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Storage Side Channel Attacks in 
Modern OS and Networking Stacks 
--- How to break isolation in OS? 



2 

Outline 

 Background and methodology 

 Android UI state inference 

 Off-path TCP sequence number inference  

Firewall-middlebox-enabled attacks  

H ost-based attacks 

 Summary 
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Outline 

 Background and methodology 

 Android UI state inference 

 Off-path TCP sequence number inference  

Firewall-middlebox-enabled attacks 

Host-based attacks 

 Summary 
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Side channels - Real world example 
Mafia game 
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Another example 

Anyone at home? 
??? 



OS Security Mechanism -- Isolation 

 Memory isolation 
 



OS Security Mechanism -- Isolation 

 File system isolation 
 

/home 

/home/alice /home/bob 

drwx------ alice drwx------ bob 



OS Security Mechanism -- Isolation 

 Android File system isolation 
 

/data 

/data/app1 /data/app2 

drwx------ app1 drwx------ app2 



OS Security Mechanism -- Isolation 

 Exceptions 
/proc/[pid]/statm 
/proc/net/netstat 
Etc. 



Breaking Isolation through Side 
Channel Attacks 

Anyone at home? 
??? 
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What is a side channel attack? 

 Information gained from the physical implementation of 
a cryptosystem, rather than brute force or theoretical 
weaknesses [1]  
 Timing, Power monitoring, Acoustic, Electromagnetic, etc. 

 Used as early as World War II. 

 

 

[1] TEMPEST: A Signal Problem. Journal of Cryptologic Spectrum 1972 
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Modern side channel attacks 

 Information gained from the physical design and 
implementation of a cryptosystem, rather than brute 
force or theoretical weaknesses 

 Keystrokes (e.g., password) inference 
[Song01,Zhang09,Vuagnoux09,Chen10] 

 Timing, IPID, Power, Electromagnetic waves 

 Crypto key extraction through VM co-residency 
[Zhang12]  
 CPU cache 

 

 

 

Clear input/output Passive 
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Timing vs. Storage side channels 

 Password authentication 
for(i = 0; i < len; i++)  { 

if(input[i] != password[i]) { 

    failed = true; 

    break; 

} 

} 
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Timing vs. Storage side channels 

 Memory allocation 
secret_func() { 

    malloc(1000KB); 

    // … computation 

    malloc(1000KB); 

    // … computation 

    malloc(1000KB); 

    // … computation 

} 
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Research contributions 

 Uncover a new class of storage side channel 
attacks against OS and networking stacks 
 

 Real-world security impact caused by OS design, 
firewall middleboxes and network stacks 

 

 Google 

 Linux kernel 

 FreeBSD kernel 

 … 
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Research methodology 

 
 

Measurement-based 
characterization 

Identification of sensitive state 

Identification of side channels 

Attack defense 

UI State 

Known side-channels  
Source code analysis 

Reverse engineering 
Source code analysis 

Android GUI 
framework 

OS component, Network policy, protocol behavior 

Secret 

Secret and side channels 

Attack discovery 

Vulnerability 

Principle-driven 
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Outline 

 Background and methodology 

 Android UI state inference  

    [USENIX SECURITY 14] 

 Off-path TCP sequence number inference  

Firewall-middlebox-enabled attacks  

H ost-based attacks 

 Summary 



Importance of GUI Security 

 GUI content confidentiality and integrity are 
critical for end-to-end security 

 UI Spoofing in desktop/browsers1 

 Screenshot capture on Android without privilege2 
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1Chen, 
Oakland’07 

2ScreenMilker, 
NDSS’14 



Android OS 

 App no root privilege 

 App can request limited permissions (users 
have to agree) 

 Apps isolated from each other 
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Android Security Mechanism -- Isolation 

 Memory isolation 
 



Android Security Mechanism -- Isolation 

 File system isolation 
 

/data/data 

/data/data/

app1 

/data/data/

app2 

drwx------ app1 drwx------ app2 



22 

Another Form of GUI Confidentiality Breach 

 A weaker form 

UI state an app is in (e.g., login state) without 
knowing the exact pixels of the screen 
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Use UI state info  
for best timing 

Serious security implications! 



Tracking UI state! 

Enabled Attack: UI State Hijacking 

 Hijack sensitive UI state to steal private input 
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Foreground: Background: 

UI State 
1 

UI State 
2 

UI State 
3 

Wait for Login UI 
state 

Inject the phishing 
Login UI state! 

Exploit UI 
preemption 

No glitches as we 
disable the animation 

+ precise attack 

timing 

Steal user name 
and password! 



UI State Hijacking Attack Demo 
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 Video demo: UI state hijacking attack steals 
your password in H&R Block app 



Camera Peeking Attack Demo 
25 

 



UI State Leakage is Dangerous 

 Lead to both GUI integrity and 
confidentiality breaches 

 UI state information is not protected well 

 An unprivileged application can track 
another app’s UI states in real time 
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UI State Inference Attack 

 UI state: a mostly consistent UI at window 
level for certain functionality (e.g., log-in) 

On Android: Activity (full-screen window) 

 Also called Activity inference attack 

 An unprivileged app can infer the foreground 
Activity in real time 

 Requires no permission 
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Underlying Causes 

 Android GUI framework design leaks UI 
state changes through a publicly-accessible 
side channel 

 A newly-discovered shared-memory side channel 

 Affects nearly all popular OSes 
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A single bit  
of information 

Attack General Steps 
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Activity 
transition 
detection 

Activity 
inference 

UI state 
hijacking 

Newly-discovered 
Shared-memory  

side channel 

Other side channels 
(e.g., CPU, network 

activity) 

UI state based attacks: 

Camera 
peeking 



Shared-Memory Side Channel 

 Finding: shared virtual memory size changes 
are correlated with Android window events 
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Shared virtual 

memory size in 

public file 

/proc/pid/statm 

Proportional 

to window 

size 

Window 

pop-up 

Window 

close 



Shared-Memory Side Channel 

 Root cause for this correlation 

Window manager design in Android 
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For better UI drawing 

performance, Android uses 

shared memory as IPC 

The changed size is the 

off-screen buffer size 
The root cause is 

here 

Confirmed that shared memory is used in GUI 

design for many OSes, including 

 

 

 



Activity Transition Detection 

 Detect shared-memory size change pattern 

Nice properties: 
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Clean channel  

Unique patterns 

Fixed 
(Full screen) 

Buffer 
allocation for 

the new 
Activity 

Buffer 
deallocation for 

the previous 
Activity 

+ 

+ 



Activity Signature Design 
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Content 
Provider 
feature 

Network 
event 

feature 

Input 
method 
feature 

CPU utilization time feature 

• Consists of various features 

Activity 1 Activity 2 



Evaluation Methodology 

 Implementation: ~ 2300 lines of C++ code 
compiled with Android NDK 

 Data collection: using automated Activity 
transition tool on Samsung Galaxy S3 devices 
with Android 4.2 

 Experimented on 7 popular Android apps: 

36 



Evaluation Results 

 Activity transition detection, for all apps 
 Detection accuracy ≥ 96.5% 

 FP and FN rates both ≤ 4% 

 Activity inference accuracy 
  80–90% for 6 out of 7 popular apps 

 Important features: CPU, network, transition model 

 Inference computation & delay 
 Inference computation time: ≤ 10 ms 

 Delay (Activity transition  inference result): ≤ 1.3 sec 
 Improved to ≤ 500 ms for faster and more seamless Activity hijacking 

 Power overhead 
 2.2–6.0% 

 Status 
 Working with Google now to fix the problem 
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