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Abstract—In this paper, we address the problem of fair sched-
uling of packets in Internet routers with input-queued switches.
The goal is to ensure that packets of different flows leave a router
in proportion to their reservations under heavy traffic. First, we
examine the problem when fair queuing is applied only at output
link of a router, and verify that this approach is ineffective. Second,
we propose a flow-based iterative deficit-round-robin (iDRR) fair
scheduling algorithm for the crossbar switch that supports fair
bandwidth distribution among flows, and achieves asymptotically
100% throughput under uniform traffic. Since the flow-based al-
gorithm is hard to implement in hardware, we finally propose a
port-based version of iDRR (called iPDRR) and describe its hard-
ware implementation.

Index Terms—Fair scheduling, input-queued crossbar switch,
quality-of-service (QoS).

I. INTRODUCTION

M OST OF THE commercial routers employ input-queued
switches (Cisco [1], BBN [2]) because output-queued

switches are difficult to design. Fairness in resource allocation is
important to support quality-of-service (QoS). In this paper, we
address the problem of fair scheduling of packets in routers with
input-queued switches. The goal is to make sure that packets of
different flows leave a router in proportion to their reservations
when the bandwidth of the router cannot accommodate all in-
coming traffic.

Generally, a router consists of line cards which contain input
and output ports, a switch fabric, and forwarding engines.
When a packet arrives at an input port, its header is sent to the
forwarding engine, which returns the output port and the new
header. The packet is buffered in the input queues waiting for
the switch to transfer it across the crossbar switch fabric. When
the packet is received at the output port, it is pushed into the
output queues. The packet leaves the router when the output
link is ready.

Many fair queuing algorithms [3]–[7] have been developed
to schedule packets on shared resources. Some of these have
been implemented at the output links of commercial routers
[1], [2] to support QoS. However, with today’s technology, the
link speed is increasing almost exponentially. The backbone
crossbar with its scheduler becomes the real bottleneck, and
most of the packets are waiting at the input buffer instead of the
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output buffer. Therefore, applying fair scheduling at the crossbar
switch should be more effective than that at the output queue.
Our simulation results in this paper confirm this hypothesis.

We propose a flow-based iterative deficit-round-robin fair
scheduling algorithm (iDRR) for the crossbar switch. Our ex-
periments shows that it provides high throughput, low latency
and fair bandwidth allocation among competing flows. The
algorithm is based on the deficit round-robin (DRR) algorithm
[6]. Another flow-based crossbar scheduling algorithm, called
iterative fair scheduling (iFS), was proposed in [8]. It is based
on virtual time [4], [5]. We believe that the DRR algorithm
is easier to implement in hardware than the virtual time. We
also show that iDRR delivers packets at a rate close to an
output-queued switch.

In practice, if an algorithm has to be fast, it is important
that it be simple and easy to implement in hardware. A flow-
based fair scheduling algorithm is desirable, but is difficult in
terms of hardware implementation because of the large and vari-
able number of flows. To solve this problem, we also develop
a port-based iterative deficit-round-robin fair scheduling algo-
rithm (iPDRR) that can work with VOQs [9]. We propose to
divide the flow-based scheduling into two stages. First, a fair
queuing algorithm is applied at the input buffer to resolve con-
tentions among flows from same inputs to same outputs. Then, a
port-based fair scheduling algorithm is adopted to resolve con-
tentions among ports.

Stiliadis and Varma also proposed a port-based fair sched-
uling algorithm weight probability iterative matching (WPIM)
[10]. It was shown that iFS performs better than WPIM in terms
of granularity of fairness [8].

The rest of the paper is organized as follows. In Section II, we
describe the architecture of the input-queued switch used in this
paper. In Section III, we examine the problem when fair queuing
is applied only at the output link. Then, we propose a flow-based
iterative deficit-round-robin fair scheduling algorithm iDRR for
the switch in Section IV. In Section V, we present a port-based
algorithm iPDRR. Its hardware implementation is described in
Section VI. Finally, Section VII concludes this paper.

II. OPERATION OF THEINPUT-QUEUED SWITCH

Fig. 1 shows the internal structure of the input-queued back-
bone switch of a router. We explain the operations of various
components of this figure in this section. Incoming packets are
stored in the input queue, which has a separate queue per output
port, called virtual output queue (VOQ), if a port-based switch
scheduler is used. If the switch scheduler is flow-based, a sep-
arate queue per flow needs to be maintained. We call it virtual
flow queue (VFQ).
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Fig. 1. Block diagram of an input-queued switch.

The size of the input buffer is finite. When the input buffer is
full or congestion is anticipated, a decongestion mechanism is
needed to determine when to drop packets and which packets to
drop. One function of the decongestion mechanism is to isolate
bad-behaved flows from well-behaved ones. Such flow isolation
is critical to fair scheduling [8]. In the rest of this paper, we
assume that such a mechanism is already provided.

The center of the router is the switch fabric, usually an
crossbar connecting inputs and outputs. It operates on
small fixed-size units, orcells (in ATM terminology). A slot is
the time to transfer one cell across the switch fabric. Variable-
length packets are usually segmented into cells before being
transferred across the crossbar. The switch scheduler selects a
configuration of the crossbar to ensure that at any instance, each
input is connected to at most one output, and each output is con-
nected to at most one input. For each pair of matched input and
output, a cell is selected to be transferred across the switch.
In practice, the switch scheduling functionality is distributed
to each port, and an iterative scheduling algorithm is imple-
mented to work independently for each input and output [8],
[10]–[16]. We modify this part of the hardware to implement
fair scheduling.

The scheduling can be done at the cell level, i.e., all the
input–output connections are torn down after each slot and
the scheduler considers all inputs and outputs to find a new
matching. Cells from different packets can be interleaved to
one output. This is the scheme used in many current routers.

Alternatively, the scheduling can be done in such a way that
when an input and an output are matched, the connection is kept
until a complete packet is received at the output. This approach
is calledpacket-mode schedulingwhile the previous is called
cell-mode scheduling. It was shown that packet-mode sched-
uling has better packet delay performance than cell-mode sched-
uling in case of packet length distribution with a small variance
(the coefficient of variation of the service time is less than one)
[17].

The reassembly module holds cells until the last cell of a
packet is received at the output port, and then reassembles these
cells back into a complete packet. In cell-mode scheduling,
reassembly engines are required, whereis the number of in-
puts if port-based scheduling is used or the number of flows if

flow-based scheduling is adopted. In packet-mode scheduling,
only one reassembly engine is needed.

When a complete packet is received by the reassembly
module, it is stored in the output queue. The output queue
can be a simple first-in-first-out (FIFO) queue if the basic
first-come-first-served (FCFS) queuing algorithm is used, or a
multiple-queue buffer if some fair queuing algorithm, such as
DRR, is employed. When a output buffer fills up, the switch
is notified to stop transferring packets to it until some buffer
space frees up.

The output link is responsible for sending packets out
of the router. When the output link is ready, it signals the
output queuing engine to pick a packet from the output queue
according to a certain criterion. Commercial routers, such as
Cisco 12000 series [1], implement DRR-based algorithms at
this point.

Our simulation is based on the model shown in Fig. 1. Packet
arrival is modeled as a two-stateON-OFFprocess. The number of
ON state slots is defined as the packet length which is generated
from a profile of NLANR trace at AIX site [18]. We collected
119,298,399 packets from Sunday, May 12, 02:45:06, 2002 to
Saturday, May 18, 23:11:34, 2002. The packet length ranges
from 20 to 1500 bytes with a mean of 566 bytes and a
standard deviation of 615 bytes. The number ofOFFstate slots is
exponentially distributed with average ,
where is defined as offered workload . Cell size is
64 bytes. Input buffer size is 10240 cells. We have varied these
parameters to do a sensitivity analysis. However, due to page
limit, we report only a few results in this paper based on above
parameters.

III. PROBLEM WITH FAIR QUEUING AT THE OUTPUT LINK

Fair queuing is usually applied at the output ports of a router.
In this section, we verify that this approach is ineffective in a
router with input-queued switch.

Consider a 4 4 IP router configured as Fig. 1. We choose
iSLIP [12] as the switch scheduler and DRR [6] as the fair
queuing algorithm. Each input has one flow destined to output
0, and reserves 10%, 20%, 30%, and 40% bandwidth, respec-
tively. Each flow maintains the same arrival rate. Fig. 2 shows
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Fig. 2. Throughput per flow using iSLIP and DRR.

the throughput of each flow when the output link speeds are 1,
0.5, and 0.25 cell/slot, respectively.

In the case of 1 cell/slot link speed, DRR cannot distinguish
among flows. It is because DRR works only if there are back-
logged packets in the queue. But the number of packets in the
output queue is very limited because the output link speed is the
same as that of the switch.

When the link speed is less than 1 cell/slot, DRR also fails
to distinguish among flows. The underlying problem is that the
output queue lacks a decongestion mechanism to isolate dif-
ferent flows. The switch pushes packets of different flows into
the output queue at the same rate. On the other hand, DRR pops
packets of different flows in proportion to their reservations.
Eventually, most of the output buffer space is filled up by flows
with the lowest reservation.

However, applying a decongestion mechanism at the output
queue has its own problem. Suppose that we apply a deconges-
tion scheme called equal size per flow (ESPF)1 [8] right be-
fore the output queue, one solution could be: when a flow uses
up its quota, the switch is informed to stop transferring packets
belonging to that flow. However, this approach will not work
since iSLIP does not distinguish among flows. Another way is
to drop the packet when a flow uses up its quota. This approach
works (as shown in Fig. 3), but is still not very attractive. First,
accepting packets at input queue and dropping them at output
queue wastes switch bandwidth and input buffer space. Second,
applying a decongestion mechanism at the output side is redun-
dant since it is already done at the input side. Finally, this ap-
proach still cannot solve the problem when output-link speed is
the same as the switch speed (see Fig. 4).

The conclusion is generally true. If the switch scheduler treats
flows with different reservations equally, it is useless to apply
fair queuing only at the output side. In other words, the fairness
issue should be addressed at the switch and/or input side. In the
following section, we develop such a flow-based scheduler for
the switch and use simple FIFO output queues.

1ESPF: Each flow is assigned a quota which equals the total buffer size di-
vided by the number of flows. When the buffer occupancy is below a certain
threshold, all incoming packets are accepted. After that, a packet is accepted
only if the flow’s quota has not been used up.

Fig. 3. Throughput per flow using iSLIP and DRR. ESPF is applied right
before the output queue. Output-link speed= 0:5 cell/slot.

Fig. 4. Throughput per flow using iSLIP and DRR. ESPF is applied right
before the output queue. Output-link speed= 1 cell/slot.

IV. A FLOW-BASED FAIR SCHEDULING ALGORITHM

Based on the observation in Section III, a straightforward idea
is to apply fair queuing at the switch to support fair bandwidth
allocation. In this section, we first introduce the definition of
fairness in input-queued switch scheduling, and then present an
iterative deficit-round-robin fair scheduling scheme. We call it
iDRR.

A. Definition of Fair Scheduling

We follow the same definition of fairness as that in [8]. An
input-queued switch is work conserving. Let be the reser-
vation of , and be the amount of traffic
served in the interval . For any two backlogged flows

and that are in contention, a scheduling scheme is fair in
if

Intuitively, this definition means that when the bandwidth of
a router cannot accommodate all incoming packets, packets of
different flows leave the router in proportion to their reserva-
tions.

In a router with input-queued switch, the input/output line
cards and the switch are usually of the same speed. In this sce-
nario, the switch input port cannot be overloaded because the
incoming traffic has been shaped by the input line card which



ZHANG AND BHUYAN: DEFICIT ROUND ROBIN SCHEDULING FOR INPUT-QUEUED SWITCHES 587

receives packets at the rate of 1 cell/slot. The switch output port,
however, can be overloaded when packets from different input
ports go to the same output port, or the instantaneous output
line speed is reduced because of the slowdown of the down link.
These are some of the “heavy traffic” situations we consider in
this paper.

B. Description of iDRR Algorithm

The basic idea of iDRR is to assign each flow a quota which
is in proportion to its reservation. When a flow’s corresponding
input and output are matched, we continue transferring packets
of the flow until its quota is used up.

In an switch, for each , we maintain a sepa-
rate queue and three values: , and

. The value of is in proportion to the ’s
reservation (see Section IV-C1). In packet-mode scheduling,
we assume that the maximum transfer unit (MTU) is known
in advance, and the minimum quota is no smaller than MTU
(This assumption is not necessary in cell-mode scheduling).

indicates the current available quota of .
At each , a linked list is
maintained to record the active flows from . At each

, another linked list
is maintained to record active flows to . When

(from to ) becomes active ( was
empty and a packet of arrives), add it to the end of

and , and initialize to 1
and to FALSE. When becomes inactive
( becomes empty for a period of time after a packet
of leaves, see Section IV-C2), it is removed from

and . Initially, all inputs and outputs
are unmatched. Then, in each iteration:

1) Request: Each unmatched sends a request to every
output for which it has a queued cell.

2) Grant: If an unmatched receives any requests,
choose from the first flow, say (from

to ), such that sends a request and
is not empty. Set to TRUEand send a

grant to .
3) Accept: If an unmatched receives any grants,

choose from the first flow, say (from
to ), such that .

Increase by . Move to the end of
and . Set to FALSE

for all in . Send an accept to .
and are then set as matched. And

is marked as the selected flow for the
pair.

In each slot, for every selected , the switch transfers a
cell of its head-of-line (HOL) packet and decrease by
1. After transferring a complete packet (if packet-mode sched-
uling is used) or a cell (if cell-mode scheduling is used), if

or is empty, reset and
as unmatched.

C. Remarks

1) Reservation and Quota:For any flows wishing to receive
guaranteed bandwidth, reservation is necessary. When a flow
makes a reservation at a router, its identification and reservation

information is entered into the flow list of the router. All packets
of this flow will carry the identification information.

Flow reservation can be made as the percentage of the total
bandwidth. The quota can be set statically or dynamically. In
the static approach, we assign a minimum quota , say 24
cells, to the minimum available reservation . Then, for a
flow with reservation , its quota is . In the dy-
namic approach, the minimum quota is assigned to the flows
with minimum reservation and quotas of other flows can be ad-
justed accordingly.

2) Flow Deactivation: After a flow makes a reservation, it
can be active or inactive depending on its queue status until the
reservation is canceled. Initially is empty and is
inactive. When the first packet of arrives, becomes
active. When becomes empty, the first thought is to de-
activate immediately. However, doing so may cause some
problems. Let us see the following two cases.

• Suppose packet-mode scheduling is used, and the length
of each packet of is 20 cells. At one moment,

is 1 and is serviced. After one packet is
transferred, becomes 19 and becomes
empty. If is deactivated immediately, the over-used
counter will be cleared. Then, if becomes
active after one slot, it may over-use its reserved band-
width.

• Likewise, immediate deactivation may also cause
under-use of a flow’s reservation. Suppose each packet
of is 1 cell long. At one moment, is 100
and is serviced. After one packet is transferred,

becomes 99 and becomes empty. De-
activating immediately will wipe out the unused
counter (99).

Therefore, we propose thata flow becomes inactive only after
its VFQ becomes empty for a period of time. The timeout value
of an active flow after its queue is empty can be set statically,
say 1000 slots. If no more packets arrives within this period of
time, the flow is considered inactive.

Alternatively, we can deactivate a flow dynamically as
follows. Let be the current total reservation of all flows
competing with of reservation . When becomes
empty and , decrease (if ) or in-
crease (if ) by 1 every
slots until . Then, set as inactive and
remove it from the two active flow lists.

When the above flow deactivation scheme is used, it may so
happen that a flow is in the active flow list while its queue is
empty. Therefore, in the grant step of iDRR, when selecting a
flow, the condition “ is not empty” is necessary.

3) Complexity: In the context of fair queuing, assuming that
MTU is known in advance and letting all quotas no smaller than
MTU ensure that DRR has the time complexity of , i.e., it
is guaranteed that the top of the active flow list can be selected.
In [19], Kanhereet al. proposed an elastic round-robin (ERR)
algorithm which removes this assumption by partitioning the
time into rounds and using the maximum packet length during
the previous round as the minimum quota in the current round.
In the context of switch scheduling, however, still cannot
be guaranteed even with the above modifications. Because it
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Fig. 5. Performance of iDRR, iFS, and output queuing under uniform traffic.

may happen that the input port of the top flow in theoutflowList
has already been matched in the previous slots. In the worst case,
the algorithm has to check all flows in the list before it selects
one.

4) Cell Mode Versus Packet Mode:Scheduling can be cell
mode or packet mode. In the case of flow based scheduling, cell
mode may not be a good choice. Although cell-mode scheduling
simplifies the switch, it requires that the reassembly module can
hold packets at one time, where is the number of flows
and can be very large. Therefore, we choose packet mode in our
simulation.

D. Simulation Results

Fig. 5 shows the throughput and delay performance of iDRR
compared with another flow-based scheduling algorithmiFS
under uniform traffic. The performance of output queuing with
DRR applied at the output queue is also shown for compar-
ison. The simulation is run on a 1616 switch. Each input has
two flows to each output, totally 512 flows. Each flow reserves
the same bandwidth and maintains the same arrival rate. The
output-link speed is 1 cell/slot. The number of iterations is three
(same as that in Tiny Tera [20]). Under this circumstance, we
observe that the average packet delay of iDRR is almost iden-
tical to that of iFS. They are all close to the delay when output
queuing is used. Hence, iDRR is capable of achieving asymp-
totically 100% throughput for uniform traffic.

For the nonuniform traffic, we consider the server-client
model as used in [8], [10], and [11]. In a 1616 switch, four
ports are connected to servers and twelve to clients. Each
client sends 10% of its generated traffic to each server, and the
remainder is evenly distributed among other clients. For each
server, 95% of its traffic goes to clients, and 5% to other servers.
In this setting, the traffic from clients to servers is almost twice
that from clients to clients. Fig. 6 shows the average packet
delay of traffic from clients to servers as a function of the
workload per input. As we can see, iDRR and iFS are almost
indistinguishable and can reach a throughput of about 78%.

To evaluate the fairness of iDRR, we run the simulation on a
4 4 switch, where each input has two flows destined to output
0 with different reservations. Each flow maintains the same ar-
rival rate. Output link speed is 1 cell/slot. As shown Fig. 7, the

Fig. 6. Performance of iDRR, iFS, and output queuing under nonuniform
traffic.

Fig. 7. Throughput per flow using iDRR.

bandwidth is distributed in proportion to each flow’s reservation
when the link is over-subscribed.

V. PORT-BASED FAIR SCHEDULING ALGORITHM

Flow-based fair scheduling algorithms are desirable in terms
of fairness among flows. However, in terms of hardware imple-
mentation, they are more complex than port-based algorithms.
In iDRR and iFS, each port needs to maintain an active flow list,
whose length varies from time to time and can be very large.

We propose to divide the flow-based scheduling problem into
two stages. Fig. 8 shows two additional stages, VFQ and DRR,
introduced at the input side of Fig. 1. There is no fair queuing
engine at the output side. First, we apply a fair queuing algo-
rithm at the input buffer to resolve contentions among flows
from same inputs to same outputs. The VFQ is implemented in
DRAM and the DRR fair queuing is implemented in software.
A separate input queue (VOQ) is maintained for each output, as
required for iterative scheduling algorithms. Then, we develop
a port-based fair scheduling algorithm to resolve contentions
among the input ports.

For a hardware scheduling algorithm to be useful, it is im-
portant that it be simple. That why iSLIP is the choice in Tiny
Tera [20] and Cisco GSR [1], although it does not offer the
best performance compared to other schemes or provide 100%
throughput under nonuniform traffic [21]. It is readily imple-
mented in hardware and can operate at high speed. It was shown
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Fig. 8. Two-level scheduling scheme for an input-queued switche.

that iSLIP can find a matching using three iterations within eight
switch cycles (45 ns) for a 3232 switch [22].

Our iDRR can be readily modified to its port-based version.
We call it iPDRR. Because of the fixed number of ports, it is easy
to implement in hardware. In the rest of this section, we describe
iPDRR, compare it with other schemes, and show our simulation
results. Its hardware implementation will be discussed in details
in the next section.

A. Description of iPDRR

In an switch, for each pair of – , we
maintain a separate queue and two counters:
and . indicates the reserved bandwidth from

to . Its value is in proportion to the aggregate
reservation of all flows from to . In packet-mode
scheduling, we assume that MTU is known in advance, and all
quotas are no smaller than MTU (this assumption is not nec-
essary in cell-mode scheduling). indicates the cur-
rent available quota of the pair, initialized
to 1. For each , we maintain a fixed-size linked list

, initialized to . For each ,
we keep another fixed-size linked list , initialized
to . Initially, all inputs and outputs are un-
matched. Then, in each iteration:

1) Request: Each unmatched sends a request to
if is not empty.

2) Grant: If an unmatched receives any requests,
choose from the first such that sends
a request to , and send a grant to .

3) Accept: If an unmatched receives any grants,
choose from the first such that
sends a grant to , and send an accept to .

and are now considered matched.
Then, increase by . Move to the end
of , and to the end of .

If and are matched, the switch transfers the
HOL packet from to and decreases
by one every slot. In packet-mode (or cell-mode) scheduling,
after transferring a complete packet (or a cell), if
or is empty, set and as unmatched and

tear down their connection. Otherwise, keep the connection and
continue transferring packets (or cells).

Notice that iPDRR differs from iDRR in that inactive ports
are not removed from the linked list so that the size of the linked
list is fixed. This modification makes hardware implementation
much easier (see Section VI).

Like iDRR, when becomes empty, should be
adjusted to prevent users from overutilizing or underutilizing
the bandwidth (see Section IV-C2). Let be the reservation
of the – pair, and be the total reservation of
all input–output pairs competing with . When

becomes empty and , for every
slots, decrease (if ) or increase (if

) by one until .

B. iPDRR Versus iSLIP

In [12], McKeown proposed a round-robin algorithm iSLIP.
Instead of using a linked list, iSLIP uses a pointer at each
output(input) to record the input(output) with the highest
priority. Grant(Accept) is given in the order starting from the
highest priority port.

A weighted iSLIP algorithm is also proposed in [12]. For
each , instead of maintaining an ordered circular list

as that in the basic iSLIP algorithm,
the weighted iSLIP expands the list to
and appears times in , where

, is the reservation for
the – pair, and is the aggregate reservation for

.
Unfortunately, weighted iSLIP cannot readily take the advan-

tage of the basic iSLIP hardware implementation because of the
variable size of . When adding or removing a reservation,
will be recalculated. The hardware implementation of iPDRR,
on the other hand, is very straightforward and easy.

C. iPDRR Versus iPFS

In [8], Ni and Bhuyan proposed a switch scheduling algo-
rithm, called iFS, which is based on virtual time. Each incoming
packet is assigned a virtual time according to its flow’s reserva-
tion. The iFS schedules packets in the increasing order of the
virtual time.
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Fig. 9. Performance of iPDRR, iPFS, WPIM, and iSLIP under uniform traffic
(cell-mode scheduling).

Fig. 10. Performance of iPDRR, iPFS, WPIM, and iSLIP under uniform traffic
(packet-mode scheduling).

Fig. 11. Performance of iPDRR, iPFS, WPIM, and iSLIP under nonuniform
traffic (cell-mode scheduling).

The original iFS is flow based. The time complexity of a
schedule arbiter is , where is the number of flows. If its
port-based version is used (we call it iPFS),is the number of
ports and can be achieved by using parallel comparison.
Still we need to compare values and select the smallest in
a very short time. For example, the scheduler of Tiny Tera [20]
runs at a clock speed of 175 MHz, and a slot is composed of nine
cycles in which eight cycles are for three iSLIP iterations and
one cycle for crossbar configuration. If iFS uses such timing,
the comparison of values has to be done within about 11 ns.

Fig. 12. Performance of iPDRR, iPFS, WPIM, and iSLIP under nonuniform
traffic (packet-mode scheduling).

Fig. 13. Throughput per flow using iPDRR (output link speed= 1 cell/slot,
packet-mode scheduling).

Fig. 14. Throughput per flow using iPDRR (output link speed= 0:5 cell/slot,
cell-mode scheduling).

Fast comparison prefers small register width. However, cal-
culating virtual time may involve floating point which increases
the register width. In addition, virtual time is monotonically in-
creasing. The registers must be big enough to hold the flow of
the longest life. A 16-bit register implies that a flow can only
live as long as 65535 slots (about 3.4 ms in a switch like Tiny
Tera).

iPDRR, as we can see later in Section VI, is easily imple-
mented in hardware and can operate at high speed. Selecting a
port from a list can be done by using a circular linked list and
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Fig. 15. iPDRR scheduler for a 4� 4 switch.

a simple combinational circuit with multiplexers and demulti-
plexers. And connection-tear-down logic can be carried out with

registers and an adder. All modules in iPDRR can be accom-
plished in one or two cycles. In addition, a 16-bit register is big
enough to hold a flow’s quota.

D. iPDRR Versus WPIM

In [10], Stiliadis and Varma also proposed a port-based fair
scheduling algorithm WPIM which is based on the original par-
allel iterative matching (PIM) algorithm [11]. In WPIM, the
time axis is divided into frames with a fixed number of slots
per frame. The reservation unit is slot/frame. In the first iter-
ation, for each output, an additional mask stage is introduced
to block those inputs whose credits are used up, thus allowing
other inputs to receive their shares of the bandwidth. Clearly,
the bandwidth guarantee is provided at coarse granularity of a
frame [8].

The WPIM scheduler uses random selection which is an ex-
pensive operation, particularly for a variable number of input
requests. It is hard to implement in very short time. In [11], a
slot time is 420 ns for four PIM iterations.

WPIM has to be aware of the output link speed, i.e., when
the output-link speed changes, the credit of each flow should be
changed accordingly. For example, assume that the output-link
speed is 1 cell/slot, a frame is 1000 slots, and four flows re-
serve 10%, 20%, 30%, and 40% bandwidth, respectively, i.e.,
100, 200, 300, and 400 slots/frame. If the output-link speed is
reduced to 0.5 cell/slot, they will get 10%, 13.3%, 13.3%, and
13.3% bandwidth, respectively, unless the credits of each flow
are changed to 50, 100, 150, and 200 slots/frame, respectively.
The iPDRR, on the other hand, can always provide fair sharing
regardless of the change of the output link speed.

When the actual reservation to an output port is less than
its capacity, WPIM equally allocates the rest of the bandwidth

Fig. 16. iPDRR request moduleR at input for a 4� 4 switch.

among all competing flows. In iPDRR, the rest of the bandwidth
is still allocated in proportion to competing flows’ reservations.

E. Simulation Results

Fig. 9 and Fig. 10 show the throughput and delay performance
of iPDRR compared with other schemes under uniform traffic.
The simulation is performed on a 1616 switch, where each
input has one flow to each output, totally 256 flows. Each flow
reserves the same bandwidth and maintains the same arrival
rate. The number of iterations is three. The output-link speed
is 1 cell/slot.

We observe that packet mode can reduce the average packet
delay. In packet mode, all schemes are almost the same, while in
cell mode, iPDRR works better than other schemes under heavy
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Fig. 17. iPDRR grant arbiterG at output for a 4� 4 switch.

Fig. 18. iPDRR accept arbiterA at input for a 4� 4 switch.

workload. This is because that unlike the original definition of
cell-mode scheduling [17], one input–output connection can last
for more than one slot even in the cell-mode iPDRR/iDRR so
that the cell-mode iPDRR/iDRR in fact behaves similarly to its
packet-mode counterpart.

For the nonuniform traffic, we run the simulation under the
same setting as that in Section IV-D. The results are shown in
Fig. 11 and Fig. 12.

Fig. 13 and Fig. 14 demonstrate iPDRR’s ability of allocating
bandwidth among ports in proportion to their reservations. The
simulation is performed on a 44 switch where each input has
two flows with different reservations to output 0 and output 1.
When the output link speed is 1 cell/slot, all flows receive their
reserved portions of the total bandwidth when the output link
is overbooked. When the output link speed is reduced to about
0.5 cell/slot, the bandwidth each flow gets is still in proportion
to its reservation.

VI. HARDWARE IMPLEMENTATION OF iPDRR

Now let us consider the hardware implementation of iPDRR.
Fig. 15 shows the block diagram of howrequest modules,

Fig. 19. iPDRR linked list for a 4� 4 switch.

grant arbiters, accept arbiters, and decision modules are
connected to construct an iPDRR scheduler (for convenience,
we only show the implementation for a 44 switch; it is
straightforward to extend it to larger switches).

A. Request Module

The request module at , as illustrated in Fig. 16, is
responsible for sending requests to grant arbitersif
is not matched and is not empty.
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Fig. 20. iPDRR decision moduleD at input for a 4� 4 switch.

Like iSLIP scheduler [22], the request–grant–accept iteration
in iPDRR is also pipelined, i.e., requests and grants in the next
iteration can be sent at the same time when the accept decisions
in the current iteration are made. Whenever accept arbiter
(see Section VI-B) receives at least one grant,anyGrantsignal
is set and is disabled in the next iteration.

The request module also takes as inputs the input–output
connection information made in the previous slot by decision
module (see Section VI-C). Together with the state of

, this connection information determines whether the
corresponding input–output connection will be kept or not
in the current slot. If so, the corresponding grant and accept
arbiters are disabled in the current slot.

B. Grant/Accept Arbiter

Fig. 17 shows the diagram of a grant arbiter at .
It maintains a linked list which records the order
of input ports. The job of is to select, in the order of

, the first such that sends a request, and
sent a grant to . It is done by multiplexers which
reorder requests according to and demulti-
plexers which restore the grants to their original order. The
grant registeris used to save the grant decision in the previous
iteration because of the pipelined implementation. It is used to
update when is matched.

The accept arbiter (see Fig. 18) is almost the same as the grant
arbiter, except that it does not need a register to hold the accept
decision to update because an input that receives
at least one grant will definitely be matched.

When and are matched, we need to update
the two linked lists by moving to the end of and

to the end of . This operation is equivalent to a
circular register shift.

As illustrated in Fig. 19, for a linked list of ports, we have
registers, each bit wide. is the th register, initialized

to . When there is a new matching, the corresponding register,
say , and all registers after will be enabled so that

can be done
in one shot.

Note that if the last port in the list is matched, we do not have
to update the list. Also, when the list needs to be updated, the

last two registers will always be enabled. So there are
grant/accept input signals instead of.

C. Decision Module

After the accept arbiter makes a decision, the result goes to
the decision module (see Fig. 20) and is stored in the decision
register. The main functionality of the decision module is to
perform bandwidth fair sharing among ports.

Each decision module has registers for quotas and reg-
isters for counters. Since updating quotas is not time critical, for
each quota, we keep a copy in memory. When a flow comes and
goes, the corresponding quota is updated in memory and then
copied to its register. In packet-mode scheduling,isLastCellis
set to 1 when the last cell of a packet is transferred across the
switch in the current slot. In cell-mode scheduling,isLastCellis
always set to 1.

When and are newly matched, and
are enabled, and is increased by .

After that, the connection will be kept and will be
decreased by 1 every slot until the sign bit of andis-
LastCellare set to 1.

ThekeepConnectedsignals go to the request module, which
further decides whether a connection needs to be kept or not in
the next slot.

VII. CONCLUSION

In this paper, we first demonstrated that applying fair queuing
only at the output link is not very effective, because the number
of packets competing for the output link is limited in input-
queued switches. Therefore, we proposed iDRR, a flow-based
fair scheduling algorithm which can allocate the switch band-
width in proportion to each flow’s reservation. The iDRR is im-
plemented to an iteration-based switch scheduler so that packets
are properly selected from the input queues for transmission. We
showed that such a scheme achieves fair scheduling while pro-
viding high throughput and low latency. Since flow-based fair
scheduling schemes are difficult to implement in hardware, we
also proposed a port-based fair scheduling algorithm iPDRR,
and described its hardware implementation in details. We also
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compared the performance of iPDRR with other schemes to
demonstrate the superiority of our technique.
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