probability iterative matching (WPIM)
forwarding engine, which returns the output port and the ne0]. It was shown that iFS performs better than WPIM in terms
header. The packet is buffered in the input queues waiting foir granularity of fairness [8].
the switch to transfer it across the crossbar switch fabric. WhenThe rest of the paper is organized as follows. In Section II, we
the packet is received at the output port, it is pushed into tHescribe the architecture of the input-queued switch used in this
output queues. The packet leaves the router when the outpaper. In Section Ill, we examine the problem when fair queuing
link is ready. is applied only at the output link. Then, we propose a flow-based

Many fair queuing algorithms [3]-[7] have been developeiterative deficit-round-robin fair scheduling algorithm iDRR for
to schedule packets on shared resources. Some of these Mageswitch in Section IV. In Section V, we present a port-based
been implemented at the output links of commercial routeddgorithm iPDRR. Its hardware implementation is described in
[1], [2] to support QoS. However, with today’s technology, th&ection VI. Finally, Section VII concludes this paper.
link speed is increasing almost exponentially. The backbone
crossbar with its scheduler becomes the real bottleneck, and Il. OPERATION OF THEINPUT-QUEUED SWITCH

most of the packets are waiting at the input buffer instead of theFig. 1 shows the internal structure of the input-queued back-

bone switch of a router. We explain the operations of various
. . . ___components of this figure in this section. Incoming packets are
Manuscript received August 1, 2002; revised January 16, 2003. This pagir dinthei hich h
was supported in part by the National Science Foundation (NSF) under Gr predin the |.nput queue, which has a separate queue per C_JUtpUt
CCR 0105676. . _ port, called virtual output queue (VOQ), if a port-based switch
_The authors are with the Department of Computer Science and Egcheduler is used. If the switch scheduler is flow-based, a sep-
gineering, University of California, Riverside, CA 92521 USA (emall:arate ueue per flow needs to be maintained. We call it virtual
xzhang@cs.ucr.edu; bhuyan@cs.ucr.edu). q p :

Digital Object Identifier 10.1109/JSAC.2003.810495 flow queue (VFQ).

I. INTRODUCTION

0733-8716/03$17.00 © 2003 IEEE

ZHANG AND BHUYAN: DEFICIT ROUND ROBIN SCHEDULING FOR INPUT-QUEUED SWITCHES 585

L# Il]DCViCeH D%CC%%%gztlon H Segmentation H éﬁ%ﬂte } “ ReassemblyH %llltg)ulg H%lll]zullr{ég H OutDevice FL—
L—# InDeviceH Descc(ﬁle%gznon H Segmentation (I)r:l%llllz } } ReassemblyH %&pulg H%‘fg“l}{}? H OutDevice FL—
2,# InDevice Descc%lggznon H Segmentation éﬁ%ﬁ% “ } ReassemblyH 8?]?”[? H%‘;gﬁ{;gH OutDevice F—2——
E,# InDeviceH Descc%r‘ls%gznon H Segmentation H éﬁ%ﬂte } ‘[RcassemblyH 8‘3‘6‘2}? H%‘;eg“l},‘gg H OutDevice FM

Fig. 1. Block diagram of an input-queued switch.

The size of the input buffer is finite. When the input buffer idlow-based scheduling is adopted. In packet-mode scheduling,
full or congestion is anticipated, a decongestion mechanismoisly one reassembly engine is needed.
needed to determine when to drop packets and which packets tevhen a complete packet is received by the reassembly
drop. One function of the decongestion mechanism is to isolatedule, it is stored in the output queue. The output queue
bad-behaved flows from well-behaved ones. Such flow isolatican be a simple first-in-first-out (FIFO) queue if the basic
is critical to fair scheduling [8]. In the rest of this paper, wdirst-come-first-served (FCFS) queuing algorithm is used, or a
assume that such a mechanism is already provided. multiple-queue buffer if some fair queuing algorithm, such as
The center of the router is the switch fabric, usually\axV. DRR, is employed. When a output buffer fills up, the switch
crossbar connectingy inputs andN outputs. It operates onis notified to stop transferring packets to it until some buffer
small fixed-size units, ocells(in ATM terminology). A slotis space frees up.
the time to transfer one cell across the switch fabric. Variable-The output link is responsible for sending packets out
length packets are usually segmented into cells before bewfgthe router. When the output link is ready, it signals the
transferred across the crossbar. The switch scheduler seleasitput queuing engine to pick a packet from the output queue
configuration of the crossbar to ensure that at any instance, eacbording to a certain criterion. Commercial routers, such as
input is connected to at most one output, and each output is c@isco 12000 series [1], implement DRR-based algorithms at
nected to at most one input. For each pair of matched input ahik point.
output, a cell is selected to be transferred across the switchOur simulation is based on the model shown in Fig. 1. Packet
In practice, the switch scheduling functionality is distributedrrival is modeled as a two-staba-OFFprocess. The number of
to each port, and an iterative scheduling algorithm is implen state slots is defined as the packet length which is generated
mented to work independently for each input and output [&fom a profile of NLANR trace at AIX site [18]. We collected
[10]-[16]. We modify this part of the hardware to implemen119,298,399 packets from Sunday, May 12, 02:45:06, 2002 to
fair scheduling. Saturday, May 18, 23:11:34, 2002. The packet length ranges
The scheduling can be done at the cell level, i.e., all tiem 20 to 1500 bytes with a medi¥,,,,) of 566 bytes and a
input—output connections are torn down after each slot asthndard deviation of 615 bytes. The numbepesstate slots is
the scheduler considers all inputs and outputs to find a ne@wponentially distributed with averade,gs = ((1 — p)/p) Eon,
matching. Cells from different packets can be interleaved wherep is defined as offered worklog® < p < 1). Cell size is
one output. This is the scheme used in many current routers64 bytes. Input buffer size is 10240 cells. We have varied these
Alternatively, the scheduling can be done in such a way thedrameters to do a sensitivity analysis. However, due to page
when an input and an output are matched, the connection is kigpit, we report only a few results in this paper based on above
until a complete packet is received at the output. This approgefirameters.
is calledpacket-mode schedulinghile the previous is called
cell-mode schedulingt was shown that packet-mode sched-
uling has better packet delay performance than cell-mode sched!!

uling in case of packet length distribution with a small variance ggjr queuing is usually applied at the output ports of a router.
(the coefficient of variation of the service time is less than ongj this section, we verify that this approach is ineffective in a
[17]. router with input-queued switch.

The reassembly module holds cells until the last cell of a Consider a 44 IP router configured as Fig. 1. We choose
packet is received at the output port, and then reassembles thgs¢P [12] as the switch scheduler and DRR [6] as the fair
cells back into a complete packet. In cell-mode schedulivig, queuing algorithm. Each input has one flow destined to output
reassembly engines are required, wh¥res the number of in- 0, and reserves 10%, 20%, 30%, and 40% bandwidth, respec-
puts if port-based scheduling is used or the number of flowstifely. Each flow maintains the same arrival rate. Fig. 2 shows

PROBLEM WITH FAIR QUEUING AT THE OUTPUT LINK

586 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003

2 05 T flowy (0-0) (10%) = 2 05 T flowy (0-0) (10%)
3 flow; (1-0) (20%) -~ 3 flow; (1-0) (20%) -~
2 02 | flowy 20) (30%) ~x 2 02 | flow; 250)(30%) ~x _socsesoes |
=) | flow; (3—0) (40%) ") “ | flows (3-0) (40%) e a”
3 - link speed = 1 cell/slot 3 - . 2
= 015 = 015 F o e e
g R R N e g /g"' \‘X\X
= link speed = 0.5 cell/slot = \ Rt ettt
ER P : ER \ .
= =
e e e
g 0.05 link speed = 0.25 cell/slot - g 0.05 T
= =
0 1 1 1 1 1 L 0 1 1 Il 1 1 L
0.05 0.1 0.15 0.2 0.25 0.3 0.05 0.1 0.15 0.2 0.25 0.3
Offered load per flow (cell/slot) Offered load per flow (cell/slot)
Fig. 2. Throughput per flow using iSLIP and DRR. Fig. 3. Throughput per flow using iSLIP and DRR. ESPF is applied right

before the output queue. Output-link speed).5 cell/slot.

0-25 1 flow, (0-50) (10%) Sl
flow; (1-0) (20%) -~
0.2 L flow, (2—0) (30%) - . |
| flows (3—-0) (40%) -

the throughput of each flow when the output link speeds are 1,
0.5, and 0.25 cell/slot, respectively.

In the case of 1 cell/slot link speed, DRR cannot distinguish
among flows. It is because DRR works only if there are back-
logged packets in the queue. But the number of packets in the

output queue is very limited because the output link speed is the 0.15
same as that of the switch.

When the link speed is less than 1 cell/slot, DRR also fails 0.1y
to distinguish among flows. The underlying problem is that the 0.05 1

output queue lacks a decongestion mechanism to isolate dif-
ferent flows. The switch pushes packets of different flows into .] . . ,
the output queue at the same rate. On the other hand, DRR pops 005 01 015 02 025
packets of different flows in proportion to their reservations.
Eventually, most of the output buffer space is filled up by flows
with the lowest reservation. Fig. 4. Throughput per flow using iSLIP and DRR. ESPF is applied right
However, applying a decongestion mechanism at the outpgfere the output queue. Output-link speed! cell/slot.
gueue has its own problem. Suppose that we apply a deconges-
tion scheme called equal size per flow (ESPF] right be- IV. A FLOW-BASED FAIR SCHEDULING ALGORITHM

fore the output queue, one solution could be: when a flow usesBased on the observation in Section IIl, a straightforward idea
up its quota, the switch is informed to stop transferring packetsto apply fair queuing at the switch to support fair bandwidth
belonging to that flow. However, this approach will not workallocation. In this section, we first introduce the definition of
since iSLIP does not distinguish among flows. Another way fairness in input-queued switch scheduling, and then present an
to drop the packet when a flow uses up its quota. This approatdrative deficit-round-robin fair scheduling scheme. We call it
works (as shown in Fig. 3), but is still not very attractive. FirsiDRR.
accepting packets at input queue and dropping them at output))
gueue wastes switch bandwidth and input buffer space. Secofid,Definition of Fair Scheduling
applying a decongestion mechanism at the output side is redunwVe follow the same definition of fairness as that in [8]. An
dant since it is already done at the input side. Finally, this amput-queued switch is work conserving. Lt be the reser-
proach still cannot solve the problem when output-link speedvation of flow, andW(¢;, t2] be the amount oflow,, traffic
the same as the switch speed (see Fig. 4). served in the interva(t,,ts]. For any two backlogged flows
The conclusion is generally true. If the switch scheduler treafsand f; that are in contention, a scheduling scheme is fair in
flows with different reservations equally, it is useless to apply1. 2] if
fair queuing only at the output side. In other words, the fairness Wilts,ta] _ 7
issue should be addressed at the switch and/or input side. In the bl
following section, we develop such a flow-based scheduler for Wity ta] = 7
the switch and use simple FIFO output queues. Intuitively, this definition means that when the bandwidth of
a router cannot accommodate all incoming packets, packets of
different flows leave the router in proportion to their reserva-
tions.
In a router with input-queued switch, the input/output line
1ESPF: Each flow is assigned a quota which equals the total buffer size 8iards and the switch are usually of the same speed. In this sce-

vided by the number of flows. When the buffer occupancy is below a certain_ . . .
threshold, all incoming packets are accepted. After that, a packet is accegtéH 10 the switch input port cannot be overloaded because the

only if the flow's quota has not been used up. incoming traffic has been shaped by the input line card which

Throughtput per flow (cell/slot)

(=]

0.3
Offered load per flow (cell/slot)

ZHANG AND BHUYAN: DEFICIT ROUND ROBIN SCHEDULING FOR INPUT-QUEUED SWITCHES

587

receives packets at the rate of 1 cell/slot. The switch output parformation is entered into the flow list of the router. All packets
however, can be overloaded when packets from different inmftthis flow will carry the identification information.

ports go to the same output port, or the instantaneous outpuFlow reservation can be made as the percentage of the total
line speed is reduced because of the slowdown of the down lildandwidth. The quota can be set statically or dynamically. In
These are some of the “heavy traffic” situations we consider iRe static approach, we assign a minimum quota.,), say 24

this paper.

B. Description of iDRR Algorithm

cells, to the minimum available reservation,;,). Then, for a
flow with reservationr, its quota iS(r/7min)gmin- IN the dy-
namic approach, the minimum quota is assigned to the flows

The basic idea of iDRR is to assign each flow a quota whigkith minimum reservation and quotas of other flows can be ad-
is in proportion to its reservation. When a flow’s correspondingsted accordingly.
input and output are matched, we continue transferring packet®) Flow Deactivation: After a flow makes a reservation, it

of the flow until its quota is used up.

In an N x N switch, for eachflow,, we maintain a sepa-
rate queueVFQ, and three valuesguota,, counter; and
candidateg. The value ofjuota, is in proportion to thélow,'s

can be active or inactive depending on its queue status until the
reservation is canceled. InitiallyFQ,, is empty andlowy, is
inactive. When the first packet @ibw, arrives,flow; becomes
active. WhenVFQ, becomes empty, the first thought is to de-

reservation (see Section IV-C1). In packet-mode schedulinggtivatefiow, immediately. However, doing so may cause some

in advance, and the minimum quota is no smaller than M

(This assumption is not necessary in cell-mode scheduling).

Countery, indicates the current available quota 66wy.
At eachinput;(0 < i < N-1), a linked listinflowList; is
maintained to record the active flows fromput,. At each
output;(0 < j < N-—1), another linked lisbutflowList;
is maintained to record active flows toutput;. When
flow;, (from input,; to output;) becomes active\(FQ, was
empty and a packet dfow, arrives), add it to the end of
inflowList; and outflowList;, and initialize counter, to —1
and candidate, to FALSE When flow;, becomes inactive

(VFQ, becomes empty for a period of time after a packet
of flow; leaves, see Section IV-C2), it is removed from

inflowList; and outflowList;. Initially, all inputs and outputs
are unmatched. Then, in each iteration:

1) RequestEach unmatchethput; sends a request to every

output for which it has a queued cell.

2) Grant If an unmatchedutput; receives any requests,

choose fromoutflowList; the first flow, sayflow;, (from

« Suppose packet-mode scheduling is used, and the length
of each packet oflow;, is 20 cells. At one moment,
countery is 1 andflow,, is serviced. After one packet is
transferredcounter;, becomes-19 andVFQ, becomes
empty. Ifflow,. is deactivated immediately, the over-used
counter(—19) will be cleared. Then, iflow; becomes
active after one slot, it may over-use its reserved band-
width.
Likewise, immediate deactivation may also cause
under-use of a flow’s reservation. Suppose each packet
of flowy, is 1 cell long. At one momentountery, is 100
and flowy, is serviced. After one packet is transferred,
counter; becomes 99 an&FQ, becomes empty. De-
activating flow;, immediately will wipe out the unused
counter (99).

Therefore, we propose thaflow becomes inactive only after
its VFQ becomes empty for a period of tiriée timeout value
of an active flow after its queue is empty can be set statically,

input, to output;), such thainput, sends a request andSay 1000 slots. If no more packets arrives within this period of

VFQ, is not empty. Setandidate; to TRUEand send a
grant toinput;.

3) Accept If an unmatchedinput; receives any grants,
choose frominflowList; the first flow, sayflow; (from
input; to output;), such thatcandidate, = TRUE.
Increasecountery, by quota,. Move flow;, to the end of
inflowList; andoutflowList;. Setcandidate; to FALSE
for all flow; in inflowList,;. Send an accept tautput;.

Input; andoutput,; are then setas matched. Affekv,
is marked as the selected flow for theput, — output;
pair.

In each slot, for every selectéibw,, the switch transfers a

cell of its head-of-line (HOL) packet and decreasenter;, by

time, the flow is considered inactive.

Alternatively, we can deactivate a flow dynamically as
follows. Let r. be the current total reservation of all flows
competing withflow,, of reservation;,. WhenVFQ, becomes
empty andcount; # —1, decrease (itounter, > 0) or in-
crease (itounter, < —1) countery by 1 every(r. + r1)/(rx)
slots until counter;, = —1. Then, setflow; as inactive and
remove it from the two active flow lists.

When the above flow deactivation scheme is used, it may so
happen that a flow is in the active flow list while its queue is
empty. Therefore, in the grant step of iDRR, when selecting a
flow, the condition VFQ,, is not empty” is necessary.

3) Complexity: In the context of fair queuing, assuming that

1. After transferring a complete packet (if packet-mode schemitTU is known in advance and letting all quotas no smaller than

uling is used) or a cell (if cell-mode scheduling is used),
counterr, < 0 or VFQ, is empty, reseinput, and output;
as unmatched.
C. Remarks

1) Reservation and QuotaEor any flows wishing to receive

f1TU ensure that DRR has the time complexity@f1), i.e., it

is guaranteed that the top of the active flow list can be selected.
In [19], Kanhereet al. proposed an elastic round-robin (ERR)
algorithm which removes this assumption by partitioning the
time into rounds and using the maximum packet length during
the previous round as the minimum quota in the current round.

guaranteed bandwidth, reservation is necessary. When a flowthe context of switch scheduling, howevéx1) still cannot
makes a reservation at a router, its identification and reservatlom guaranteed even with the above modifications. Because it

588 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003

iDRR ——
1000 | iFS - .
Output queueing //

iDRR —— / i
1000 ¢ iFS - |
Output queueing *

100 | ™ 100 | A

—

Average delay per packet (slot)
Average delay per packet (slot)
\x

0.1 02 03 04 05 06 07 08 09 1 0.1 02 03 04 05 06 07 08 09 1
Offered load per input port (cell/slot) Offered load per input port (cell/slot)

Fig. 5. Performance of iDRR, iFS, and output queuing under uniform traffi(%:.igf-f_e- Performance of IDRR, iFS, and output queuing under nonuniform
raffic.

may happen that the input port of the top flow in theflowList

. . —~ fii - 1l fi input; to output;
has already been matched in the previous slots. In the worst casez k(i) - TIOWi OM NP o ORI

0.2t P R L e

the algorithm has to check all flows in the list before it selects % o~ Be0r f4(040') (20%) |
one. e ’/f-.,n]
4) Cell Mode Versus Packet Mode&Scheduling can be cell é 0Ly <. a0y Tsc10 (15%) |
mode or packet mode. In the case of flow based scheduling, cell b} e,
mode may not be a good choice. Although cell-mode scheduling 5~ %! | e 0%]
e - .) 2 1(1-0) f6(250) (10%)
simplifies the switch, it requires that the reassembly module can g
hold N packets at one time, wher€ is the number of flows g 0057 Ty
) k| 0(0-0)> F7350) (5%)
and can be very large. Therefore, we choose packet mode in our=

simulation. 0

005 0.1 015 02 025 03 035

Offered load per flow (cell/slot)
D. Simulation Results
Fig. 7. Throughput per flow using iDRR.
Fig. 5 shows the throughput and delay performance of iDRR

E?]g]:ral:i(i?‘ovrvrlr:htrzgghﬁr\:g\évr-ftc))?;eadncsgg?%lﬂtlggt 3IL?:L:IiT’|TWi tRandwidth_is d_istributed in prpportion to each flow's reservation
. . when the link is over-subscribed.
DRR applied at the output queue is also shown for compar-
ison. The simulation is run on a ¥86 switch. Each input has
two flows to each output, totally 512 flows. Each flow reserves
the same bandwidth and maintains the same arrival rate. The-low-based fair scheduling algorithms are desirable in terms
output-link speed is 1 cell/slot. The number of iterations is threg fairness among flows. However, in terms of hardware imple-
(same as that in Tiny Tera [20]). Under this circumstance, wentation, they are more complex than port-based algorithms.
observe that the average packet delay of iDRR is almost ideéniDRR and iFS, each port needs to maintain an active flow list,
tical to that of iFS. They are all close to the delay when outputhose length varies from time to time and can be very large.
gueuing is used. Hence, iDRR is capable of achieving asymp4we propose to divide the flow-based scheduling problem into
totically 100% throughput for uniform traffic. two stages. Fig. 8 shows two additional stages, VFQ and DRR,
For the nonuniform traffic, we consider the server-clierintroduced at the input side of Fig. 1. There is no fair queuing
model as used in [8], [10], and [11]. In a £86 switch, four engine at the output side. First, we apply a fair queuing algo-
ports are connected to servers and twelve to clients. Eatthm at the input buffer to resolve contentions among flows
client sends 10% of its generated traffic to each server, and fhem same inputs to same outputs. The VFQ is implemented in
remainder is evenly distributed among other clients. For eabfiRAM and the DRR fair queuing is implemented in software.
server, 95% of its traffic goes to clients, and 5% to other servefsseparate input queue (VOQ) is maintained for each output, as
In this setting, the traffic from clients to servers is almost twiceequired for iterative scheduling algorithms. Then, we develop
that from clients to clients. Fig. 6 shows the average packetport-based fair scheduling algorithm to resolve contentions
delay of traffic from clients to servers as a function of thamong the input ports.
workload per input. As we can see, iDRR and iFS are almostFor a hardware scheduling algorithm to be useful, it is im-
indistinguishable and can reach a throughput of about 78%. portant that it be simple. That why iSLIP is the choice in Tiny
To evaluate the fairness of iDRR, we run the simulation onTera [20] and Cisco GSR [1], although it does not offer the
4x 4 switch, where each input has two flows destined to outpbest performance compared to other schemes or provide 100%
0 with different reservations. Each flow maintains the same ahroughput under nonuniform traffic [21]. It is readily imple-
rival rate. Output link speed is 1 cell/slot. As shown Fig. 7, theented in hardware and can operate at high speed. It was shown

V. PORT-BASED FAIR SCHEDULING ALGORITHM

ZHANG AND BHUYAN: DEFICIT ROUND ROBIN SCHEDULING FOR INPUT-QUEUED SWITCHES 589

i—# InDevice Deg(gl}ll%g?élon H VFQH DRRH Segmentation H vOQ l % ReassemblyH FIFO H OutDevice Fi—
—1—4 InDeviceH Deg‘éﬁ%fﬁé‘on H VFQH DRRH Segmentation H vOQ ! “ ReassemblyH FIFO H OutDevice F—l>
2 . Decongestion . | \ . 2
—=1 InDevice Scheme VFQ [DRR [Segmentation - VOQ | | Reassembly - FIFO |- OutDevice -——
M# InDeviceH Deg‘éﬂ%fggon H VFQH DRRH Segmentation H VOQ]I “ ReassemblyH FIFO H OutDevice FM

Fig. 8. Two-level scheduling scheme for an input-queued switche.

thatiSLIP can find a matching using three iterations within eigl¢ar down their connection. Otherwise, keep the connection and
switch cycles (45 ns) for a 3232 switch [22]. continue transferring packets (or cells).

Our iDRR can be readily modified to its port-based version. Notice that iPDRR differs from iDRR in that inactive ports
We call itiPDRR. Because of the fixed number of ports, itis eagyre not removed from the linked list so that the size of the linked
toimplement in hardware. In the rest of this section, we descriligt is fixed. This modification makes hardware implementation
iPDRR, compare it with other schemes, and show our simulatioruch easier (see Section VI).
results. Its hardware implementation will be discussed in detailsLike IDRR, whenVOQ),; becomes emptyount,; should be

in the next section. adjusted to prevent users from overutilizing or underutilizing
the bandwidth (see Section IV-C2). Let be the reservation
A. Description of iPDRR of the input;—output; pair, andr. be the total reservation of

all input-output pairs competing withput; — output;. When
In an Nx N switch, for each pair ofnput,—output;, we VOQ;; becomes empty ancbunter;; # —1, for every(r. +

maintain a separate qued®Q;; and two countersquota;; r;.)/(r;;) slots, decrease (ifounter;; > 0) or increase (if
andcounter;;. Quota,; indicates the reserved bandwidth ffOTTbounter,;j < —1) by one untilcounter;; = —1.
input; to output,. Its value is in proportion to the aggregate
reservation of all flows fronmput, tooutput ;. In packet-mode B. iPDRR Versus iSLIP
scheduling, we assume that MTU is known in advance, and alljp [12], McKeown proposed a round-robin algorithm iSLIP.
quotas are no smaller than MTU (this assumption is not negstead of using a linked list, iSLIP uses a pointer at each
essary in cell-mode scheduling)ounter;; indicates the cur- oytput(input) to record the input(output) with the highest
rent available quota of theput; —output; pair, initialized priority. Grant(Accept) is given in the order starting from the
to —1. For eachbutput;, we maintain a fixed-size linked list highest priority port.
inportList;, initialized to{0, 1,2, ..., N—1}. For eactinput;, A weighted iSLIP algorithm is also proposed in [12]. For
we keep another fixed-size linked listtportList;, initialized ~ eachoutput;, instead of maintaining an ordered circular list
to {0,1,2,..., N—1}. Initially, all inputs and outputs are un-g. — (.. N — 1} as that in the basic iSLIP algorithm,

matched. Then, in each iteration: the weighted iSLIP expands the list &y = {0,...,W; -1}
1) Request Each unmatchednput, sends a request toandi appears(r;;)/(r;)W; times inS;, whereW,; = (N -
output; if VOQ,; is not empty. rj)/(LargestCommonFactor(r;;)), r;; is the reservation for

2) Grant If an unmatchedutput; receives any requests,theinput;—output; pair, andr; is the aggregate reservation for
choose froninportList; the firsti such thatnput; sends output;.
arequest toutput;, and send a grant t@put, . Unfortunately, weighted iSLIP cannot readily take the advan-
3) Accept If an unmatchedinput, receives any grants, tage of the basic iSLIP hardware implementation because of the
choose fromputportList, the firstj such thabutput; variable size of5;. When adding or removing a reservatic),
sends a grant tmput,, and send an acceptéatput;. will be recalculated. The hardware implementation of iPDRR,
Input; and output; are now considered matchedon the other hand, is very straightforward and easy.
Then, increaseounter;; by quota,;. Move: to the end _]
of inportList;, and; to the end obutportList;. C. IPDRR Versus iPFS
If input; andoutput; are matched, the switch transfers the In [8], Ni and Bhuyan proposed a switch scheduling algo-
HOL packet frominput; to output; and decreasesunter;; rithm, called iFS, which is based on virtual time. Each incoming
by one every slot. In packet-mode (or cell-mode) schedulingacket is assigned a virtual time according to its flow's reserva-
after transferring a complete packet (or a cellyoifinter;; < 0 tion. The iFS schedules packets in the increasing order of the
or VOQ,; is empty, setnput; andoutput; as unmatched and virtual time.

590 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003

iPDRR + iPDRR
iPFS — 1000 iPFS - /]]
1000 ¢ iSLIP - (SLIP - !’;
WPIM e WPIM a

Output queueing -~ Output queueing -

100 | o

Average delay per packet (slot)
Average delay per packet (slot)

100 ¢ 1
N '_,:.fr/.(& B — ,‘_,,:-r;’_r -
10 1 L 1 1 1 1 L 1 1 1 10 1 L 1 1 1 1 1 L 1 1
0.1 02 03 04 05 06 07 08 09 1 0.1 02 03 04 05 06 07 08 09 1
Offered load per input port (cell/slot) Offered load per input port (cell/slot)
Fig.9. Performance of iPDRR, iPFS, WPIM, and iSLIP under uniform traffi€ig. 12. Performance of iPDRR, iPFS, WPIM, and iSLIP under nonuniform
(cell-mode scheduling). traffic (packet-mode scheduling).
T T T T T T T T T T 0.45 :
= iPDRR — 2 04 - Fij : packets from input; to outpu; Jr— |
=z iPFS ———— = " Fy, Fyy (40%)
g 1000 iSLIP - I % 0.35 A 1
é ° / < 03 +)-/' Hoeaoas
g . [» z 2 Fyo. Fyy (30%)
o} ! = 0.25 ™. 1
=¥ ! 5 N
el o 0.2 [Bl
s 100 f] - Fior By (20%)
° 2015 1
&0 &
5 " g O Fop. Fay (10%)
> = 00> * 31 o
< E 005 1
10 1 il 1 1 1 1 1 1 1 1 0 N I 1 1 1
0.1 02 03 04 05 06 07 08 09 1 0.1 0.2 0.3 0.4 0.5
Offered load per input port (cell/slot) Offered load per flow (cell/slot)
Fig.10. Performance of iPDRR, iPFS, WPIM, andiSLIP under uniformtraffigig. 13. Throughput per flow using iPDRR (output link speed! cell/slot,
(packet-mode scheduling). packet-mode scheduling).
2 {PDRR / i 2 . Fij : packets from input; to outpuijﬁmiwamm.m‘
Z 1000 | IPES o 1 = <1 " Fag, oy (40%) |
o] iSLIP = /' % //,i' 30° L'o1 (0 0)
e WPIM =] ° e,
& Output queueing ---=--- E 0.15 - /.(> VIE;O, ﬁl 3o%) 1
b5y =
=¥ — “u
% 00 a 0.1 F \\\“\-—f——q——*n—f——»———a i
= 1 E : Fio Fyy (20%)
o - =
2 e Z 005 | :
5 £ : Foo» F31 (10%)
E
10 L 0
0.1 02 03 04 05 06 07 08 09 1 0.05 0.1 0.15 0.2 0.25 0.3
Offered load per input port (cell/slot) Offered load per flow (cell/slot)

Fig. 11. Performance of iPDRR, iPFS, WPIM, and iSLIP under nonuniformig. 14. Throughput per flow using iPDRR (output link speed.5 cell/slot,
traffic (cell-mode scheduling). cell-mode scheduling).

The original iFS is flow based. The time complexity of a Fast comparison prefers small register width. However, cal-
schedule arbiter i©(n), wheren is the number of flows. If its culating virtual time may involve floating point which increases
port-based version is used (we call it iPF&)s the number of the register width. In addition, virtual time is monotonically in-
ports andO(1) can be achieved by using parallel comparisomreasing. The registers must be big enough to hold the flow of
Still we need to comparé’ values and select the smallest inthe longest life. A 16-bit register implies that a flow can only
a very short time. For example, the scheduler of Tiny Tera [2}e as long as 65535 slots (about 3.4 ms in a switch like Tiny
runs at a clock speed of 175 MHz, and a slot is composed of nihera).
cycles in which eight cycles are for three iSLIP iterations and iPDRR, as we can see later in Section VI, is easily imple-
one cycle for crossbar configuration. If iFS uses such timingyented in hardware and can operate at high speed. Selecting a
the comparison aolV values has to be done within about 11 nsport from a list can be done by using a circular linked list and

ZHANG AND BHUYAN: DEFICIT ROUND ROBIN SCHEDULING FOR INPUT-QUEUED SWITCHES

591

~
- St : ! lyMachted
g % : keepConnected3 anyGrant ﬁ\ r\ keepConmects dzé“ew yMachte ‘
a —= RO /? @ 1]
& _\\\\ //,/_— Go él A0 Ql DO s
_ ! 71 \ I
i N s N D SF—AAF
E“ e e — W/ | _
N\ i :
— RI [\ fma . i
\\ \(A\ /y / Gl 1 Al 1 Dl , 9
) WF N\~
g X X [LA 1\ [=
=3 { Y } : VAVAY]
< @ ' i |
3 — R / L i1 if 3
@ / \x GZ Y A2 D2 = é
)(\ g @
| /\\f’ A A Ve
i A S
@* IJ [: TN ‘ z
et AT Sl AW
R3 G3 j\\ *1 A3 \ : / D3 =
Request Modules Grant Arbiters Accept Arbiters Decision Modules
(at input side) (at output side) (at input side) (at input side)
Fig. 15. iPDRR scheduler for a % 4 switch.
a simple combinational circuit with multiplexers and demuilti- &?ggr&m) keepggrglf)cwdz
plexers. And connection-tear-down logic can be carried out with
2N registers and an adder. All modules in iPDRR can be accom- EEEEEPEEEEY PEEEPE KE -
plished in one or two cycles. In addition, a 16-bit register is big - ! .
enough to hold a flow’s quota. =8 ; D by (to GO) &
= ! ' 3
_ g9 — D (1o G1) O
D. iPDRR Versus WPIM o % : N : (t0 G2) =
I . = : L/ :

In [10], Stiliadis and Varma also proposed a port-based fair ~ § : 1 (== (to G3) §;
scheduling algorithm WPIM which is based on the original par- ' i? &
allel iterative matching (PIM) algorithm [11]. In WPIM, the Q;j
time axis is divided into frames with a fixed number of slots VOO, ! L/\ i (to GO0)
per frame. The reservation unit is slot/frame. In the first iter- (5’3 0 —~ : -
ation, for each output, an additional mask stage is introduced & voQ,,—t) = (toGD) &
to block those inputs whose credits are used up, thus allowing & =\ @ §
other inputs to receive their shares of the bandwidth. Clearly, O VOQj,— L/ (t0G2) 2
the bandwidth guarantee is provided at coarse granularity of a < : — : (to G3)
frame [8]. VOQi3— L/ :

The WPIM scheduler uses random selection which is an ex-
pensive operation, particularly for a variable number of inpiig. 16.
requests. It is hard to implement in very short time. In [11], a
slot time is 420 ns for four PIM iterations. among all competing flows. In iPDRR, the rest of the bandwidth

WPIM has to be aware of the output link speed, i.e., whd# still allocated in proportion to competing flows’ reservations.
the output-link speed changes, the credit of each flow should be
changed accordingly. For example, assume that the output-link Simulation Resuits
speed is 1 cell/slot, a frame is 1000 slots, and four flows re-Fig. 9 and Fig. 10 show the throughput and delay performance
serve 10%, 20%, 30%, and 40% bandwidth, respectively, i.ef,iPDRR compared with other schemes under uniform traffic.
100, 200, 300, and 400 slots/frame. If the output-link speedTée simulation is performed on a ¥86 switch, where each
reduced to 0.5 cell/slot, they will get 10%, 13.3%, 13.3%, andput has one flow to each output, totally 256 flows. Each flow
13.3% bandwidth, respectively, unless the credits of each floeserves the same bandwidth and maintains the same arrival
are changed to 50, 100, 150, and 200 slots/frame, respectivedye. The number of iterations is three. The output-link speed
The iPDRR, on the other hand, can always provide fair sharirgyl cell/slot.
regardless of the change of the output link speed. We observe that packet mode can reduce the average packet

When the actual reservation to an output port is less thdelay. In packet mode, all schemes are almost the same, while in
its capacity, WPIM equally allocates the rest of the bandwidttell mode, iPDRR works better than other schemes under heavy

iPDRR request module; atinput, for a 4 x 4 switch.

592 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003

keepConnected3 newlyMatched
A inportList | o~
E vister
Y
. ! i H
(from R()): X z‘| ’_é{. 1(to AO)
. linals < .
o (from RD): g-| axiD & E(tOAl)c
R ==t RGE: P
g : - = (to A2)
% (from R2) -0 EW =) L ;
: ER! (to A3)
from R3 E :
() D

Fig. 17. iPDRR grant arbite"; atoutput; for a 4 x 4 switch.

keepConnected?2
: outportList
' Y
L7
(from GO)E S Eﬁ
el ‘EW
(from G1):
Q =D %
g : > 1
@ z“

(from G2)' -0

[xn
1

(from G3)§ -

Fig. 18. iPDRR accept arbitet; atinput, for a 4 x 4 switch.

workload. This is because that unlike the original definition of ¢--------------nmmmmrororrr oo
cell-mode scheduling [17], one input—output connection can last: '
for more than one slot even in the cell-mode iPDRR/iIDRR so
that the cell-mode iPDRR/IDRR in fact behaves similarly to its
packet-mode counterpart. :
For the nonuniform traffic, we run the simulation under the i
same setting as that in Section IV-D. The results are shown in
Fig. 11 and Fig. 12. :
Fig. 13 and Fig. 14 demonstrate iPDRR'’s ability of allocating |, = I m] ;
bandwidth among ports in proportion to their reservations. The i ooifo-errooseeodboriooeeeooedboooeeeoom oo {bonne s '
simulation is performed on ax4 switch where each input has m A
two flows with different reservations to output 0 and output :IFig_ 19.
When the output link speed is 1 cell/slot, all flows receive their

reserved portions of the total bandwidth when the output "’B?ant arbiters)N accept arbiters, and¥ decision modules are

is overbooked. When the output link speed is reduced 0 abQfynected to construct an iPDRR scheduler (for convenience,
0.5 cell/slot, the bandwidth each flow gets is still in proportiog),q only show the implementation for ax4 switch; it is

to its reservation. straightforward to extend it to larger switches).

grants / accepts

newlyMatched

iPDRR linked list for a 4 4 switch.

) A. Request Module
VI. HARDWARE IMPLEMENTATION OF IPDRR . . o .
The request modul®&; atinput,;, as illustrated in Fig. 16, is

Now let us consider the hardware implementation of iPDRResponsible for sending requests to grant arbifeysf input;
Fig. 15 shows the block diagram of haWrequest modulesy is not matched an¥OQ),; is not empty.

ZHANG AND BHUYAN: DEFICIT ROUND ROBIN SCHEDULING FOR INPUT-QUEUED SWITCHES 593

keepConnected
From memory isLastCell (toRi)

? > 1 WR decrease—by—1 o

aQ LI ..

88 — Decision &

>3 Register 5

oL@ =]
Z

Fig. 20. iPDRR decision modulP; atinput, for a 4 x 4 switch.

Like iSLIP scheduler [22], the request—grant—accept iteratidast two registers will always be enabled. So theredre 2
in iPDRR is also pipelined, i.e., requests and grants in the ngxant/accept input signals instead/éf
iteration can be sent at the same time when the accept decisions
in the current iteration are made. Whenever accept ardifer ¢ pecision Module

(see Section VI-B) receives at least one grangGrantsignal) o
is set andR; is disabled in the next iteration. After the accept arbiter makes a decision, the result goes to

The request modul®; also takes as inputs the input—outputhe decision module (see Fig. 20) and is stored in the decision
connection information made in the previous slot by decisidR9iSter. The main functionality of the decision module is to
module D; (see Section VI-C). Together with the state oP€rform bandwidth fair sharing among ports.

VOQ,;, this connection information determines whether the Each decision module haé registers for quotas anf reg-
corresponding input-output connection will be kept or nd$ters for counters. Since updating quotas is not time critical, for
in the current slot. If so, the corresponding grant and accefch quota, we keep a copy in memory. When a flow comes and

arbiters are disabled in the current slot. goes, the corresponding quota is updated in memory and then
copied to its register. In packet-mode schedulisgastCellis
B. Grant/Accept Arbiter set to 1 when the last cell of a packet is transferred across the

.) _ switch in the current slot. In cell-mode schedulirgy,astCellis
" Flg_. %7 shovxll_s tkh<(e]I (?_laigramtif a; grar?t E\rb@r 3t o;;:;put G always set to 1.
maintains a linked lisinportList ;. which records the order . -
of input ports. The job ofG; is tJo select, in the order of Wheninput; andoutput, are new!y r_natched:punter” and
. tList . the firsti such t%ati . sem’js A request andquOta“ are enabled, a:ndOUI-lteI‘ij is increased byluqtaij.
nportList;, Irstz su nput; quest, andagter that, the connection will be kept angunter;; will be

sent a grant tdnput,. It is done by N multiplexers which - jo o556 by 1 every slot until the sign bitofinter;; andis-
reorder requests according taportList; and N demulti- LastCellare set to 1
plexers which restore the grants to their original order. TheThekeepConnectesignaIs go to the request module, which

grant registeris used to save the grant decision in the preViOLfﬁrther decides whether a connection needs to be kept or not in
iteration because of the pipelined implementation. It is usedﬁrl)e next slot

updateinportList,; whenoutput; is matched.

The accept arbiter (see Fig. 18) is almost the same as the grant
arbiter, except that it does not need a register to hold the accept
decision to updateutportList because an input that receives
at least one grant will definitely be matched. In this paper, we first demonstrated that applying fair queuing

Wheninput; andoutput; are matched, we need to updat@nly at the output link is not very effective, because the number
the two linked lists by moving to the end obutportList, and of packets competing for the output link is limited in input-

i to the end ofinportList;. This operation is equivalent to aqueued switches. Therefore, we proposed iDRR, a flow-based
circular register shift. fair scheduling algorithm which can allocate the switch band-

As illustrated in Fig. 19, for a linked list oV ports, we have width in proportion to each flow’s reservation. The iDRR is im-

N registers, eaclog N bitwide. R; is theith register, initialized plemented to an iteration-based switch scheduler so that packets
to 7. When there is a new matching, the corresponding registare properly selected from the input queues for transmission. We
say R;, and all registers afteR; will be enabled so thak; — showed that such a scheme achieves fair scheduling while pro-
Riz1 — Riys «— ... — Ry_2 — Rx_1 — R, can be done viding high throughput and low latency. Since flow-based fair
in one shot. scheduling schemes are difficult to implement in hardware, we

Note that if the last port in the list is matched, we do not havadso proposed a port-based fair scheduling algorithm iPDRR,
to update the list. Also, when the list needs to be updated, t#wed described its hardware implementation in details. We also

VII. CONCLUSION

594 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 4, MAY 2003

compared the performance of iPDRR with other schemes tf17] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Packet
demonstrate the Supenorlty of our techr“que scheduling in input-queued cell-based switches |EEE INFOCOM
vol. 2, 2001, pp. 1085-1094.
[18] NLANR Network Traffic Packet Header Traces [Online]. Available:
REFERENCES http://pma.nlanr.net/Traces/

. . . .) ., [19] S. S. Kanhere, H. Sethu, and A. B. Parekh, “Fair and efficient packet
1] mCiégg%%mSenes—lntemet Routers [Online]. Available: http:// scheduling using elastic round robilEEE Trans. Parallel and Dis-

) . N tributed Systemwol. 13, pp. 324-336, Mar. 2002.
[2] vabriiE;:’gIch)le %t r?cl)-’ 3Ap‘:_’)0'2%2/_52£ Gouurfgr'léggE/ACM Trans. Net- [20] N.McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz,

“The ti : A pack itch EEE Mi . 26— IFeb.
[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a 199e7't|ny tera: A packet switch core| icro, pp. 26-33, Jan./Feb

fair queuing algorithm,"J. Internetworking Research and Experience [21] C. S. Chang, D. S. Lee, and Y. S. Jou, “Load balanced Birkhoff-von

vol. 1, no. 1, pp. 3-26, Sept. 1990. N itch I : ferir@om |
[4] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap- zgu;?)arériivggzegoggrt - one-stage bufferirgpmput. Commurwol.

proach to flow control in integrated services networks: the single-node[zz]
case,”IEEE/ACM Trans. Networkingrol. 1, pp. 344-357, June 1993.

[5] L. Zhang, “VirtualClock: a new traffic control algorithm for
packet-switched networks,ACM Trans. Computer Systemsol.
9, pp. 101-124, 1991.

[6] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round robin,” inProc. SIGCOMM Boston, MA, Aug. 1995.

[7] J. C. Bennett and H. ZhangWF2Q: worst-case fair weighted fair
queueing,” inProc. IEEE INFOCOM '96 San Francisco, CA, Mar.
1996, pp. 120-128.

[8] N. Niand L. N. Bhuyan, “Fair scheduling and buffer management i
internet routers,” irProc. IEEE INFOCOM New York, June 2002, pp.
1141-1150.

[9] Y. Tamir and G. Frazier, “High performance multi-queue buffers for vis
communication switches,” iRroc. 15th Ann. Symp. Computer Archi-
tecture June 1988, pp. 343-354.

[10] D. stiliadis and A. Varma, “Providing bandwidth guarantees in al
input-buffered crossbar switch,” iRroc. IEEE INFOCOM 1995, pp.
960-968.

[11] T.E.Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed
switch scheduling for local area network&CM Trans. Comput. Syst.

P. Gupta and N. McKeown, “Design and implementation of a fast
crossbar schedulerlEEE Micro, pp. 20-28, Jan./Feb. 1999.

Xiao Zhang (S’01) received the B.E. degree in com-
puter science from Shanghai Jiao Tong University,
Shanghai, P.R. China, in 1991, and the M.S. degree
in computer science from University of California,
Riverside, in 2001. He is currently working toward
the Ph.D. degree at University of California, River-
side.

His research interests include switch scheduling,
high-performance router, high availability cluster,
and distributed system.

vol. 11, no. 4, pp. 319-352, Nov. 1993. Laxmi N. Bhuyan (F'98) received the Ph.D. degree
[12] N. McKeown, “The iSLIP scheduling algorithm for input-queued in computer engineering from Wayne State Univer-

switches,”IEEE/ACM Trans. Networkingvol. 7, pp. 188—201, Apr. sity, Detroit, MI, in 1982.

1999. He has been Professor of Computer Science and
[13] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100% © Engineering at the University of California, River-

throughput in an input-queued switch,” IEEE INFOCOMM vol. 1, % %, side, since January 2001. Prior to that, he was a Pro-

San Francisco, CA, Mar. 1996, pp. 296-302. ‘) fessor of Computer Science at Texas A&M Univer-
[14] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm = sity, College Station (1989-2000) and Program Di-

to achieve 100% throughput in input-queued switches,/BEE IN- rector of the Computer System Architecture Program

FOCOM, vol. 2, San Francisco, CA, Apr. 1998, pp. 792-799. at the National Science Foundation (1998-2000). He

[15] M. A. Marsan, A. Bianco, E. Leonardi, and L. Milia, “RPA: a flexible has also worked as a Consultant to Intel and HP Labs.
scheduling algorithm for input buffered switcheslEEE Trans. His research addresses multiprocessor architecture, network processors, Internet
Commun.vol. 47, pp. 1921-1933, Dec. 1999. routers, web servers, parallel and distributed computing, and performance eval-

[16] P. Giaccone, D. Shah, and B. Prabhakar, “An implementable paralkation.
scheduler for input-queued switchet2EE Micro, vol. 22, pp. 19-25, Dr. Bhuyan is a Fellow of the ACM and the AAAS. He has also been named
Jan./Feb. 1999. as an ISl Highly Cited Researcher in Computer Science.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

