
Traffic-Aware Power Optimization for Network Applications on
Multicore Servers ∗

Jilong Kuang, Laxmi Bhuyan and Raymond Klefstad
Computer Science & Engineering Department

Unviersity of California, Riverside
900 University Ave, Riverside, CA 92521, USA
{jkuang, bhuyan, klefstad}@cs.ucr.edu

ABSTRACT
In this paper, we design, implement, and evaluate a traffic-aware
and power-efficient multicore server system by translating incom-
ing traffic rate to appropriate system operating level, which is then
translated to optimal per-core frequency configuration. According
to the varying traffic rate, the system can adjust the number of
active cores and per-core frequency “on-the-fly” via the use of per-
core DVFS, power gating, and power migration techniques based
on our new power model which considers both dynamic and static
power consumption of all cores. Results on an AMD machine
with two Quad-Core Opteron 2350 processors for six real network
applications chosen from NetBench [19] show that our scheme re-
duces power consumption by an average of 41.0% compared to
running with full capacity without any reduction in throughput.
It also consumes less power than three other approaches, chip-
wide DVFS [22], power gating [17], and chip-wide DVFS + power
gating [15], by 35.2%, 24.3%, and 10.5% respectively.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Sys-
tems—Performance attributes, Design studies

General Terms
Design, Performance

Keywords
Packet processing, power efficiency, multicore architecture

1. INTRODUCTION
Explosive growth of Internet high-traffic applications, such as

video streaming, cloud computing and file sharing, requires orders-
of-magnitude increase in system throughput. Affordable multicore
servers, such as Cavium’s OCTEON [2], Cisco’s AON [3], and
IBM’s BladeCenter [6], can now meet this throughput demand.
Along with increased throughput, however, comes significantly in-
creased power consumption [8]. Collectively, millions of servers in
the global network consume a great deal of power [12]. And chip
manufacturers continue to increase both the number of cores and
their frequencies, substantially increasing both dynamic and static
power consumption.

At the hardware level, there are two main techniques to reduce
power consumption. The first technique, Dynamic Voltage and
Frequency Scaling (DVFS), which is widely used, reduces or in-
creases processor voltage/frequency just enough to meet perfor-
mance requirements. DVFS can be either chip-wide, where the en-
tire chip is scaled as one unit (e.g., Intel’s Foxton technology [18]),
or per-core, where individual cores on the chip can be scaled at
different rates (e.g., AMD’s Opteron processor [1]). The second

∗This work was supported by National Science Foundation grants
CNS-0832108 and CSR-0912850.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

hardware-level technique, called power gating, minimizes leakage
current when a core is inactive by powering it down almost com-
pletely. Power gating has been introduced only recently by major
chip manufacturers (e.g., Intel’s Nehalem [14]).

To determine when to reduce power to the core, various ap-
plication run-time characteristics are exploited, such as program
phase analysis [10], degree of parallelism [15], and time slack detec-
tion [20]. We see great potential power-saving opportunity, how-
ever, in an additional aspect: network traffic. Computing power
needs fluctuate dramatically with the large fluctuations in network
traffic. For example, Figure 1 shows real-time network traffic in a
typical day monitored by Equinix data center [4] at San Jose, CA.
The traffic rate varied from 320K packets/s to 720K packets/s.
Power consumption could be greatly reduced when traffic is low.

Figure 1: Traffic variation versus time in 24 hours. Different
colors represent the breakdown of different packet types.

Existing studies that consider traffic variation, however, are lim-
ited in the following two ways:

1. Dynamic Power Only. They assume that dynamic power
dominates total power consumption, and that static power
can be ignored [11, 17, 22]. However, static power has in-
creased dramatically with increases in device speed and chip
density. According to a projection by the International Tech-
nology Roadmap for Semiconductors, leakage power increases
its dominance of total power consumption as semiconductors
progress toward 32nm [7].

2. Single Dimensional. Traffic-aware studies focus either on
single-core platforms and chip-wide DVFS [22], or adopt power
gating only [11, 17]. Thus, these approaches cannot be ap-
plied to multicore systems that support both per-core DVFS
and power gating.

Using a combination of per-core DVFS and power gating can po-
tentially minimize power consumption when network traffic is low.
However, with this approach, cores perform different amounts of
work. Not all cores actively run all the time, and each core may
run at a different frequency. Some cores may then be stressed
more than others, and overworked cores will generate excess heat,
increasing static power consumption exponentially with temper-
ature [23]. It is therefore advisable to migrate active cores pe-
riodically for lower peak core temperature and less static power
consumption. A software approach called power migration can be
used to achieve thermal load balancing across the cores. Loca-
tions of more- and less-active cores can be dynamically changed
according to some policy while keeping the same system operating
level. Given the same amount of heat generation depending on the
number of active cores and core frequency, power migration can

1006

redistribute the generated heat in space and time to reduce peak
core temperature and improve thermal uniformity.

This paper describes a power-efficient multicore server system
for network applications which dynamically adjusts system oper-
ating level and per-core frequency configuration based on incoming
traffic rate. Our on-line algorithm optimizes a novel power model
that considers both dynamic and static power. The dynamic per-
core frequency configuration is achieved through a combination of
per-core DVFS, power gating, and power migration.

We first derive a formula to translate traffic arrival rate to
required cumulative core frequency. Then, based on our power
model, we derive the optimal system operating level to maintain
sufficient system throughput for the current traffic while using min-
imal dynamic power. Lastly, because each core may be configured
at a different operating frequency, we migrate active cores in the
system periodically to achieve thermal balancing and reduce peak
core temperature. To the best of our knowledge, we are the first
to target power optimization considering both dynamic and static
power for network applications running on multicore servers.

To verify our design, we implement our approach on a multicore
server system with varying traffic loads, running six real network
applications from NetBench [19]. Our approach reduces power
consumption by an average of 41.0% compared to running with
full capacity without any reduction in throughput. Our approach
also outperformed three other approaches with negligible overhead:
chip-wide DVFS [22], power gating [17], and a hybrid combination
of chip-wide DVFS and power gating [15].

The rest of this paper is organized as follows: Section 2 presents
our system design which includes the traffic-aware power optimiza-
tion scheme in a three-step approach. Section 3 presents our im-
plementation and performance evaluation. Finally, Section 4 con-
cludes this paper.

2. TRAFFIC-AWARE POWER OPTIMIZATION
2.1 System Design

The typical application supported by this work runs on a mul-
ticore server and processes a stream of network requests. Figure 2
shows the system overview, where incoming packets from the net-
work are first stored in a global FIFO queue and then scheduled to
proper cores for packet processing. The core component is system
manager, which consists of four functional modules: traffic moni-
toring, power managing, core configuring, and task scheduling.

scheduler

C0

… …
packet arrival

global queue

local queue

1

3

4

…

.

.

.

.

.

.

.

.

.

system
operating
level

cumulative
core

frequency

of active
cores

arrival
rate

.

.

.

1λ 1N 11 2(, ,...,)Nf f f

2λ 2F 2

' ' '
1 2(, ,...,)Nf f f

3λ 3F 3

'' '' ''
1 2(, ,...,)Nf f f

2system operating level table

.

.

.

C1

C2

C6

C7

processing core

system manager

traffic monitoring

core configuring

power managing

task scheduling

core_0

core status table
(per-core frequency configuration)

core_1 core_2 … core_7

…0freq 1freq 2freq 7freq

1F
2N

3N

Figure 2: Overview of the traffic-aware system.

1. Traffic monitoring module tracks packet inter-arrival
times to obtain the packet arrival rate and detect the rate change
point whenever the traffic rate varies. We monitor the traffic and
detect the rate change point by using the sampling technique based
on maximum likelihood ratio [21, 22], which is particularly useful
for server/router deployment where traffic changes can be pre-
dicted only based on prior information.

2. Power managing module manages two runtime tables, a
system operating level table, which caches optimal system oper-
ating level for a given traffic arrival rate, and a core status table,
which tracks the actual per-core frequency configuration. The sys-
tem operating level is represented by tuple (f1, f2, ..., fN) through-
out this paper, where f1 ≥ f2 ≥ ... ≥ fN . This tuple indicates that
N cores are active running and the ith core has the frequency fi

(1 ≤ i ≤ N). Given a certain arrival rate, the power managing
module appropriately derives the optimal system operating level
based on our dynamic power optimization scheme. In addition,
it also initializes the core status table at each traffic rate change
point, and periodically updates the core status table to enable

power migration for active cores between two consecutive traffic
rate change points based on our static power optimization scheme.

3. Core configuring module adjusts the frequency level of
each core based on the information from the core status table man-
aged by the power managing module. At each configuration point,
it applies power gating to cores labeled as inactive as soon as their
local queues become empty, and applies per-core DVFS for cores
labeled as active and adjusts their frequencies according to their
respective configurations chosen from one of the five frequency lev-
els, namely 1GHz, 1.2GHz, 1.4GHz, 1.7GHz and 2GHz. The core
configuring module is critical in the system because it is where the
three applied power techniques are actually enabled.

4. Task scheduling module appropriately schedules packets
in the global queue to active cores in our system. When the per-
core frequency configuration updates, the scheduler stops sending
packets to power-gated cores. For active cores with different core
frequencies, the scheduler distributes the workload, which is deter-
mined by the number of packets, per-packet size, and application
type, in proportion to the core frequency. This approach achieves
weighted load balancing across cores under varying traffic rate and
avoids loss of system throughput due to the change of system op-
erating level and update of per-core frequency configuration.

As we focus on the power managing module in this paper, we
propose a three-step approach as shown in Figure 3 to solve the
power optimization problem.

traffic
arrival

rate

system
operating

level

per-core
frequency

configuration

dynamic power
optimization

static power
optimization

step 1

input: varying
network traffic

output: minimal
power consumption

cumulative
core

frequency

system service
model

power managing module

step 2 step 3

Figure 3: A three-step power optimization scheme.

2.2 Step 1: System Service Model
The system service model translates the traffic arrival rate to

required cumulative core frequency in the multicore system. As
traffic rate varies, an ideal cumulative core frequency should be
just sufficient to satisfy the demand without over-provisioning.

First, we let service rate equal to arrival rate, because 1) to
guarantee a stabilized system without packet overflow, service rate
should be no less than arrival rate, and 2) to avoid over-provisioning
and achieve power efficiency, service rate should be no greater than
arrival rate.

Second, [9, 22] have shown that the service rate is linearly pro-
portional to the CPU frequency for a single-core system. However,
because we target multicore architectures where different cores
may run at different frequencies, it is necessary to re-think and
justify the relationship between the service rate and cumulative
core frequency. We, therefore, conduct two empirical trace-driven
studies with 6 chosen network applications from NetBench on our
multicore machine to help establish the relationship.

(2) (1,1)

(2,2) (1,1,1,1)

(2,2,2) (1.7,1.7,1.4,1.2) (1,1,1,1,1,1)

(1,1,1,1,1,1,1,1)(1.7,1.7,1.4,1.2,1,1)(2,2,2,2)

0

2000

4000

6000

8000

10000

12000

14000

16000

case 1 case 2 case 3

Per-core frequency combinations

Th
ro
ug
hp
ut

 (p
ac
ke
ts

/s
ec
)

2 GHz 4 GHz 6 GHz 8 GHz

Figure 4: Throughput versus frequency combinations.

The first study examines the effect of various per-core frequency
combinations versus throughput given the same cumulative core
frequency. Figure 4 shows the results of the URL application when
we vary the cumulative core frequency from 2GHz to 8GHz. For
each cumulative core frequency, we change the per-core frequency
combinations. From this figure, we observe that the throughput
(service rate) only depends on cumulative core frequency, regard-
less of per-core frequency combinations. This is because when
incoming packets are processed on multiple cores with different
service rates, we can equivalently treat this multicore server as a

1007

single-core system with the aggregated service rate equal to the
sum of per-core service rate.

The second study builds the relationship between the service
rate and cumulative core frequency in our system. We vary the
cumulative core frequency from the minimum (1GHz) to the max-
imum (16GHz) and record the system throughput. The results
show that for our multicore server, the throughput (service rate)
is also linearly proportional to the cumulative core frequency. Fig-
ure 5 illustrates both the experiment result and the fitted line for
the URL application (Other applications have the similar results
with different parameters and coefficients). Therefore, our system
service model for the URL application is given by the linear func-
tion in Equation 1, where X represents cumulative core frequency
and Y represents the service rate, or the arrival rate in our case.

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cumulative core frequency (GHz)

Th
ro
ug
hp
ut

 (p
ac
ke
ts

/s
ec
)

Throughput
Fitted Line

Figure 5: Throughput versus cumulative core frequency.

Y = 1496 · X + 628 (1)

2.3 Step 2: Dynamic Power Optimization
The dynamic power optimization scheme takes cumulative core

frequency as input and produces the optimal system operating
level as output. More specifically, it answers the following two
questions: Q1) what is the theoretically optimal number of active
cores from our power model? Q2) what is the frequency assignment
for active cores considering the discrete frequency levels?

2.3.1 Power Model
Consider a network application running on a core at voltage v

and frequency f . The dynamic power consumption is given by:
Pdynamic = Ka · f · v2, where Ka is a task/core dependent factor
determined by the switched capacitance. Besides, the frequency f
is almost linearly related to the voltage v : f = Kb · (v − vt)

2/v,
where vt is the threshold voltage and Kb is a constant. For a
sufficiently small threshold voltage, the frequency is approximated
to Kb ·v. Therefore, we assume the dynamic power consumption is
cubic to the frequency as shown in Equation 2, where K = Ka/K2

b .

Pdynamic = K · f3 (2)
With respect to static power, we assume that for power-gated

cores, they consume zero static power. For active cores, static
power consumption is exponential to core temperature [23]. How-
ever, as this step focuses on dynamic power optimization, we ignore
the temperature effect and assume the static power of each active
core is constant, Ps. Detailed discussion for static power consump-
tion is given later because it is related to thermal balancing and
power migration. Thus, the total power consumption of an active
core is given by Equation 3:

Pcore = Pstatic + Pdynamic = Ps + K · f3 (3)
In a multicore system with N active cores, suppose fi is the

frequency on core i and P (f1, f2, ..., fN) is the total system power
consumption as a function of system operating level denoted as
(f1, f2, ..., fN). We have the following:

P (f1, f2, ..., fN) = N · Ps + K · (f3
1 + f3

2 + ... + f3
N) (4)

In the following, we focus on answering Q1 in a quantitative
approach under the assumption that the core frequency is con-
tinuous. Later on, to answer Q2, we will relax this constraint in
practical scenario with discrete frequency levels.

Suppose we have x active cores to handle cumulative core fre-
quency F . As the dynamic power is proportional to the cube of
core frequency, we know that when every active core is running at
the same frequency of F/x, the total dynamic power consumption
reaches minimum. Thus, from Equation 4, we can derive the total
power consumption as follows.

P = P (f1, f2, ..., fx) = x · Ps + K · (f3
1 + f3

2 + ... + f3
x) (5)

≥ x · Ps + x · K · (F/x)3 = x · Ps +
K · F 3

x2

This function (P = x ·Ps + K·F3

x2) is a unimodal function and has
a global minimum as illustrated in an example in Figure 6. This
curve is drawn for the URL application when we set Ps = 5.8,
K = 1.6 and F = 3. More details about the parameters can be
found in Section 3. It shows that starting from a single active
core (x = 1), increasing the number of active cores will reduce
the total power consumption while satisfying the cumulative core
frequency requirement, until the number of active cores increases
past a certain threshold value. We call this value x∗, which is
the optimal number of active cores that strikes a good balance
between static and dynamic power. In fact, from the classic algebra
inequality as shown in Equation 6, we can easily solve the problem.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Number of active cores

P
ow
er

 (w
at
t)

X*

Figure 6: Power consumption as the number of active cores
varies given the same cumulative core frequency.

a + b + c

3
≥ 3

√
a · b · c (6)

when a=b=c, left side reaches minimum.

P = x · Ps +
K · F 3

x2
=

x · Ps

2
+

x · Ps

2
+

K · F 3

x2
(7)

≥ 3 · 3

√
P 2

s · K · F 3

4
In addition, the minimal power consumption is achieved if and

only if Equation 8 is satisfied.

x · Ps

2
=

K · F 3

x2
⇒ x∗ = 3

√
2K · F 3

Ps
(8)

2.3.2 Frequency Assignment
After obtaining the optimal number of active cores, we address

Q2, the frequency assignment problem to appropriately assign fre-
quency to each active core considering the discrete frequency levels.
We propose two rules to guide the frequency assignment 1.

• Rule 1: Always provide the minimal cumulative core fre-
quency that satisfies the traffic demand.

• Rule 2: For a given cumulative core frequency, the per-core
frequency combination with the least standard deviation con-
sumes the least power.

To demonstrate the two rules, we carry out two empirical stud-
ies with the same settings as in Section 2.2. In the first study, we
vary the cumulative core frequency from 2GHz to 8GHz. For a
given cumulative core frequency, we vary the per-core frequency
combinations and record the net power consumption (load power
minus idle power). Figure 7 shows the results for the URL ap-
plication. From this figure, we observe that power consumption
varies substantially, as much as 114% when comparing (2, 2) to
(1, 1, 1, 1), with different per-core frequency combinations, which
indicates that a proper frequency assignment is very necessary for
multicore servers supporting per-core DVFS and power gating.

(1,1)

(2)

(1,1,1,1)

(2,2)

(1.7,1.7,1.4,1.2)

(1,1,1,1,1,1)

(2,2,2)

(1.7,1.7,1.4,1.2,1,1)

(1,1,1,1,1,1,1,1)

(2,2,2,2)

0

10

20

30

40

50

60

case 1 case 2 case 3

Per-core frequency combinations

P
ow
er

 (w
at
t)

2 GHz 4 GHz 6 GHz 8 GHz

Figure 7: Power versus per-core frequency combinations.
In the second study, we take two cores and change the frequency

in all possible combinations and record the power consumption.

1Algorithm pseudocode is omitted due to space limit. Interested
readers can refer to [13] for details.

1008

Figure 8 shows the 3D plot for the results with the URL appli-
cation, where each black point represents a per-core frequency
combination and its corresponding power consumption. In ad-
dition, based on Figure 8, we also plot Figure 9 illustrating the
power consumption versus cumulative core frequency. When a
certain cumulative core frequency corresponds to multiple power
consumptions, we take the minimal one. From these two figures,
we notice: 1) If we only consider the minimal power consumption
for a given cumulative core frequency as shown in Figure 9, we see
higher cumulative core frequency corresponds to higher power con-
sumption. 2) For the same cumulative core frequency, the more
evenly-distributed per-core frequency combination results in less
power consumption as shown in Figure 8. For example, point
(1.7, 1.7) is lower than point (2, 1.4) and point (1.2, 1.2) is lower
than point (1.4, 1), although they have the same cumulative core
frequency in both cases. In summary, this exhaustive study em-
pirically validates our two rules.

0

1
1.2

1.4
1.7

2

0

1
1.2

1.4

1.7

2
0

5

10

15

20

25

30

35

40

45

50

P
ow

er
 (

w
at

t)

Core 0 Frequency (GHz)Core 1 Frequency (GHz)

(1.7, 1.7)

(1.2, 1.2)

(1.4, 1)

(2, 1.4)

Figure 8: Power versus two-core frequency combinations.

0

5

10

15

20

25

30

35

40

45

50

1 1.2 1.4 1.7 2 2.2 2.4 2.6 2.7 2.8 2.9 3 3.1 3.2 3.4 3.7 4

Cumulative core frequency (GHz)

P
ow
er

 (w
at
t)

Power

Figure 9: Power versus cumulative core frequency (two cores).

2.4 Step 3: Static Power Optimization
The static power optimization scheme takes system operating

level as input, which virtually contains an array of core frequencies
optimized for a given traffic rate, and produces as output the actual
per-core frequency configuration that is dynamically updated for
power migration. This step focuses on the power migration design
for active cores to achieve thermal balancing and reduce peak core
temperature that effectively reduces static power consumption.

2.4.1 Design Overview
While keeping the system operating level constant, we appro-

priately vary the physical location for active cores so that thermal
balancing is achieved across all cores. If the time interval between
two migration points is small enough, we can minimize peak core
temperature and effectively reduce static power consumption. Fig-
ure 10 illustrates the overview of our power migration scheme with
varying network traffic rate. At each traffic change point (Ti), we
apply the dynamic power optimization scheme to obtain the op-
timal system operating level. Because the number of active cores
may be less than the total number of cores, and per-core frequency
is heterogeneous, we periodically redistribute the power dissipation
at each migration point (ti) among all cores. In Figure 10, color
squares represent active cores with different frequency levels (the
darker the color, the higher the frequency), whereas white squares
represent power-gated cores. In this example, the migration pro-
cess happens among core pairs (C1, C2), (C6, C4), and (C5, C3),
where the highest frequency cores C1, C6 and C5 are swapped
with the lowest frequency cores C2, C4 and C3.

2.4.2 Migration Policy
The policy of our power migration consists of both long-term

update and short-term update of core status table. The long-term
update refers to the initialization of core status table at each traffic
change point, which is in the order of minutes based on network

traffic studies in [11, 17, 22]. The short-term update refers to
the periodic update of core status table at each migration point
between two consecutive traffic change points. Considering core
thermal behavior, packet processing time and system reconfigura-
tion overhead, we find an update frequency of 1 second to be a
good value for short-term update in our system.

time

T1 T2 Tn

……

t1 t2 t3 t4 tm

…………

c0 c1

c2 c3

c4 c5

c6 c7

c0

c2

c1

c5

c6

c3

c4

c7 T
t

high freq
medium freq

low freq
power-gated

traffic change point
migration point

Figure 10: Illustration of power migration for active cores.

Long-term update: The long-term update should be based on
previous history in the core status table for thermal balancing. At
the traffic change point, because the system operating level will
change in terms of the number of active cores and core frequency,
we want every core to have even power dissipation over a period of
time. Therefore, our long-term update can be described as follows:

General policy: Given the current system operating level (f1, f2,
..., fN), we first sort the per-core frequency configuration in the
previous core status table according to the frequency level from the
lowest to highest. Then, we assign frequency f1 to the first core in
that list and frequency f2 to the second core in that list and so on.
For cores that are not assigned a frequency level, we leave them to
be power-gated.

We have one exception for the above-mentioned long-term up-
date. As we target servers with multicore processors, we should
use as few processors as possible while satisfying traffic demand.
Thus, when all active cores can fit into one processor, we should
always use only one processor. Considering the general policy, we
add the following exception rule:

Exception: If all active cores can fit into one processor, we
choose the processor which contains the core that is assigned the
frequency f1.

Short-term update: The short-term update aims to achieve
thermal balancing across all cores in the system through power mi-
gration. We argue that the migration policy has to be temperature-
aware to guarantee thermal balancing during two consecutive short-
term updates. Because core frequency is directly related to core
temperature and per-core frequency is easy to obtain, we propose
a frequency-aware migration policy to guide the short-term update
as follows:

General policy: We sort the per-core frequency configuration in
the current core status table according to the frequency level from
the lowest to highest. Then, we swap the frequency between the
first core in the list and the last core, and between the second core
and the last but one core, and so on.

This strategy lets the power dissipation be evenly distributed
across all cores during two consecutive short-term updates; thus
overall thermal balancing will be achieved as expected. In the
exceptional case where only one processor is used, we apply the
following rule:

Exception: If all active cores can fit into one processor, we switch
the active processor at every migration point and copy the same
per-core frequency configuration within a processor from one to
the other. However, at every other migration point, we update the
per-core frequency configuration within a processor following the
short-term update general policy.

This exception rule ensures we will keep the frequency assign-
ment to one processor when it is possible. Using the regular short-
term policy without this exception will likely split the frequency
assignment across multiple processors.

3. EXPERIMENTAL EVALUATION
3.1 Experiment Setup

We implement our scheme along with three other schemes on an
AMD server with two Quad-Core Opteron 2350 processors. For
power measurement, we use a power analyzer (model EXTECH
380801 [5]) to obtain the real-time whole system power. We use
the net power consumed exclusively by network applications as the

1009

metric for fair comparison. Net power is obtained by subtracting
idle power from load power.

In our experiment, per-core DVFS is achieved by setting the core
frequency to one of the five predefined frequency levels: 1GHz,
1.2GHz, 1.4GHz, 1.7GHz and 2GHz. We rely on the Linux kernel
CPUfreq subsystem to implement the frequency scaling. Power
gating is achieved by removing cores from active working set based
on kernel’s built-in CPU“hotplug”support, which mimics precisely
the behavior of power gating [16]. Task scheduling module achieves
power migration by dynamically scheduling incoming packets to
active cores.

We parallelize six network applications from NetBench [19] (as
listed in Table 1) and execute them in a multi-threaded fashion
with packet-level parallelism. To guarantee each active core is run-
ning a thread, we enforce thread-to-core binding by setting thread
affinity. We select two applications from each category (i.e., Micro-
level, IP-level and Application-level). The packet trace is from
NetBench with 10, 000 packets, which are repeatedly processed in
our experiment. The packet size ranges from 40 bytes to 1500
bytes with an average of 723 bytes. The routing table size for TL,
Route and DRR is 128, and we use the small input file for URL.

Table 1: Six network applications from NetBench.
Name Functionality Category
CRC CRC-32 checksum calculation Micro level
TL Radix-tree table lookup routine Micro level

Route IPv4 routing based on radix IP level
DRR Deficit-round robin scheduling IP level
URL URL-based switching Application level
MD5 Message digest algorithm Application level

Table 2: Application-specific parameters.
App. System Service Model Latency (μs) K
CRC Y = 81109 · X + 26662 0.008·size+0.3 1.5
TL Y = 571389 · X + 328743 0.8 1.4

Route Y = 253707 · X + 87975 1.8 1.4
DRR Y = 74965 · X + 54945 5.5 1.4
URL Y = 1496 · X + 628 0.131·size+73.2 1.6
MD5 Y = 76016 · X + 35024 0.005·size+3.2 1.8

Table 2 shows application-specific parameters. We profile each
application and obtain their system service model, where X repre-
sents the cumulative core frequency 2 and Y represents the service
rate (packets/sec), equivalent to the arrival rate. To quantify the
workload for weighted load balancing scheduling, we also obtain
the per-packet latency for each application when running on a sin-
gle core with 2GHz frequency. It is worth noting that our method
also applies to non-linear applications, as long as we can model and
translate the traffic arrival rate to cumulative core frequency (step
1 in Figure 3). This is because step 2 and step 3 are solely based
on the result of step 1. We derive the dynamic power parameter K
for each application based on Equation 2 and Equation 3 by sub-
stituting known frequency and measured power consumption. In
addition, to calculate the static power Ps, we refer to manual spec-
ification, and use Vdd ∈ (1.06V, 1.35V) and Ileak ∈ (4.2A, 5.3A) as
the 65nm technology parameters [16]. Hence, we take the average
of 5.8W as the input for our power model.

To achieve traffic variation, we experiment with both synthetic
and real-world workloads. For synthetic workload, we set the re-
quired cumulative core frequency (F) for incoming traffic to be one
of the following five cases (as shown in Table 3). For real-world
workload, we take the 24-hour traffic as shown in Figure 1. We
consider the total volume as the arrival traffic for packet process-
ing, and sample 24 different average traffic rates at each hour to
obtain the required cumulative core frequency. Without loss of
generality, the cumulative core frequency is then scaled according
to our system capacity from 1GHz to 16GHz. For both workloads,
we change the traffic rate every minute and set the power migra-
tion frequency to be 1 second.

Table 3: Synthetic workload for different traffic rate.
Traffic extra low low medium high extra high

F 1GHz 4GHz 8GHz 12GHz 16GHz

In the experiment, we first compare our scheme to a traffic-
unaware native system without power management. In addition,
we compare our scheme with three other traffic-aware schemes,
i.e., PG [17], which turns off cores when traffic is light using power
gating, C-DVFS [22], which assumes a unified frequency adjust-
ment across all cores using chip-wide DVFS, and C-Hybrid [15],
which combines both chip-wide DVFS and power gating.
2In our experiment, X is between 1GHz and 16GHz.

3.2 Power Savings
Figure 11 shows power savings percentage for our scheme under

different synthetic workloads compared to a native system. We
observe that our scheme can achieve power savings in four out
of five rates ranging from 18.0% for the CRC application in high
traffic rate, to as high as 90.0% for the URL application in extra
low traffic rate. The only exception is the extra high traffic rate,
where all the cores must be running at the maximal 2GHz. Overall,
our scheme reduces an average of 41.0% power consumption for the
six applications and their five different workloads. In addition, we
find our scheme especially useful when the traffic is light, e.g., in
medium, low and extra low cases. This is because under light load
we have more potential to apply per-core DVFS, power gating and
power migration to achieve power savings.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 (extra low) 4 (low) 8 (medium) 12 (high) 16 (extra high)

Cumulative Core Frequency (GHz)

P
ow
er

 S
av
in
gs

 P
er
ce

nt
ag
e
(%
)

CRC TL
Route DRR
URL MD5

Figure 11: Power savings under different workloads.

0

10

20

30

40

50

60

70

CRC TL Route DRR URL MD5

Network Applications

P
ow
er

 (w
at
t)

PG C-DVFS C-Hybrid Our scheme w/o migration Our scheme

Figure 12: Power consumption with three other schemes.

Figure 12 shows the average power consumption for different
applications comparing our scheme with three other schemes for
the five different synthetic workloads. We observe that our scheme
performs the best across all applications with an average of 35.2%
power savings over C-DVFS, 24.3% over PG and 10.5% over C-
Hybrid. C-DVFS performs the worst due to significant over-provisi-
oning and excessive static power consumption, as it always keeps
all the cores actively running. PG improves upon C-DVFS by
turning off unnecessary cores to mitigate over-provisioning and
save static power. However, without frequency scaling, it still suf-
fers from excessive power consumption during extra low traffic.
C-Hybrid outperforms both C-DVFS and PG due to its more flex-
ible power management scheme using both chip-wide DVFS and
power gating. But, C-Hybrid fails to achieve the best power sav-
ings because it does not consider static power or support more ad-
vanced per-core DVFS and power migration. Our scheme outwins
all other schemes by providing the optimal system operating level
and dynamically changing the per-core frequency configuration.

In addition, to emphasize the importance of power migration, we
also experiment with our scheme without migration. Our scheme
with power migration achieves an additional 2.5W reduction of
power on average over our scheme without power migration. This
highlights the advantage of including power migration in our power
optimization scheme. In particular, when the traffic rate is extra
low, low and medium, power migration can significantly reduce
peak core temperature and hence effectively reduce static power.

3.3 Energy Savings
Figure 13 shows normalized energy consumption compared to a

native system for different schemes using the real-world workload
(24-hour traffic in Figure 1). We observe that all four schemes can
achieve energy savings, ranging from the least energy consumption
of 0.45 for the URL application in our scheme, to the most energy
consumption of 0.71 for the Route and DRR application in C-
DVFS scheme. However, upon averaging out all six applications
over the 24-hour period, we still find our scheme outperforms PG,
C-DVFS and C-Hybrid by 22.0%, 19.1% and 8.4%, respectively.
The poor performance of PG and C-DVFS is due to the following

1010

two reasons: 1) PG always lets the cores run at full speed without
frequency scaling, and 2) C-DVFS always has all 8 cores actively
running without power gating. Compared to PG and C-DVFS,
C-Hybrid improves the energy performance by combining both
chip-wide DVFS and power gating. However, because C-Hybrid is
unable to provide the optimal system operating level and ignores
static power, it fails to achieve the best energy savings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CRC TL Route DRR URL MD5

Network Applications

N
or

m
al
iz
ed

 E
ne
rg

y
C
on
su

m
pt
io

n

PG C-DVFS C-Hybrid Our scheme

Figure 13: Normalized energy with three other schemes.

3.4 Reconfiguration Overhead
First, we individually measure the overhead for DVFS and power

gating. For DVFS, it takes 0.008 seconds to change the per-core
frequency level. For power gating, it takes 0.11 seconds to turn off
a core and 0.08 seconds to turn on a core. In addition, we notice
that in power gating, turning off a core does not add overhead as
that power-gated core will be inactive in the next second. Also, not
every core changes status every second. Therefore, we measure the
average per-core reconfiguration overhead over the 24-hour traffic
periodic at each hour as shown in Figure 14. This figure shows the
result for TL, Route and DRR, which have the same system oper-
ating level with the same K value. The other three applications,
CRC, URL and MD5 have very similar performance. Every sec-
ond, we count the invoked number of DVFS and power gating for
all the cores and divide the aggregated total overhead by 8. From
this figure, we observe that the overhead ranges between 0.2% and
3.3% with an average of 1.7%, which is negligible. It is also easy to
see that during low traffic hours (i.e., 8:00-14:00 and 17:00-23:00),
the overhead is higher due to more frequent power migrations.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00 0:0

0
1:0

0
2:0

0
3:0

0

Time

R
ec
on

fig
ur
at
io

n
O
ve
rh
ea
d
(%
)

Figure 14: Overhead versus time in our scheme.

3.5 Thermal Behavior
Finally, to demonstrate the effectiveness of power migration in

reducing peak core temperature, we use IPMItool utility to read
processor thermal sensor and obtain the temperature for each pro-
cessor every second. Figure 15 shows the maximal temperature
increase at extra low (XL), low (L) and medium (M) traffic rate,
where power migration is playing a significant role. Since all the
starting temperatures are the same, we can see our scheme has
the minimal peak core temperature in all cases. In this figure,
DVFS represents DVFS-based schemes, including both C-DVFS
and C-Hybrid, as they have the same thermal behavior.

0

2

4

6

8

10

12

14

16

18

20

P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur P
G

D
V

FS O
ur

XL L M XL L M XL L M XL L M XL L M XL L M

CRC TL Route DRR URL MD5

M
ax
im
al

 T
em
pe
ra
tu
re

 In
cr
ea
se

 (°
C
)

Figure 15: Temperature under different workloads.
More specifically, we see that PG causes the highest temperature

increase (up to 19◦C for the Route application in medium traffic

rate) because it lets all the cores run at the maximal frequency all
the time. DVFS-based schemes, on the other hand, achieve better
thermal behavior with frequency scaling, especially in extra low
traffic rate. However, it still suffers from 1◦C to 3◦C higher peak
core temperature compared to our scheme when the traffic rate
is low or medium, as it always stresses the same active cores. We
observe that our scheme on average reduces peak core temperature
by 6◦C compared to PG in all traffic rates and by 2◦C compared
to DVFS in low and medium traffic rate. This observation clearly
shows that our scheme is able to achieve thermal balancing and
keep a lower peak core temperature through power migration.

4. CONCLUSION
We design, implement, and evaluate a traffic-aware and power-

efficient multicore server system that appropriately changes the
system operating level according to varying traffic rate and dynam-
ically adjusts the per-core frequency configuration using a combi-
nation of per-core DVFS, power gating, and power migration tech-
niques to minimize power consumption. Our experimental results
show that on an average our system saves 41.0% power compared
to a native system. It also consumes less power than three other
approaches, C-DVFS [22], PG [17], and C-Hybrid [15], by 35.2%,
24.3%, and 10.5% respectively.

5. REFERENCES
[1] AMD Opteron Processor. http://www.amd.com/opteron.
[2] Cavium OCTEON Processor Family.

http://www.caviumnetworks.com/OCTEON MIPS64.html.
[3] Cisco AON Technology.

http://www.cisco.com/en/US/products/ps6692/Products Sub
Category Home.html.

[4] Equinix-sanjose.
http://www.caida.org/data/monitors/passive-equinix-sanjose.xml.

[5] EXTECH Power Analyzer. http://www.extech.com/instruments.
[6] IBM BladeCenter System.

http://www-03.ibm.com/systems/bladecenter/.
[7] International Technology Roadmap for Semiconductors.

http://public.itrs.net.
[8] K. Greene. Data centers’ growing power demands. MIT

Technology Review, 2007.
[9] C. Hughes, J. Srinivasan, and S. Adve. Saving energy with

architectural and frequency adaptations for multimedia
applications. In Proc. of Micro ’01, 2001.

[10] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management. In Proc. of Micro ’06, 2006.

[11] R. Kokku, U. B. Shevade, N. S. Shah, M. Dahlin, and H. M. Vin.
Energy-efficient packet processing. UT-Austin Technical Report
TR04-04, 2004.

[12] J. Koomey. Estimating total power consumption by servers in the
us and the world. Analytics Press, 2007.

[13] J. Kuang, D. Guo, and L. Bhuyan. Power optimization for
multimedia transcoding on multicore servers. In Proc. of ANCS
’10, 2010.

[14] R. Kumar and G. Hinton. A family of 45nm ia processors. In
Proc. of ISSCC ’09, 2009.

[15] J. Lee and N. S. Kim. Optimizing throughput of power- and
thermal-constrained multicore processors using dvfs and per-core
power-gating. In Proc. of DAC ’09, 2009.

[16] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and
C. Kozyrakis. Power management of datacenter workloads using
per-core power gating. HP Labs Technical Report HPL-2009-326,
2009.

[17] Y. Luo, J. Yu, J. Yang, and L. Bhuyan. Conserving network
processor power consumption by exploiting traffic variability.
ACM TACO, 2007.

[18] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican,
W. H. Parks, and S. Naffziger. Power and temperature control on
a 90-nm itanium family processor. Journal of Solid-State Circuits,
2006.

[19] G. Memik, W. H. Mangione-Smith, and W. Hu. Netbench: A
benchmarking suite for network processors. In Proc. of ICCAD
’01, 2001.

[20] R. Mishra, N. Rastogi, and D. Zhu. Energy aware scheduling for
distributed real-time systems. In Proc. of IPDPS ’03, 2003.

[21] J. W. Pratt. F. y. edgeworth and r. a. fisher on the efficiency of
maximum likelihood estimation. The Annals of Statistics, 1976.

[22] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. D. Micheli.
Dynamic voltage scaling for portable systems. In Proc. of DAC
’01, 2001.

[23] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementation. ACM TACO,
2004.

1011

