
CS 153

Design of Operating

Systems

Winter 2016

Lecture 23: Inter-Process Communication
(IPC) and Remote Procedure Call (RPC)

2

Inter-Process Communication

 Exchange of data between two or more separate,

independent processes.

 Operating systems provide facilities/resources for inter-

process communications (IPC), such as message

queues, semaphores, and shared memory.

 Similar concept exists for network communications

(processes that reside on different physical hosts).

Inter-Process Communication

 Two main types
 Message queues (heavy kernel involvement)

 Shared memory (discussed earlier, minimal kernel

involvement)

3

Message Queues

4

P1 P2

Kernel

Message Queue

msg msg

msg

Data copy

msg

Data copy User

Message Queues

Two basic operations:

 send(message) and receive(message)

 message contents can be anything mutually comprehensible

» data, remote procedure calls, executable code etc.

 usually contains standard fields

» destination process ID, sending process ID for any reply

» message length

» data type, data etc.

 UNIX

 System V Message Queues

 UNIX domain socket, local TCP/UDP socket

 5

 Once page table mapping setup, no syscall or

additional copying necessary

6

Shared Memory

Page frame

P2’s Page Table

Physical Memory

Page frame

P1’s Page Table

Network Communication

 By in large similar to lPC in terms of the interface

 send(message) and receive(message)

 message contents can be anything mutually comprehensible

» data, remote procedure calls, executable code etc.

 usually contains standard fields

» destination server IP, sending client IP

» message length

» data type, data etc.

7

Client-Server Communication

1. Client connects to the server (locates it and

establishes a connection to it)

2. Client sends a request to the server

3. Server performs some action

4. Server sends a response back

8

Request

Response

Client Server

OS Support for Network

 OS includes implementations of network protocols

 For example: TCP, UDP, ICMP, etc.

 How should applications use these protocols for

network communication?

 Open network connection to the server

 Hand-code messages to send requests and receive responses

 For example, request/response for weather service:

» (Date: 01/27/2014, City: Riverside, State: CA)

» (Temperature: 70, Chance of rain: 20%)

9

12

Messages: A Bad Abstraction

 Hand-coding messages gets tiresome

 Need to worry about message formats

 Have to pack and unpack data from messages

 Servers have to decode and dispatch messages to handlers

 Messages are often asynchronous

 Messages are not a very natural programming model

(still heavily used nevertheless)

 Think about web browsing

13

Procedure Calls

 Procedure calls are a more natural way to communicate

 Every language supports them

 Semantics are well-defined and understood

 Natural for programmers to use

 Idea: Have servers export a set of procedures that can

be called by client programs

 For example: GetWeather(Date, City, State)

 Similar to module interfaces, class definitions, etc.

 Clients just do a procedure call as if they were directly

linked with the server

 Under the covers, the procedure call is converted into a

message exchange with the server

14

Remote Procedure Calls

 So, we would like to use procedure call as a model for

distributed (remote) communication

 Remote Procedure Call (RPC) is used both by
operating systems and applications
 NFS is implemented as a set of RPCs

 DCOM, CORBA, Java RMI, etc., are all basically just RPC

 Lots of issues

 How do we hide the details from the programmer?

 What are the semantics of parameter passing?

 How do we (locate, connect) to servers?

 How do we support heterogeneity (OS, arch, language)?

 How do we make it perform well?

15

RPC Model

 A server defines the server’s interface using an interface
definition language (IDL)
 The IDL specifies the names, parameters, and types for all

client-callable server procedures

 A stub compiler reads the IDL and produces two stub
procedures for each server procedure (client and
server)
 The server programmer implements the server procedures and

links them with the server-side stubs

 The client programmer implements the client program and links
it with the client-side stubs

 The stubs are responsible for managing all details of the remote
communication between client and server

16

RPC Example

Server Interface:

int Add(int x, int y);

Client Program:

…

sum = server->Add(3,4);

…

Server Program:

int Add(int x, int, y) {

 return x + y;

}

 If the server were just a library, then Add would just be

a procedure call

17

RPC Example: Call

Client Program:

sum = server->Add(3,4);

Server Program:

int Add(int x, int, y) {}

Client Stub:

Int Add(int x, int y) {

 Alloc message buffer;

 Mark as “Add” call;

 Store x, y into buffer;

 Send message;

}

RPC Runtime:

Send message to server;

Server Stub:

Add_Stub(Message) {

 Remove x, y from buffer

 r = Add(x, y);

}

RPC Runtime:

Receive message;

Dispatch, call Add_Stub;

18

RPC Example: Return

Client Program:

sum = server->Add(3,4);

Server Program:

int Add(int x, int, y) {}

Client Stub:

Int Add(int x, int y) {

 Create, send message;

 Remove r from reply;

 return r;

}

RPC Runtime:

Return reply to stub;

Server Stub:

Add_Stub(Message) {

 Remove x, y from buffer

 r = Add(x, y);

 Store r in buffer;

}

RPC Runtime:

Send reply to client;

19

RPC Summary

 RPC is the most common model for communication in
distributed applications
 “Cloaked” as DCOM, CORBA, Java RMI, etc.

 Also used on same node between applications

 RPC is language support for distributed programming

 RPC relies upon a stub compiler to automatically
generate client/server stubs from the IDL server
descriptions
 These stubs do the marshalling/unmarshalling, message

sending/receiving/replying

 NFS uses RPC to implement remote file systems
 Statelessness makes it easy to implement, but introduces

consistency issues

Android IPC and AIDL

20

App
Camera

Service

1. Request taking a picture

3. Return the picture

2. Take a picture

by talking to driver

Why do we introduce a service process acting as a proxy to access the driver?

21

Android IPC and AIDL Example

Server Interface:

Pic takePic();

Client Process:

…

pic = server->takePic();

…

Server Process:

Pic takePic() {

 // talk to driver

 return pic;

}

 Why do we need this on a single host? Isn’t RPC

designed for remote network communication?

22

Network File System

 We have talked about file systems and RPC

 We’ll now look at a file system that uses RPC

 Network File System (NFS)

 Protocol for remote access to a file system

» Does not implement a file system per se

» Remote access is transparent to applications

 File system, OS, and architecture independent

» Originally developed by Sun

» Although Unix-y in flavor, explicit goal to work beyond Unix

 Client/server architecture

» Local file system requests are forwarded to a remote server

» These requests are implemented as RPCs

Architecture

23

24

Mounting

 Before a client can access files on a server, the client

must mount the file system on the server

 The file system is mounted on an empty local directory

 Same way that local file systems are attached

 Can depend on OS (e.g., Unix dirs vs NT drive letters)

 E.g., Lab machines mount home directory from NFS servers

 “mount backend:/home/csgrads /home/csgrads”

 Servers maintain ACLs of clients that can mount their

directories

 When mount succeeds, server returns a file handle

 Clients use this file handle as a capability to do file operations

 Mounts can be cascaded

 Can mount a remote file system on a remote file system

25

NFS Protocol

 The NFS protocol defines a set of operations that a

server must support

 Reading and writing files

 Accessing file attributes

 Searching for a file within a directory

 Reading a set of directory links

 Manipulating links and directories

 These operations are implemented as RPCs

 Usually by daemon processes (e.g., nfsd)

 A local operation is transformed into an RPC to a server

 Server performs operation on its own file system and returns

26

Statelessness

 Note that NFS has no open or close operations

 NFS is stateless

 An NFS server does not keep track of which clients have

mounted its file systems or are accessing its files

 Each RPC has to specify all information in a request

» Operation, FS handle, file id, offset in file, sequence #

» How is this good or bad?

 Robust

 No reconciliation needs to be done on a server crash/reboot

 Clients detect server reboot, continue to issue requests

 Writes must be synchronous to disk, though

 Clients assume that a write is persistent on return

 Servers cannot cache writes

27

Consistency

 Since NFS is stateless, consistency is tough

 What do we mean by consistency?

 NFS can be (mostly) consistent, but limits performance

 NFS assumes that if you want consistency, applications will

use higher-level mechanisms to guarantee it

 Writes are supposed to be atomic

 But performed in multiple RPCs (larger than a network packet)

 Simultaneous writes from clients can interleave RPCs (bad)

 Server caching

 Can cache for reads, but we saw that it cannot cache writes

28

Consistency (2)

 Client caching can lead to consistency problems

 Caching a write on client A will not be seen by other clients

 Cached writes by clients A and B are unordered at server

 Since sharing is rare, though, NFS clients usually do cache

 NFS statelessness is both its key to success and its

Achilles’ heel

 NFS is straightforward to implement and reason about

 But limitations on caching can severely limit performance

» Dozens of network file system designs and implementations that

perform much better than NFS

 But note that it is still the most widely used remote file system

protocol and implementation

