
CS 153

Design of Operating

Systems

Winter 2016

Lecture 23: Inter-Process Communication
(IPC) and Remote Procedure Call (RPC)

2

Inter-Process Communication

 Exchange of data between two or more separate,

independent processes.

 Operating systems provide facilities/resources for inter-

process communications (IPC), such as message

queues, semaphores, and shared memory.

 Similar concept exists for network communications

(processes that reside on different physical hosts).

Inter-Process Communication

 Two main types
 Message queues (heavy kernel involvement)

 Shared memory (discussed earlier, minimal kernel

involvement)

3

Message Queues

4

P1 P2

Kernel

Message Queue

msg msg

msg

Data copy

msg

Data copy User

Message Queues

Two basic operations:

 send(message) and receive(message)

 message contents can be anything mutually comprehensible

» data, remote procedure calls, executable code etc.

 usually contains standard fields

» destination process ID, sending process ID for any reply

» message length

» data type, data etc.

 UNIX

 System V Message Queues

 UNIX domain socket, local TCP/UDP socket

 5

 Once page table mapping setup, no syscall or

additional copying necessary

6

Shared Memory

Page frame

P2’s Page Table

Physical Memory

Page frame

P1’s Page Table

Network Communication

 By in large similar to lPC in terms of the interface

 send(message) and receive(message)

 message contents can be anything mutually comprehensible

» data, remote procedure calls, executable code etc.

 usually contains standard fields

» destination server IP, sending client IP

» message length

» data type, data etc.

7

Client-Server Communication

1. Client connects to the server (locates it and

establishes a connection to it)

2. Client sends a request to the server

3. Server performs some action

4. Server sends a response back

8

Request

Response

Client Server

OS Support for Network

 OS includes implementations of network protocols

 For example: TCP, UDP, ICMP, etc.

 How should applications use these protocols for

network communication?

 Open network connection to the server

 Hand-code messages to send requests and receive responses

 For example, request/response for weather service:

» (Date: 01/27/2014, City: Riverside, State: CA)

» (Temperature: 70, Chance of rain: 20%)

9

12

Messages: A Bad Abstraction

 Hand-coding messages gets tiresome

 Need to worry about message formats

 Have to pack and unpack data from messages

 Servers have to decode and dispatch messages to handlers

 Messages are often asynchronous

 Messages are not a very natural programming model

(still heavily used nevertheless)

 Think about web browsing

13

Procedure Calls

 Procedure calls are a more natural way to communicate

 Every language supports them

 Semantics are well-defined and understood

 Natural for programmers to use

 Idea: Have servers export a set of procedures that can

be called by client programs

 For example: GetWeather(Date, City, State)

 Similar to module interfaces, class definitions, etc.

 Clients just do a procedure call as if they were directly

linked with the server

 Under the covers, the procedure call is converted into a

message exchange with the server

14

Remote Procedure Calls

 So, we would like to use procedure call as a model for

distributed (remote) communication

 Remote Procedure Call (RPC) is used both by
operating systems and applications
 NFS is implemented as a set of RPCs

 DCOM, CORBA, Java RMI, etc., are all basically just RPC

 Lots of issues

 How do we hide the details from the programmer?

 What are the semantics of parameter passing?

 How do we (locate, connect) to servers?

 How do we support heterogeneity (OS, arch, language)?

 How do we make it perform well?

15

RPC Model

 A server defines the server’s interface using an interface
definition language (IDL)
 The IDL specifies the names, parameters, and types for all

client-callable server procedures

 A stub compiler reads the IDL and produces two stub
procedures for each server procedure (client and
server)
 The server programmer implements the server procedures and

links them with the server-side stubs

 The client programmer implements the client program and links
it with the client-side stubs

 The stubs are responsible for managing all details of the remote
communication between client and server

16

RPC Example

Server Interface:

int Add(int x, int y);

Client Program:

…

sum = server->Add(3,4);

…

Server Program:

int Add(int x, int, y) {

 return x + y;

}

 If the server were just a library, then Add would just be

a procedure call

17

RPC Example: Call

Client Program:

sum = server->Add(3,4);

Server Program:

int Add(int x, int, y) {}

Client Stub:

Int Add(int x, int y) {

 Alloc message buffer;

 Mark as “Add” call;

 Store x, y into buffer;

 Send message;

}

RPC Runtime:

Send message to server;

Server Stub:

Add_Stub(Message) {

 Remove x, y from buffer

 r = Add(x, y);

}

RPC Runtime:

Receive message;

Dispatch, call Add_Stub;

18

RPC Example: Return

Client Program:

sum = server->Add(3,4);

Server Program:

int Add(int x, int, y) {}

Client Stub:

Int Add(int x, int y) {

 Create, send message;

 Remove r from reply;

 return r;

}

RPC Runtime:

Return reply to stub;

Server Stub:

Add_Stub(Message) {

 Remove x, y from buffer

 r = Add(x, y);

 Store r in buffer;

}

RPC Runtime:

Send reply to client;

19

RPC Summary

 RPC is the most common model for communication in
distributed applications
 “Cloaked” as DCOM, CORBA, Java RMI, etc.

 Also used on same node between applications

 RPC is language support for distributed programming

 RPC relies upon a stub compiler to automatically
generate client/server stubs from the IDL server
descriptions
 These stubs do the marshalling/unmarshalling, message

sending/receiving/replying

 NFS uses RPC to implement remote file systems
 Statelessness makes it easy to implement, but introduces

consistency issues

Android IPC and AIDL

20

App
Camera

Service

1. Request taking a picture

3. Return the picture

2. Take a picture

by talking to driver

Why do we introduce a service process acting as a proxy to access the driver?

21

Android IPC and AIDL Example

Server Interface:

Pic takePic();

Client Process:

…

pic = server->takePic();

…

Server Process:

Pic takePic() {

 // talk to driver

 return pic;

}

 Why do we need this on a single host? Isn’t RPC

designed for remote network communication?

22

Network File System

 We have talked about file systems and RPC

 We’ll now look at a file system that uses RPC

 Network File System (NFS)

 Protocol for remote access to a file system

» Does not implement a file system per se

» Remote access is transparent to applications

 File system, OS, and architecture independent

» Originally developed by Sun

» Although Unix-y in flavor, explicit goal to work beyond Unix

 Client/server architecture

» Local file system requests are forwarded to a remote server

» These requests are implemented as RPCs

Architecture

23

24

Mounting

 Before a client can access files on a server, the client

must mount the file system on the server

 The file system is mounted on an empty local directory

 Same way that local file systems are attached

 Can depend on OS (e.g., Unix dirs vs NT drive letters)

 E.g., Lab machines mount home directory from NFS servers

 “mount backend:/home/csgrads /home/csgrads”

 Servers maintain ACLs of clients that can mount their

directories

 When mount succeeds, server returns a file handle

 Clients use this file handle as a capability to do file operations

 Mounts can be cascaded

 Can mount a remote file system on a remote file system

25

NFS Protocol

 The NFS protocol defines a set of operations that a

server must support

 Reading and writing files

 Accessing file attributes

 Searching for a file within a directory

 Reading a set of directory links

 Manipulating links and directories

 These operations are implemented as RPCs

 Usually by daemon processes (e.g., nfsd)

 A local operation is transformed into an RPC to a server

 Server performs operation on its own file system and returns

26

Statelessness

 Note that NFS has no open or close operations

 NFS is stateless

 An NFS server does not keep track of which clients have

mounted its file systems or are accessing its files

 Each RPC has to specify all information in a request

» Operation, FS handle, file id, offset in file, sequence #

» How is this good or bad?

 Robust

 No reconciliation needs to be done on a server crash/reboot

 Clients detect server reboot, continue to issue requests

 Writes must be synchronous to disk, though

 Clients assume that a write is persistent on return

 Servers cannot cache writes

27

Consistency

 Since NFS is stateless, consistency is tough

 What do we mean by consistency?

 NFS can be (mostly) consistent, but limits performance

 NFS assumes that if you want consistency, applications will

use higher-level mechanisms to guarantee it

 Writes are supposed to be atomic

 But performed in multiple RPCs (larger than a network packet)

 Simultaneous writes from clients can interleave RPCs (bad)

 Server caching

 Can cache for reads, but we saw that it cannot cache writes

28

Consistency (2)

 Client caching can lead to consistency problems

 Caching a write on client A will not be seen by other clients

 Cached writes by clients A and B are unordered at server

 Since sharing is rare, though, NFS clients usually do cache

 NFS statelessness is both its key to success and its

Achilles’ heel

 NFS is straightforward to implement and reason about

 But limitations on caching can severely limit performance

» Dozens of network file system designs and implementations that

perform much better than NFS

 But note that it is still the most widely used remote file system

protocol and implementation

