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a b s t r a c t

Peer-to-Peer (P2P) systems have been widely used by networked interactive applications
to relieve the drawback and reduce the reliance on well-provisioned servers. A core chal-
lenge is to provide consistency maintenance for a massive number of users in a P2P man-
ner. This requires propagating updates on time by only using the uplink bandwidth from
individual users instead of relying on dedicated servers. In this paper, we present a P2P sys-
tem called PPAct to provide consistency maintenance for large-scale fast-interactive appli-
cations. We use massive multi-player online games as example applications to illustrate
PPAct. The design can be directly applied to other interactive applications. We adopt the
Area-of-Interest (AOI) filtering method, which is proposed in prior works [1,2], to reduce
bandwidth consumption of update delivery. We solve the AOI’s critical problem of band-
width shortage in hot regions by dynamically balancing the workload of each region in a
distributed way. We separate the roles of view discovery from consistency maintenance
by assigning players as ‘‘region hosts’’ and ‘‘object holders.’’ A region host is responsible
for tracking objects and players within a region, and an object holder is responsible for
sending updates about an object to interested players. Lookup queries for view discovery
are processed by region hosts, while consistency maintenance of objects is taken by object
holders. Separating the roles not only alleviates the workload overflow in hot regions, but
also speeds up view discovery and update delivery. Another key idea is that peers contrib-
ute spare bandwidth in a fully distributed way to forwarding updates about objects of
interest. Thus popular, high-demand objects will have more peers forward updates. We
also present how to select capable and reliable players for region hosts and object holders.

A P2P network simulator is developed to evaluate PPAct on two major types of online
games: role-playing games (RPGs) and first-person shooter (FPS) games. The results dem-
onstrate that PPAct successfully supports 10,000 players in RPGs and 1500 players in FPS
games. PPAct outperforms SimMud [2] in RPGs and Donnybrook [3] in FPS games by 40%
and 30% higher successful update rates respectively.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Modern networked interactive applications, such as
online games [3], performance monitoring [4], and collabora-
tive editing [5,6], have moved from dedicated server designs
to P2P paradigms for better scalability and robustness. A core
challenge for P2P systems is to provide consistency mainte-
nance for all users by only using resources from these users.
. All rights reserved.
P2P managed massive multi-player online games
(MMOGs) are representative applications that have been
extensively studied [1–3]. Some online game platforms,
e.g., Microsoft XBox Live [7], have deployed their P2P ser-
vices for commercial use. P2P systems for managing
MMOGs have the following goals: (1) scalability to serve a
large number of players; (2) consistency support for
high-frequency interactions; (3) compatibility to different
types of games; (4) easy configurability by heterogeneous
players. Unfortunately, there is no existing P2P system that
achieves all these goals. In this paper, we design a P2P
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system, PPAct, that accomplishes all these goals supporting
large-scale fast-interactive applications. MMOG is used as
an example to illustrate how these goals are satisfied.

Insufficient uplink bandwidth. Online game applica-
tions require that each player should have a correct view
of game status. The views of all players should be consis-
tent. Thus, a player needs to get timely updates. In the
worst case, a player needs every update from all other
players to maintain consistency. The total number of up-
dates sent by players is quadratic to the total number of
players. However, the total supply of uplink bandwidth
used for update delivery increases only linearly with the
number of players. The asymmetric bandwidth allocation
is dominated by downlink and thus uplink bandwidth is
quite limited for normal players. The mismatch between
the supply and demand of uplink bandwidth is a major
obstacle to good scalability.

We adopt Area-of-Interest (AOI) filtering [1,2] to reduce
the number of updates sent to each player. The game map is
partitioned into regions, and each player receives updates
about surrounding regions. These regions are called view
regions. Each player subscribes to appropriate view regions
in real-time. However, the AOI filtering only alleviates
bandwidth shortage but does not solve it fundamentally.

We make additional bandwidth savings by reducing the
overhead of view region discovery. We organize all regions
into a two-dimensional DHT (2-D DHT) based on their hor-
izontal and vertical positions. As game mobility studies [8]
suggest, player movements are mostly continuous. A 2-D
DHT provides low-cost region discovery for continuous
movements. In addition, the frequency of receiving up-
dates from subscribed regions is tuned temporarily to off-
set the gap between the supply and demand of bandwidth
due to update bursts. Since new updates are sent out peri-
odically, players may ignore obsolete updates in favor of
newer ones.

Workload imbalance. The interests of players are usu-
ally clustered to a few regions according to the power law
distribution of player population density [9]. The players
who are responsible for sending updates about the hot
regions may not have enough bandwidth to deliver them
on time, which is called the AOI ‘‘hot spot’’ problem. A
straightforward solution is to adjust region size related to
popularity as in the previous works [10,1]. A popular
region is divided into several small regions while an
unpopular region is kept large. However, varying region
size complicates region partitioning in P2P systems. Play-
ers change interests as the game evolves, consequently,
locations and sizes of hot areas keep changing. It is hard
to correctly partition regions because all players should
be synchronized and provided with such frequently chang-
ing information. Another solution is migrating peers from
unpopular regions to popular regions to share the work-
load as in the previous work [11]. However, it is difficult
to correctly perform migration in dynamic P2P systems.
In PPAct, we use a uniform region size so that region par-
titioning information is easily maintained by every player.
In this paper, we use peers and players interchangeably,
both mean the users of a P2P system.

We solve the AOI ‘‘hot spot’’ problem by breaking down
the workload of each region. We separate the object
discovery from the object consistency maintenance by
assigning each region to a region-host and each object to
an object-holder. A region-host is a peer who tracks objects
inside a region and players who want to receive updates
about this region. An object-holder is a peer who holds
the primary copy of an object and sends out updates about
the object. All objects inside a region are registered to the
region-host by their object-holders. Thus, players only
query the region-host to subscribe to all objects within
that region.

We further break down the workload of update delivery
by having each player contribute spare bandwidth to sub-
scribed objects. This avoids overloading object holders of
popular objects. Since demand for receiving updates of an
object is determined by the number of object subscribers,
our scheme ensures that the objects with higher demands
have more players to contribute. Moreover, bandwidth is
contributed in a fully distributed manner as players piggy-
back bandwidth information onto their region discovery
queries without adding extra overhead.

From our observation, the workload of a region host is
more stable than that of an object holder. The number of
regions assigned to a region host varies by the region host’s
capacity. When assigning multiple regions to a peer, we
avoid assigning neighboring regions to the same peer so
the regions are less likely to have player crowds simulta-
neously. A region host should also be reliable since it is
the contact point for players and object holders. We devel-
op an analytical model for region host selection with both
capacity and reliability threshold requirements.

Incompatibility to various games. There are two types
of popular online games: action games and role-playing
games (RPGs). Each type has its distinctive features and
thus different application requirements. An action game
requires players to use quick reflexes, accuracy, and timing
to overcome obstacles. A popular sub-genre is called first
person shooter (FPS). Thus, an action game involves fre-
quent updates and imposes stringent latency bounds for
update delivery. Most RPGs cast the player in the role of
one or more ‘‘adventurers’’ who specialize in specific skill
sets and progress through a predetermined storyline. Com-
pared to FPS games, RPGs have lower update rates and
tolerate to longer update latency, but support a larger
number of players. RPGs have updates from a great num-
ber of Non-Player Characters (NPC) and player avatars,
unlike FPS games, which only have updates from player
avatars [12]. Existing techniques may address either game
type but overlook adaptability. For instance, Donnybrook
[3] works well for FPS games, but only scales up to 900
players and does not handle NPCs for RPGs. Another work,
SimMud [2], manages NPCs for RPGs, but can rarely meet
the latency bound of FPS games.

PPAct is the first P2P system designed to be compatible
for different types of games. The separation of region-hosts
from object holders not only speeds up update delivery but
also provides flexible consistency maintenance for both
avatars and NPCs. With all these fully distributed tech-
niques, PPAct satisfies the stringent update latency bound
of FPS games and provides good scalability for RPGs. Our
extensive simulations show that PPAct successfully sup-
ports 10,000 players in RPGs with successful update rate
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40% higher than that of SimMud [2], and 1500 players in
FPS games with successful update rate 30% higher than
that of Donnybrook [3]. The paper makes the following
contributions while designing the new PPAct system
for maintaining consistency in a large interactive
application.

(1) We decouple the roles of view discovery and consis-
tency maintenance to speed up lookup and update
delivery for the stringent latency requirements of
FPS games, and to flexibly support object consis-
tency maintenance for RPGs.

(2) We propose a scheme that balances the workload of
update delivery dynamically by having each player
contribute its spare bandwidth to its subscribed
objects. This solves the AOI’s problems of bandwidth
shortage in hot regions.

(3) We present schemes for selecting region hosts and
object holders with capability and reliability require-
ments.

(4) We develop a simulator to extensively evaluate the
performance of PPAct on two major types of online
games. The performance of our work is compared
with two recent P2P game systems: Donnybrook
[3] on FPS games and SimMud [2] on RPGs. The
major design factors are also verified through simu-
lation results.

The rest of the paper is organized as follows. Section 2
gives the background on consistency maintenance of on-
line games. Section 3 and Section 4 present PPAct tech-
niques for fulfilling our design goals. Section 5 shows
simulation results. Section 6 reviews prior work, and Sec-
tion 7 concludes the paper.
2. Background

In most MMOGs, each player plays a role in a virtual
world. Each player is represented in the game by an avatar.
A game includes both immutable and mutable objects.
Immutable objects (e.g., landscape) are downloaded by
game client software. Mutable objects are updated by
either players (e.g., avatars, food, tools) or automated algo-
rithms (e.g., NPCs). Every mutable object is represented by
its state. For example, an avatar’s state may include its po-
sition, health, possessions; a tool’s state may include its
position, shape or content. An NPC’s state is similar to an
avatar’s. The only difference is that each NPC is associated
with an automated algorithm for execution. The consis-
tency maintenance updates the game states of all mutable
objects correctly for every player. From here on, we use the
term ‘‘object’’ to mean a mutable object.

Client–server systems use the primary copy consistency
model for maintaining game state. The server maintains a
primary copy of every object in the game and periodically
sends updates to players. A game is implemented as a dis-
crete event loop. Each loop iteration is called a ‘‘frame.’’
The server broadcasts an update to every player by the
end of each frame. The update broadcast includes updates
from all mutable objects.
P2P systems follow the primary copy consistency model
in client–server systems. Each object has a primary copy
where all updates are serialized and sent out. However,
all primary copies that were originally maintained by serv-
ers are transferred to different players, who are responsible
for serializing and delivering updates every frame. Using
bandwidth and computation resources from players re-
lieves the reliance on game servers, which thus only do
external support, such as authentication. The challenge is
how to fully take advantage of the limited resources from
a large number of unreliable players to achieve better sca-
lability and robustness compared to a handful of resource
abundant and dedicated servers. This challenge motivates
the design of PPAct system.
3. Rendezvous enabled range query processing and
subscription

In this section, we first give an overview of how a player
obtains its view in PPAct. Then, we present the region par-
titioning scheme, and the update forwarding scheme. Fi-
nally, we present how to map regions to region hosts and
objects to object holders.
3.1. Overview

We apply AOI filtering to reduce bandwidth consump-
tion due to sending updates. AOI filtering takes advantage
of spatial locality of player interests. Thus, each player gets
a confined view in the game, which is an area centered at
its avatar’s current position with radius R, instead of the
entire game map.

The latency bound for acquiring a view is stringent. For
example, FPS games require that players’ views should be
synchronized every 150 ms [3]. This requires a player to re-
ceive updates about all objects in its view within every
150 ms. When a player is moving, its view changes accord-
ingly. Hence, the latency bound for receiving an update
covers two steps: view look-up and update delivery.

We separate the roles of view discovery from object
consistency maintenance by assigning region hosts and ob-
ject holders. A region host tracks both objects in a region
and players whose views include the region. An object
holder maintains the primary copy of an object and sends
updates about the object to subscriber players. Players
subscribe to all objects within their views for receiving up-
dates. The subscription is performed by sending lookup re-
quests to the region host, because dynamic movements of
objects make it difficult for individual players to track all
updates. After determining his subscribed regions, a player
discovers those region-hosts through contact. In PPAct, re-
gion hosts are organized into a two-dimensional DHT over-
lay based on regions’ horizontal and vertical positions.
Thus, players are provided with two-hop lookup for fre-
quent continuous movements and logarithmic lookup for
the seldom random movements.

To assist region-hosts in tracking objects, object holders
register objects with region hosts of their current regions.
Once an object moves out of a region’s boundary, the
holder unregisters from the previous region-host and
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registers with the new one. No real-time information, such
as object’s exact location, is involved in the registration.
There is no need to update information at the region-host
once an object is registered. Therefore, maintenance over-
head of registration is low.

In summary, there are three steps for a player to get a
view as shown in Fig. 1.

(1) Lookup. A player’s view is computed based on its
avatar’s current position, and a lookup query is sent
to the region host of each view region that has not
yet been subscribed. An unsubscription message is
sent to each region that has gone out of view but
previously subscribed.

(2) Subscription. Every region-host maintains a sub-
scription list, recording players who subscribed to
this region in the last frame. An unsubscription list
is maintained similarly. The two lists are sent to
each object-holder who has registered with this
region.

(3) Update delivery. After receiving the two lists, each
object-holder sends out updates to all subscribers
in every frame.

3.2. Region partitioning

The map of a game is partitioned into a set of disjoint
regions. A region can be any shape defined by a center
point and a radius. We choose circle regions with uniform
radius r. Fig. 2(a) shows an example of region partitioning.
The dotted circle represents a player’s view where the cen-
ter is its avatar’s position. A player’s view consists of seven
adjacent regions. In this way, each view region can be flex-
ibly subscribed when the player is moving and its view is
changing.

Region size is an important factor to the efficiency and
overhead of subscription, as the subscription is performed
in unit of a region. If a region is so large that it covers the
entire view, it is hard to accurately define the view. A range
query from each player to look up view regions is trans-
formed to a set of exact match queries, each of which lo-
cates a view region. Thus, large regions are too rough to
approximate the range query. Fig. 2(b) shows a region par-
titioning where three regions cover a player’s view. It is
possible that some objects are inside the three regions
but outside of the player’s view. They will be unnecessarily
included in the player’s range query which wastes network
resources. On the other hand, if a region is so small that a
Fig. 1. The procedure fo
view consists of dozens of regions, the excessive overhead
of query processing and object registration hand-off will
degrade performance.

Vague region boundary. We apply vague boundaries
between neighboring regions to reduce hand-off overhead
when objects are frequently moving back and forth across
boundaries. The shaded area in Fig. 2(a) shows the inter-
sections of neighboring regions. The shaded area is called
the ‘‘vague boundary’’ since there is no clear borderline be-
tween neighboring regions. An object-holder switches reg-
istration only when the object enters a new region and
moves out of the shaded area. Objects in the shaded area
delay switching registrations to avoid unnecessary hand-
offs. Such delayed switchings do not negatively affect the
results of range queries. The objects, which are excluded
from the query results because of vague boundaries, reside
at the border of the player’s view. They are less visible than
other closer objects that are returned in the results any-
way. Hence, the player will not notice the difference.
3.3. Update forwarding and burst handling

Limited uplink bandwidth and heterogeneous object
popularity give rise to the AOI ‘‘hot spot’’ problem [1,2],
where some object-holders are overloaded by an excessive
number of subscribers. Other object-holders with surplus
uplink bandwidth may only have a handful of subscribers
or perhaps none at all.

In PPAct, we balance workload by making subscribers
contribute their spare bandwidth to forwarding updates
to other subscribers. The procedure of update forwarding
is described as follows.

First, each subscriber attaches a forwarding quota to its
lookup query for each of its view region. A subscriber’s for-
warding quota is equal to its available bandwidth divided
by the size of an update, where the available bandwidth
is the total bandwidth subtracted by the bandwidth re-
served for serving as a region host if it is. The forwarding
quota indicates how many recipients a subscriber can for-
ward to under the one hop delay constraint. A frame in FPS
is no more than 150 ms and in RPG may be up to 180 ms
[13]. Within a frame, at most three steps – subscribing,
update delivering, and update forwarding should be com-
pleted. Thus, on average each step can use 1/3rd of the
time, and one hop delay is set to be 50 ms to satisfy both
categories. The measurement statistics of P2P online
games in [4] confirm the feasibility of this setting, where
more than 80% one hop delay is less than or equal to 50 ms.
r getting a view.
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Second, after a region host collects the forwarding quo-
ta from all subscribers of the region, it evenly distributes
the forwarding quota to every object holder in this region.
Thus, the subscription list that a region host sends to each
object holder in the region includes all subscribers and
their forwarding quota dedicated to the object.

Finally, after obtaining the subscription list, an object
holder selects a subset of subscribers as forwarders. It then
sends update to each forwarder with a forward list accord-
ing to each forwarder’s quota. The number of forwarders is
the maximum number of recipients the object holder can
send to under the one hop delay constraint. Subscribers
with larger forwarding quota are preferred when selecting
forwarders.

Each region host evenly distributes the forwarding quo-
ta among object holders because all objects in a region are
subscribed as a whole and each object holder needs the
same amount of bandwidth for sending updates.

When more peers subscribe to a region, more forward-
ing quota is contributed to sending updates about the re-
gion. Therefore, with the forwarding scheme, the amount
of bandwidth contribution is proportional to the demand
for sending updates. Moreover, our forwarding scheme
avoids sending updates to non-subscribers. We only use
one-hop forwarding due to the extended delay and unreli-
ability of multi-hop forwarding.

Temporary update bursts may congest region-hosts or
object-holders. PPAct provides a differentiated subscrip-
tion service to adjust bandwidth consumption when
needed. Differentiation is applied to the frequency of
receiving updates and the number of objects to be sub-
scribed. Specifically, when a region-host finds that updates
cannot be delivered to all subscribers on time, it halves the
update delivery by dividing the subscribers into two
groups and sends updates to each group every two frames.
Such tuning is only applied as a temporary solution and the
normal subscription is resumed immediately after bursts.

3.4. Mapping regions to region hosts

We select peers (i.e., players) to be candidate region
hosts by using the scheme presented in Section 4.2. Such
candidate region hosts form a DHT, called candidate host
DHT. Each candidate host in the DHT has an ID, called can-
didate ID. Each region also has an ID, called region ID. We
use its x and y coordinates as its region ID to preserve the
locality of neighboring regions in the 2D-DHT.

When a region (x; y) needs a host, a candidate host is se-
lected from the candidate host DHT by hashing the region
ID (x; y) into a candidate ID. The candidate host then be-
comes the host of the region (x; y) and uses the region ID
(x; y) to join the 2D-DHT. If this newly selected host still
has spare bandwidth satisfying the threshold requirement
defined in Section 4.2, it stays in the candidate host DHT.
Otherwise, it leaves the candidate host DHT.

A failed region host is replaced by a candidate host in-
stead of using the DHT failure handling in 2D-DHT to pre-
vent a host from maintaining multiple neighboring
regions. Hot regions are always clustered together and
can easily overload a host if they share the same host. With
new hosts selected from the candidate host DHT through
hashing, it is less possible for neighboring regions to share
the same host.

The maintenance overhead of the candidate host DHT is
low because only stable nodes join it, and no extra commu-
nication or computation is needed.
3.5. Mapping objects to object holders

Each object has an object ID, and each object holder has
a holder ID. All object holders form an object holder DHT.
Each object has a primary copy, which is maintained by
its object holder. Avatars and NPCs are treated differently.
The object holder of an avatar is its player since it is mostly
accessed by its player. The object holder of an NPC is se-
lected from the object holder DHT by hashing the object
ID. When an avatar’s holder (i.e., its player) fails, we do
nothing because the avatar is gone. When an NPC’s holder
fails, a new holder is selected according to the DHT failure
handling in the object holder DHT.

Maintenance overhead of the object holder DHT is low
because only stable peers join and no extra communication
or computation is needed. Using the object holder DHT to



Fig. 3. The procedure of selecting a region host and an object holder.

1736 Y. Hu et al. / Computer Networks 56 (2012) 1731–1744
store object information takes advantage of DHT data rep-
lication and failure handling to ensure availability of NPCs.

We use an uptime threshold to select reliable peers as
object holders, which form the object holder DHT. We
use the update forwarding scheme (as described in Section
3.3) to prevent a holder from being overloaded by sending
updates about the objects it holds.

3.6. Summary of region hosts and object holders

Table 1 summarizes the features of region hosts and ob-
ject holders.

Fig. 3 shows the procedure for selecting players to be
region hosts or object holders. We first assign each player
as the object holder of its avatar. Then, we examine each
player using the region host selection scheme presented
in Section 4. If it has passed the selection threshold, it be-
comes a region host. Whether it is a region-host or not, a
player becomes an object holder of NPC when it is identi-
fied as stable and has spare bandwidth. We use an uptime
threshold to identify a stable player. If the uptime of a
player is above the threshold, the player is identified to
be stable; otherwise, it is unstable. The threshold for object
holders is set to rule out the short-live unstable players. If a
player leaves the DHT only a short time after joining, fail-
ure recovery overhead will outweigh its service. In simula-
tion, we set the threshold for object holders to 10 min
based on the churn studies in [14,15].
4. Region-host organization and selection

In this section, we introduce how to organize regions
into a 2-D DHT and how to route lookup queries. We then
analytically model the region host selection with both reli-
ability and capability threshold requirements.

4.1. Region host DHT

Regions are organized into a multi-dimensional DHT
that we use to process real-time lookup queries, where
the number of dimensions in the DHT equals to the num-
ber of dimensions in the query attribute. As PPAct works
on two-dimensional geographic queries, we organize re-
gions into a two-dimensional DHT (2D-DHT) with two
groups of DHTs, Gx and Gy. Gx is the group of DHTs built
on x-axis, and Gy is the group of DHTs built on y-axis. Each
DHT in Gx(/Gy) is built on a set of regions that share the
same y(/x) coordinates. A region (x0; y0) is included in
two DHTs, one DHTx 2 Gx with y ¼ y0 and the other
DHTy 2 Gy with x ¼ x0. Therefore, each region-host has
two routing tables: one is built for x-axis (DHTx) and the
other is for y-axis (DHTy).
Table 1
A summary of region hosts and object holders.

Region hosts

Major functions Track objects and players in a region
Workload balance Threshold selection region assignment
Failure handling Replaced by a new host from the candidate
Our 2D-DHT design provides fast lookups for players.
This is because a region host has leaf sets of DHTx and
DHTy including all its neighboring regions along either
axis. In addition, the movements of players and objects in
a game are mostly continuous. Thus, relying on the last-
time contacted region host, a lookup takes 2-hops for mov-
ing vertically or horizontally and 3-hops for moving diago-
nally. The worst-case logarithmic-hop lookup is only
performed for rare non-continuous movement.

Graphically, DHTx is built on a row of regions with the
same y coordinate as the owner’s region and DHTy is built
on a column of regions similarly. As shown in Fig. 4, rout-
ing from a source region A to a destination region B follows
a horizontal route in DHTx of A to a region C with yC ¼ yA

and xC ¼ xB, then a vertical route in DHTy of C to B.
The routing principles in 2D-DHT are the same as in the

original DHT. We choose a representative DHT overlay –
Pastry [16] as the routing substrate in PPAct. Pastry is
widely used, for example, PAST [17] and SCRIBE [18] are
built on top of Pastry. The routing in a 2D-DHT consists
of two continuous routes, one from a DHTx 2 Gx and the
other from a DHTy 2 Gy. An example is shown in Fig. 5,
routing from the source region at (350,479) to the destina-
tion region at (813,648). Given a total of N �M regions, a
DHTx 2 Gx is built on N region and a DHTy 2 Gy is built on
M regions. In the worst case, a route to any region takes
logðNÞ þ logðMÞ ¼ logðN �MÞ hops. The total number of
hops is the same as original DHT routing, independent of
the number of dimensions.
4.2. Analysis of region-host selections

A sufficient level of DHT performance is ensured by
maintaining overlay connectivity. This requires that each
DHT node should periodically probe other nodes, perform
content replication, and execute failure recovery when nec-
essary. Reliable DHT nodes reduce maintenance overhead. If
a region host only serves a short time before leaving, failure
recovery overhead outweighs its service contribution. In
Object holders

Maintain object consistency and send updates
Subscribers help forward updates

host DHT Follow the DHT failure handling



Fig. 4. Routing from region host A to region host B.

Fig. 5. An example of PPAct routing.
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addition, a region host should have enough bandwidth to
send subscription lists to object holders on time.

We propose a distributed scheme to select the most sta-
ble peers with adequate bandwidth to be region hosts. We
focus on selecting peers as candidate region hosts, which
form a candidate host DHT (called R-DHT). These candidate
region hosts (i.e., R-DHT nodes) are mapped to regions
through hashing and join the 2D-DHT as described in Sec-
tion 3.4.

To estimate the number of qualified region hosts, we
first analyze the distribution of peers’ reliability and capa-
bility. Then, we set an appropriate threshold for selection.

We consider a system with n players in steady-state.
Each node switches between two states: ON when the
node gets online during its uptime and OFF when the node
goes offline during its downtime. A node’s uptime is the
time interval between joining and leaving. Its downtime
is the time interval from departure to re-joining. Uð�Þ is
the cumulative distribution function (CDF) of the node up-
time, and �u is the average uptime. Dð�Þ is the CDF of the
node downtime, and �d is the average downtime. A node’s
availability a is measured by the probability that a node
is in the ON state, a ¼ �u

�uþ�d
. The expected number of nodes

in the ON state is an.
We first examine nodes with expected uptime above T.

The information about the node uptime can be obtained
either by sampling or by prediction techniques [19,20].
Let n0 be the number of nodes above the threshold T and
in their uptime, n0 6 n. q ¼ n0

an represents the ratio of such
nodes, 0 < q 6 1. U0ð�Þ; D0ð�Þ; �u0; �d0 and a0 represent the
counterpart attributes of the nodes with expected uptime
above T as Uð�Þ; Dð�Þ; �u; �d and a of all nodes, respectively.
Our analysis assumes a node maintains logðn0Þ overlay con-
nections which is the same as with the general DHT.

Measurement results [21,22] demonstrate that node
uptime is well modeled by a long-tailed distribution. We
adopt a shifted Pareto distribution to depict the indepen-
dence of node uptime as [23]. The probability density func-
tion (PDF) of node uptime uðtÞ is shown in Eq. (1), where
a > 1; b > 0

uðtÞ ¼ a
b

1þ t
b

� ��ðaþ1Þ

ð1Þ

And the CDF of the node uptime UðtÞ is shown in Eq. (2),
where a > 1; b > 0

UðtÞ ¼ 1� 1þ t
b

� ��a

ð2Þ

The smaller value of a means a stabler system with
longer node uptime. The PDF of selected R-DHT node up-
time u0ðtÞ is derived in Eq. (3)

u0ðtÞ ¼
0 t < T

uðtÞR1
t¼T

uðtÞdt
¼ ð1þ T

b Þ
auðtÞ t P T

(
ð3Þ

And the CDF of the selected R-DHT node uptime U0ðtÞ is
derived in Eq. (4)

U0ðtÞ ¼
0 t < T
UðtÞ�UðTÞR1

t¼T
uðtÞdt

¼ ð1þ T
b Þ

aðUðtÞ � UðTÞÞ t P T

(
ð4Þ

The stability of the selected R-DHT nodes is measured
by their average uptime �u0 derived in Eq. (5)

�u0 ¼
Z 1

t¼T
t � u0ðtÞdt ¼ bþ aT

a� 1
ð5Þ

The higher the threshold T, the better the system stability
�u0. This system stability determines the frequency of main-
tenance probing and thus the expected overhead.

To calculate the ratio of selected R-DHT nodes over all
nodes, we compute the values of n0 and q as a function of
the selection threshold T. According to Little’s Law, the
average number of nodes in a stable system equals their
average arrival rate multiplied by their average uptime in
the system. Applying to all nodes in the ON state, we get
an ¼ k�u, where k is the average arrival rates of nodes to
the ON state. Applying Little’s Law to the selected R-DHT
nodes in the ON State, we get n0 ¼ kð1� UðTÞÞ�u0. Substitut-
ing the variables an; n0; UðTÞ and using �u ¼

R1
t¼0 t � uðtÞdt ¼

b
a�1, the percentage of selected R-DHT nodes q is derived in
Eq. (6), which estimates how many players are qualified for
the threshold T

q ¼ n0

an
¼ 1þ T

b

� ��a

1þ a
b

T
� �

ð6Þ

Next, we examine nodes with bandwidth capacity
above a threshold B. The bandwidth consumption of a re-
gion-host comes from three aspects: R-DHT maintenance



1738 Y. Hu et al. / Computer Networks 56 (2012) 1731–1744
workload B1, bandwidth reserved as the object-holder of
its avatar B2, and bandwidth reserved as a region-host B3.
B ¼ B1 þ B2 þ B3. PPAct sets probe frequency to be once
per average R-DHT node uptime, so that B1 ¼ 1

�u0 logðn0Þpm,
where pm is maintenance packet size, and logðn0Þ is the
number of overlay connections a R-DHT node maintains.
B2 changes with the number of subscribers to the object,
and B3 changes with the number of objects in the region.
According to the traffic analysis in Fig. 14, B2 and B3 are
empirically set to be 500 Kb and 1 Mb to satisfy basic de-
mand. Update forwarding and burst handling help deal
with the dynamic workloads.

The ratio of nodes qualified for the bandwidth capacity
threshold B is denoted as l. We analyze l with capacity
threshold B in the same way as we analyze q with the reli-
ability threshold T. The heterogeneous P2P node capacity is
modeled by a bounded Pareto distribution with lower
bound L and upper bound H, representing the diverse
bandwidth from dial-up modem connections to cable con-
nections. The PDF of the node capacity f ðxÞ is shown in Eq.
(7), where a node capacity is between upper and lower
bounds L 6 x 6 H, and the shape parameter is c (c > 0)

f ðxÞ ¼ cLcx�c�1

1� ðL
H Þ

c ð7Þ

The CDF of the node capacity FðxÞ is shown in Eq. (8)

FðxÞ ¼ 1� Lcx�c

1� ðL
H Þ

c ð8Þ

Given there are total n nodes with bounded distribution
from L to H, the number of nodes ranging from threshold B
to H is ðFðHÞ � FðBÞÞn. Hence, the percentage l of nodes se-
lected with capacity threshold B is in Eq. (9)

l ¼ ðFðHÞ � FðBÞÞn
n

¼
ðLB Þ

c � ðL
H Þ

c

1� ðL
H Þ

c ð9Þ

Finally, the number of R-DHT nodes qualified for both
thresholds is n � q � l. Given the total N regions, PPAct sets
the reliability threshold T� as in Eq. (10) to get the best reli-
ability constrained by that the total region-host bandwidth
reservation from all selected nodes is sufficient to serve all
regions. The average bandwidth capacity of the selected
nodes is given by �b0 ¼

R H
x¼B x � f ðxÞdx

T� ¼ arg max T s:t: nqlð�b0 � B1 � B2ÞP N � B3 ð10Þ
Table 2
A summary of game traces.

Trace Counter Strike Shenzhou Online

Date April 11, 2002 August 29, 2004
Start time 08:55 15:00
Period 7 days, 6 h, 1 m 20 h
Established connections 16,030 112,369
Total packets 500 M 1356 M
Mean payload size 32 bytes 32 bytes
Mean packet size 87 bytes 84 bytes
5. Performance evaluation

5.1. Experimental methodology

We developed a simulator to evaluate the efficiency of
PPAct in FPS games and RPGs.

Game settings. Two game workload generators are
developed: one for FPS games and the other for RPGs.
Game traffic characteristics are based on trace data of
Counter Strike [24] for FPS games and ShenZhou Online
games [12] for RPGs, as summarized in Table 2. The actions
of the players and their movements in FPS games are based
on the networked game mobility model [8], which simu-
lates the real FPS player behaviors. Those in RPGs are ex-
tracted from the trace ShenZhou Online games in [12],
including both player-to-player and player-to-object inter-
actions. The map simulated for FPS games takes an average
peer 5 � 103 s to walk from one end to the other, and that
for RPGs takes an average of 5 � 104 s. The map is parti-
tioned into 10 � 10 regions in FPS games and 100 � 100 re-
gions in RPGs by default. These default values were
selected after careful evaluation of the impact of region
size on performance, given in Section 5.2.

Network model. Each player is on an individual ma-
chine in a simulated network, representing a general Inter-
net player experience. We adopt the widely used statistics
of the player bandwidth capacity collected at US Broad-
band report [25]. The upload capacity of game players is
shown in Fig. 6, which is well approximated by a Pareto
distribution with a range from 256 Kb/s to 10 Mb/s. We
simulate wide geographic areas where players come from.
The inter-player round-trip time (RTT) in an n-player game
is simulated by drawing n nodes from the Xbox 360 player
data set [26] that is spread over the Western United States.
The mean, median, and standard deviation of inter-player
RTT of this data set are 81 ms, 64 ms, and 63 ms. Vivaldi
3D coordination system [27] is used to extrapolate the
RTT values between pairs of players who did not probe
each other in the data set. We use a two-state Gilbert mod-
el [28], which models packet loss property of Internet
paths, setting loss rate to 1% and mean loss burst time to
100 ms.

Performance metric. We mainly use three metrics to
measure performance of PPAct in maintaining consistency
for real-time games. The successful action rate is the ratio of
the number of actions completed over the total number of
actions issued by players. An action refers to an update
that a player issued on an object. An action is completed
when the update is successfully received by the object
holder on time. The successful subscription rate is the ratio
of the number of subscriptions received by object holders
over the total number of subscriptions requested by play-
ers. A subscription refers to completion of step 1 and step
2 in Fig. 1. A player requests a subscription to each object
in its view. The successful update rate is the ratio of the
number of updates received by subscribers over the total
number of updates sent out by object holders. An update
refers to the completion of step 3 in Fig. 1. We use 150-
ms deadline for FPS games and 180-ms for RPGs according
to [13]. Each result shown in the figures is the average of
50 rounds of simulations, and each round executes
5 � 103 s.
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Fig. 7. Successful action rates in FPS games. Error bars show 95%
confidence intervals.
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Fig. 8. Successful update rates in FPS games. Error bars show 95%
confidence intervals.
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Fig. 9. Successful subscription rates in FPS games. Error bars show 95%
confidence intervals.

Fig. 10. Subscription hop counts in PPAct.
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5.2. Evaluation results

Scalability for FPS games. We evaluate PPAct for FPS
games compared to Donnybrook [3], which is a seminal
work on P2P managed FPS games. The successful rates of
actions, updates and subscriptions are shown in Figs. 7–
9. PPAct outperforms Donnybrook in all three metrics. An
important reason is that Donnybrook requires every player
to broadcast a guidance message to every other player each
second. Getting rid of the broadcast overhead, PPAct saves
more bandwidth for delivering updates, actions and
subscriptions. Since the broadcast overhead grows expo-
nentially when the number of players increases, PPAct
has more advantages over Donnybrook when the system
becomes larger.

Comparing results in Figs. 7–9, the successful subscrip-
tion rate is the lowest of the three. This is because every
time a subscription is sent to a different region host, while
actions and updates are sent to the same object holders or
subscribers until a subscription is changed. Thus, complet-
ing a subscription incurs an extra lookup delay over
completing an action or an update. The subscription per-
formance is still acceptable because of the constant hop
lookup supported by both PPAct and Donnybrook. A Don-
nybrook subscription takes one hop because the broadcast
lets every node know all others. Most PPAct subscriptions
take 2 or 3 hops as shown in Fig. 10. Since players move
continuously most of the times, a new region is adjacent
to the previously subscribed one. Such a subscription takes
2 hops in 2D-DHT. The 3 or 4 hops are caused by node
churn, for another hop is taken to contact the new host.
PPAct achieves higher successful subscription rates than
Donnybrook under node churn because of overwhelming
broadcast overhead in Donnybrook.

To maintain high success rates of actions and updates,
we choose a larger subscription area than the player’s
view. As a result, when a player moves, most of the new
view regions intersect with previously subscribed regions.
This masks subscription delay.

Scalability for RPGs. Since Donnybrook does not sup-
port NPCs in RPGs, we compare with SimMud [2], a pio-
neering work on P2P managed RPGs. Both PPAct and
SimMud use region partitioning techniques and DHT rout-
ing. By default, the number of NPCs is 104. Figs. 11–13
show that PPAct achieves significantly better results than
SimMud by all three metrics. This is because every Sim-
Mud region host must be the object holder for all objects
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Fig. 11. Successful action rates in RPGs. Error bars show 95% confidence
intervals.
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Fig. 14. PPAct traffic analysis.
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in that region, which may be overloaded easily. PPAct sep-
arates the workload of region hosts from object holders to
avoid overloading. In addition, PPAct selects reliable and
capable players to be region hosts as modeled in Section
4.2, while SimMud randomly selects players to be region
hosts. As a result, the 2D-DHT in PPAct is more robust
and efficient than the DHT in SimMud. As shown in
Fig. 13, SimMud incurs a longer subscription delay than
PPAct. This is because SimMud organizes all players into
one DHT, and a subscription takes logarithmic hops.

PPAct supports RPGs with both successful action rate
and update rate above 98% up to 104 players. To our knowl-
edge, it is the first one to support P2P managed online
games with tens of thousands players.

Impacts of population density. Comparing the results
in Figs. 8 and 12, the scalability of PPAct is ten times more
in RPGs than in FPS games. This is because the density of
players in a region is one tenth in RPGs than in FPS games,
but the region size is the same in both. The map in RPGs is
100 times larger than that in FPS games and the number of
regions in RPGs is also 100 times more than that of FPS
games. When the player population grows 10 times with
game map increasing 100 times, the population density be-
comes 1/10. The reduced population density results in re-
duced update delivery overhead, which dominates overall
traffic in PPAct as shown in Fig. 14. Increased scalability
in PPAct is also a result of our dynamic workload balance
scheme. When serving the same 1000 players, the perfor-
mance of SimMud in RPGs as shown in Fig. 12 is still lower
than that of PPAct in FPS games as shown in Fig. 8, because
SimMud does not handle the AOI ‘‘hot spot’’ problem. Thus,
addressing clustered workload of hot regions is critical to
scalability.

Impacts of region size. Generally, there are trade-offs
in using large regions or small regions. Large regions speed
up lookup and reduce query processing overhead, as fewer
regions cover the same view and fewer region hosts are
queried. However, large regions reduce granularity and
accuracy of range query processing. Oversized regions
either waste resources for processing extra areas or pro-
vide insufficient views. Oversized regions also increase
workload imbalance, since hot areas are covered by a fewer
number of regions. To the contrary, small regions lower the
workload of each region for better workload balance. A
host may choose to take charge of several small regions
that are unlikely to have simultaneous workload crowds.
Whereas, small regions incur higher lookup overhead and
object hand-off overhead (i.e., the overhead incurred by
switching registration among regions when an object
moves) because objects move across regions more
frequently.

We evaluate the impact of region size by partitioning
the RPG map into 40 � 40; 50 � 50, and so on up to
300 � 300 regions. The results are shown in Figs. 15–17.
Subscription rate in Fig. 17 improves when the number
of regions increases from 40 � 40 to 100 � 100, and de-
grades with further increases. The improvement comes
from the decreased population density with smaller region
size, while further reducing region size imposes excessive
subscription overhead when players move. However, the
degradation is only reflected in successful subscription
rate. The successful action rate and update rate are



Fig. 15. Successful action rates in RPGs with various scales of regions.
Error bars show 95% confidence intervals. Fig. 16. Successful update rates in RPGs with various scales of regions.

Error bars show 95% confidence intervals.

Fig. 17. Successful subscription rates in RPGs with various scales of
regions. Error bars show 95% confidence intervals.
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maintained high as in Figs. 15 and 16. Since subscription
overhead in PPAct is only a minor part of overall traffic
as shown in Fig. 14, we choose the size of 100 � 100 regions
as the default region size in our simulations.

Impacts of object number. We evaluate the impact of
number of mutable objects by increasing the number of
NPCs from 104 to 105 in RPGs with 104 players. The results
in Figs. 18–20 show that the performance of PPAct de-
grades only slightly while increasing the number of NPCs.
This is because update delivery overhead is mainly affected
by the number of receivers for each update not the number
of mutable objects. The number of receivers per each up-
date is reflected by the population density. Therefore, even
with an increased number of NPCs the overall traffic is in
the same order when the population density is kept the
same.

Impacts of churn. According to churn studies in differ-
ent P2P applications [14], we model the inter arrival time
of players by a Weibull distribution with shape parameter
k ¼ 0:6. We vary the scale parameter to simulate the aver-
age leave rate ranging from 10% to 50%. Results under dif-
ferent churn rates do not have presentable differences, so
we do not show them separately. All our results are mea-
sured under an average leave rate of 25%. PPAct performs
robustly against node churn because we select reliable
players as region hosts. We also observe that short lives
of other players do not have noticeable negative effect on
overall performance.
Fig. 18. Successful action rates in RPGs with various scales of objects.
Error bars show 95% confidence intervals.
6. Related work

6.1. P2P managed online game systems

In the literature, two major techniques are proposed to
reduce bandwidth consumption of update delivery. One is
Area-of-Interest (AOI) filtering [1,2], where updates about
an object is only sent to the players within the same region
as the object. This method works well when players have
limited proximity to each other, but does not help when
players are clustered in a few regions, which is unavoid-
able due to the power law distribution of the player



Fig. 19. Successful update rates in RPGs with various scales of objects.
Error bars show 95% confidence intervals.

Fig. 20. Successful subscription rates in RPGs with various scales of
objects. Error bars show 95% confidence intervals.
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population density [9]. As a result, demand in such hot re-
gions still grows quadratically, and AOI filtering does not
fundamentally solve the bandwidth shortage problem. An-
other technique is proposed in Donnybrook [3], which lim-
its each player to receive only a constant number of real-
time updates. The bandwidth consumption of sending
real-time updates is then linearly proportional to the num-
ber of players. Since every player still has to be aware of
the status of all the others, each Donnybrook player is re-
quired to broadcast less frequent guidance messages.
Therefore, total bandwidth consumption in Donnybrook
remains asymptotically quadratic to the total number of
players.

We follow the AOI filtering but solves its ‘‘hot spot’’
problem by having players contribute their spare band-
width to update delivery in a distributed way. We also take
advantage of players’ movement patterns to build a 2-D
DHT for reducing the lookup overhead and delay. Thus,
more bandwidth is saved for sending out updates on time.
For better workload distribution, we decouple view dis-
covery and update delivery. The Colyseus system [1] also
decoupled object discovery and replica synchronization,
but they assumed objects were properly placed with min-
imal interactive latency without any specific methods. We
present efficient object placement schemes, peer selection
schemes, and failure recovery processes.
6.2. Load balance on P2P networks

Data replication and load redistribution are two major
solutions to the imbalance workload problem in P2P net-
works. Workload imbalance is due to skewed data popu-
larity and heterogeneous peer capability. Data replication
alleviates overloaded nodes by providing extra targets for
incoming requests [29–32]. Data migration requires actual
data transfers between nodes to balance workload, which
has two major forms: data item exchange and node migra-
tion. Optimal load balance requires both item exchanges
between neighbor nodes and global node migrations [33].
Some P2P systems use topology adjustment to balance
workload. A node in the Mercury system [11] uses sam-
pling to estimate other nodes’ workloads and adjusts its
long link connections for load balance. The authors in
[34] propose that each node tunes its routing table size
to balance query workload and avoid congestion. These
methods focus on static traffic, while PPAct addresses load
balance for dynamic traffic and avoids data transfers or
node migrations.

To balance workload for update delivery, Donnybrook
[3] also has each player advertise its spare bandwidth to
forward updates. However, in Donnybrook [3] each player
must broadcast its spare bandwidth, which requires global
knowledge of all players and strictly limits system
scalability.
6.3. P2P systems support for range queries

Distributed Hash Table (DHT) provides a scalable and
robust substrate to build structured P2P systems. However,
DHT only supports exact-match queries because the uni-
form hashing of DHT destroys data locality required by
the range query processing. Existing P2P index techniques
to support range queries fall into two categories: (1) DHT-
preserved indexing, which maintains the original DHT and
builds an overlay index-structure on top of the DHT (e.g.,
Prefix Hash Trie (PHT) [35], multi-dimensional Lightweight
Hash Tree (mLIGHT) [36], Distributed Segment Tree (DST)
[37] and Range Search Tree (RST) [38]); (2) DHT-modified
indexing, which modifies the internal structure of DHT
and develops certain locality-preserved overlay (e.g., the
multi-ring structure in Mercury [11], the space kd-tree in-
dex in SkipIndex [39]). However, all these methods are
inadequate to support real-time range queries, where the
answer is time related and the object attribute is changing
dynamically. Every change of an object’s attribute value
leads to changes on PHT or object movements from one
node to another. This results in cascading changes and re-
quires re-running load balance algorithms. PPAct success-
fully enhances the DHT structure to support real-time
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range queries by properly partitioning regions and making
a region as the unit of range index.

7. Conclusion

In this paper, we proposed a P2P system called PPAct to
provide consistency maintenance for large-scale fast-inter-
active applications. We presented the design and evalua-
tion of PPAct by taking massive multi-player online
games as example applications. Our work focused on three
major problems of consistency maintenance: insufficient
uplink bandwidth for the update delivery, workload imbal-
ance among players, and incompatibility for various types
of games.

We adopted the AOI filtering method to reduce band-
width consumption of update delivery and made players
contribute their spare bandwidth in a distributed way to
solve the AOI ‘‘hot spot’’ problem. We separated the roles
of view discovery and consistency maintenance by assign-
ing peers as region hosts and object holders. This speeds up
the players lookup and reduces the delay of update deliv-
ery to meet the stringent latency requirement of FPS
games. Meanwhile, this separation also flexibly handles
the object consistency maintenance for RPGs.

We conducted extensive simulations to evaluate the
performance of PPAct on two types of popular online
games: FPS games and RPGs. The performance of PPAct is
compared with Donnybrook [3] on FPS games. Results
show that PPAct scales well to support 1500 players with
a success update rate 30% higher than that of Donnybrook.
The performance of PPAct is compared with SimMud [2] on
PRGs. Results show that PPAct scales well to support
10,000 players with a success update rate 40% higher than
that of SimMud.
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