
Zhiyun Qian

University of California, Riverside

1

Storage Side Channel Attacks in
Modern OS and Networking Stacks
--- How to break isolation in OS?

2

Outline

 Background and methodology

 Android UI state inference

 Off-path TCP sequence number inference

Firewall-middlebox-enabled attacks

H ost-based attacks

 Summary

3

Outline

 Background and methodology

 Android UI state inference

 Off-path TCP sequence number inference

Firewall-middlebox-enabled attacks

Host-based attacks

 Summary

4

Side channels - Real world example
Mafia game

5

Another example

Anyone at home?
???

OS Security Mechanism -- Isolation

 Memory isolation

OS Security Mechanism -- Isolation

 File system isolation

/home

/home/alice /home/bob

drwx------ alice drwx------ bob

OS Security Mechanism -- Isolation

 Android File system isolation

/data

/data/app1 /data/app2

drwx------ app1 drwx------ app2

OS Security Mechanism -- Isolation

 Exceptions
/proc/[pid]/statm
/proc/net/netstat
Etc.

Breaking Isolation through Side
Channel Attacks

Anyone at home?
???

11

What is a side channel attack?

 Information gained from the physical implementation of
a cryptosystem, rather than brute force or theoretical
weaknesses [1]
 Timing, Power monitoring, Acoustic, Electromagnetic, etc.

 Used as early as World War II.

[1] TEMPEST: A Signal Problem. Journal of Cryptologic Spectrum 1972

12

Modern side channel attacks

 Information gained from the physical design and
implementation of a cryptosystem, rather than brute
force or theoretical weaknesses

 Keystrokes (e.g., password) inference
[Song01,Zhang09,Vuagnoux09,Chen10]

 Timing, IPID, Power, Electromagnetic waves

 Crypto key extraction through VM co-residency
[Zhang12]
 CPU cache

Clear input/output Passive

13

Timing vs. Storage side channels

 Password authentication
for(i = 0; i < len; i++) {

if(input[i] != password[i]) {

 failed = true;

 break;

}

}

14

Timing vs. Storage side channels

 Memory allocation
secret_func() {

 malloc(1000KB);

 // … computation

 malloc(1000KB);

 // … computation

 malloc(1000KB);

 // … computation

}

15

Research contributions

 Uncover a new class of storage side channel
attacks against OS and networking stacks

 Real-world security impact caused by OS design,
firewall middleboxes and network stacks

 Google

 Linux kernel

 FreeBSD kernel

 …

16

Research methodology

Measurement-based
characterization

Identification of sensitive state

Identification of side channels

Attack defense

UI State

Known side-channels
Source code analysis

Reverse engineering
Source code analysis

Android GUI
framework

OS component, Network policy, protocol behavior

Secret

Secret and side channels

Attack discovery

Vulnerability

Principle-driven

17

Outline

 Background and methodology

 Android UI state inference

 [USENIX SECURITY 14]

 Off-path TCP sequence number inference

Firewall-middlebox-enabled attacks

H ost-based attacks

 Summary

Importance of GUI Security

 GUI content confidentiality and integrity are
critical for end-to-end security

 UI Spoofing in desktop/browsers1

 Screenshot capture on Android without privilege2

18

1Chen,
Oakland’07

2ScreenMilker,
NDSS’14

Android OS

 App no root privilege

 App can request limited permissions (users
have to agree)

 Apps isolated from each other

19

Android Security Mechanism -- Isolation

 Memory isolation

Android Security Mechanism -- Isolation

 File system isolation

/data/data

/data/data/

app1

/data/data/

app2

drwx------ app1 drwx------ app2

22

Another Form of GUI Confidentiality Breach

 A weaker form

UI state an app is in (e.g., login state) without
knowing the exact pixels of the screen

22

Use UI state info
for best timing

Serious security implications!

Tracking UI state!

Enabled Attack: UI State Hijacking

 Hijack sensitive UI state to steal private input

23

Foreground: Background:

UI State
1

UI State
2

UI State
3

Wait for Login UI
state

Inject the phishing
Login UI state!

Exploit UI
preemption

No glitches as we
disable the animation

+ precise attack

timing

Steal user name
and password!

UI State Hijacking Attack Demo
24

 Video demo: UI state hijacking attack steals
your password in H&R Block app

Camera Peeking Attack Demo
25

UI State Leakage is Dangerous

 Lead to both GUI integrity and
confidentiality breaches

 UI state information is not protected well

 An unprivileged application can track
another app’s UI states in real time

26

UI State Inference Attack

 UI state: a mostly consistent UI at window
level for certain functionality (e.g., log-in)

On Android: Activity (full-screen window)

 Also called Activity inference attack

 An unprivileged app can infer the foreground
Activity in real time

 Requires no permission

27

Underlying Causes

 Android GUI framework design leaks UI
state changes through a publicly-accessible
side channel

 A newly-discovered shared-memory side channel

 Affects nearly all popular OSes

28

A single bit
of information

Attack General Steps
29

Activity
transition
detection

Activity
inference

UI state
hijacking

Newly-discovered
Shared-memory

side channel

Other side channels
(e.g., CPU, network

activity)

UI state based attacks:

Camera
peeking

Shared-Memory Side Channel

 Finding: shared virtual memory size changes
are correlated with Android window events

30

Shared virtual

memory size in

public file

/proc/pid/statm

Proportional

to window

size

Window

pop-up

Window

close

Shared-Memory Side Channel

 Root cause for this correlation

Window manager design in Android

31

For better UI drawing

performance, Android uses

shared memory as IPC

The changed size is the

off-screen buffer size
The root cause is

here

Confirmed that shared memory is used in GUI

design for many OSes, including

Activity Transition Detection

 Detect shared-memory size change pattern

Nice properties:

32

Clean channel

Unique patterns

Fixed
(Full screen)

Buffer
allocation for

the new
Activity

Buffer
deallocation for

the previous
Activity

+

+

Activity Signature Design
34

Content
Provider
feature

Network
event

feature

Input
method
feature

CPU utilization time feature

• Consists of various features

Activity 1 Activity 2

Evaluation Methodology

 Implementation: ~ 2300 lines of C++ code
compiled with Android NDK

 Data collection: using automated Activity
transition tool on Samsung Galaxy S3 devices
with Android 4.2

 Experimented on 7 popular Android apps:

36

Evaluation Results

 Activity transition detection, for all apps
 Detection accuracy ≥ 96.5%

 FP and FN rates both ≤ 4%

 Activity inference accuracy
 80–90% for 6 out of 7 popular apps

 Important features: CPU, network, transition model

 Inference computation & delay
 Inference computation time: ≤ 10 ms

 Delay (Activity transition  inference result): ≤ 1.3 sec
 Improved to ≤ 500 ms for faster and more seamless Activity hijacking

 Power overhead
 2.2–6.0%

 Status
 Working with Google now to fix the problem

37

