
Zhiyun Qian

University of California, Riverside

1

Storage Side Channel Attacks in
Modern OS and Networking Stacks
--- How to break isolation in OS?

2

Outline

 Background and methodology

 Android UI state inference

 Off-path TCP sequence number inference

Firewall-middlebox-enabled attacks

H ost-based attacks

 Summary

3

Outline

 Background and methodology

 Android UI state inference

 Off-path TCP sequence number inference

Firewall-middlebox-enabled attacks

Host-based attacks

 Summary

4

Side channels - Real world example
Mafia game

5

Another example

Anyone at home?
???

OS Security Mechanism -- Isolation

 Memory isolation

OS Security Mechanism -- Isolation

 File system isolation

/home

/home/alice /home/bob

drwx------ alice drwx------ bob

OS Security Mechanism -- Isolation

 Android File system isolation

/data

/data/app1 /data/app2

drwx------ app1 drwx------ app2

OS Security Mechanism -- Isolation

 Exceptions
/proc/[pid]/statm
/proc/net/netstat
Etc.

Breaking Isolation through Side
Channel Attacks

Anyone at home?
???

11

What is a side channel attack?

 Information gained from the physical implementation of
a cryptosystem, rather than brute force or theoretical
weaknesses [1]
 Timing, Power monitoring, Acoustic, Electromagnetic, etc.

 Used as early as World War II.

[1] TEMPEST: A Signal Problem. Journal of Cryptologic Spectrum 1972

12

Modern side channel attacks

 Information gained from the physical design and
implementation of a cryptosystem, rather than brute
force or theoretical weaknesses

 Keystrokes (e.g., password) inference
[Song01,Zhang09,Vuagnoux09,Chen10]

 Timing, IPID, Power, Electromagnetic waves

 Crypto key extraction through VM co-residency
[Zhang12]
 CPU cache

Clear input/output Passive

13

Timing vs. Storage side channels

 Password authentication
for(i = 0; i < len; i++) {

if(input[i] != password[i]) {

 failed = true;

 break;

}

}

14

Timing vs. Storage side channels

 Memory allocation
secret_func() {

 malloc(1000KB);

 // … computation

 malloc(1000KB);

 // … computation

 malloc(1000KB);

 // … computation

}

15

Research contributions

 Uncover a new class of storage side channel
attacks against OS and networking stacks

 Real-world security impact caused by OS design,
firewall middleboxes and network stacks

 Google

 Linux kernel

 FreeBSD kernel

 …

16

Research methodology

Measurement-based
characterization

Identification of sensitive state

Identification of side channels

Attack defense

UI State

Known side-channels
Source code analysis

Reverse engineering
Source code analysis

Android GUI
framework

OS component, Network policy, protocol behavior

Secret

Secret and side channels

Attack discovery

Vulnerability

Principle-driven

17

Outline

 Background and methodology

 Android UI state inference

 [USENIX SECURITY 14]

 Off-path TCP sequence number inference

Firewall-middlebox-enabled attacks

H ost-based attacks

 Summary

Importance of GUI Security

 GUI content confidentiality and integrity are
critical for end-to-end security

 UI Spoofing in desktop/browsers1

 Screenshot capture on Android without privilege2

18

1Chen,
Oakland’07

2ScreenMilker,
NDSS’14

Android OS

 App no root privilege

 App can request limited permissions (users
have to agree)

 Apps isolated from each other

19

Android Security Mechanism -- Isolation

 Memory isolation

Android Security Mechanism -- Isolation

 File system isolation

/data/data

/data/data/

app1

/data/data/

app2

drwx------ app1 drwx------ app2

22

Another Form of GUI Confidentiality Breach

 A weaker form

UI state an app is in (e.g., login state) without
knowing the exact pixels of the screen

22

Use UI state info
for best timing

Serious security implications!

Tracking UI state!

Enabled Attack: UI State Hijacking

 Hijack sensitive UI state to steal private input

23

Foreground: Background:

UI State
1

UI State
2

UI State
3

Wait for Login UI
state

Inject the phishing
Login UI state!

Exploit UI
preemption

No glitches as we
disable the animation

+ precise attack

timing

Steal user name
and password!

UI State Hijacking Attack Demo
24

 Video demo: UI state hijacking attack steals
your password in H&R Block app

Camera Peeking Attack Demo
25

UI State Leakage is Dangerous

 Lead to both GUI integrity and
confidentiality breaches

 UI state information is not protected well

 An unprivileged application can track
another app’s UI states in real time

26

UI State Inference Attack

 UI state: a mostly consistent UI at window
level for certain functionality (e.g., log-in)

On Android: Activity (full-screen window)

 Also called Activity inference attack

 An unprivileged app can infer the foreground
Activity in real time

 Requires no permission

27

Underlying Causes

 Android GUI framework design leaks UI
state changes through a publicly-accessible
side channel

 A newly-discovered shared-memory side channel

 Affects nearly all popular OSes

28

A single bit
of information

Attack General Steps
29

Activity
transition
detection

Activity
inference

UI state
hijacking

Newly-discovered
Shared-memory

side channel

Other side channels
(e.g., CPU, network

activity)

UI state based attacks:

Camera
peeking

Shared-Memory Side Channel

 Finding: shared virtual memory size changes
are correlated with Android window events

30

Shared virtual

memory size in

public file

/proc/pid/statm

Proportional

to window

size

Window

pop-up

Window

close

Shared-Memory Side Channel

 Root cause for this correlation

Window manager design in Android

31

For better UI drawing

performance, Android uses

shared memory as IPC

The changed size is the

off-screen buffer size
The root cause is

here

Confirmed that shared memory is used in GUI

design for many OSes, including

Activity Transition Detection

 Detect shared-memory size change pattern

Nice properties:

32

Clean channel

Unique patterns

Fixed
(Full screen)

Buffer
allocation for

the new
Activity

Buffer
deallocation for

the previous
Activity

+

+

Activity Signature Design
34

Content
Provider
feature

Network
event

feature

Input
method
feature

CPU utilization time feature

• Consists of various features

Activity 1 Activity 2

Evaluation Methodology

 Implementation: ~ 2300 lines of C++ code
compiled with Android NDK

 Data collection: using automated Activity
transition tool on Samsung Galaxy S3 devices
with Android 4.2

 Experimented on 7 popular Android apps:

36

Evaluation Results

 Activity transition detection, for all apps
 Detection accuracy ≥ 96.5%

 FP and FN rates both ≤ 4%

 Activity inference accuracy
 80–90% for 6 out of 7 popular apps

 Important features: CPU, network, transition model

 Inference computation & delay
 Inference computation time: ≤ 10 ms

 Delay (Activity transition inference result): ≤ 1.3 sec
 Improved to ≤ 500 ms for faster and more seamless Activity hijacking

 Power overhead
 2.2–6.0%

 Status
 Working with Google now to fix the problem

37

