
CS 153

Design of Operating

Systems

Winter 2016

Lecture 22: System calls and their
implementation details

Homework 3 is out!

 Due in a week (March 7th)

2

3

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel mode

int 0x80 / sysenter

Trap handler:

Find read

handler

Restore state,

return to user

level

(iret / sysret),

resume

execution

save state

CPU Modes/Privileges

 System call

 Ring 3 Ring 0

4

Another view

5

Kernel Stack

0x00000000

0xFFFFFFFF

Kernel Code

Address

Space

SP2

PC1

User Stack

User Code

PC2

SP1

0xC0000000

1G

3G

How to pass arguments in

syscalls?

 In short, through either registers or user stack

 Typical 32-bit x86 vs. PintOS

 Registers:

 Pro: fast

 Con: limited number of arguments

 Stack:

 Pro: general (can support many more arguments)

 Con: slower because of more memory accesses

6

Typical 32-bit x86: Executing

system calls

25 * using sysenter is faster, but this is the traditional explanation

1. Put syscall number in eax
2. Set up arg 1 in ebx, arg 2 in

ecx, arg 3 in edx
3. Call int 0x80*

 - syscall interrupt handler is

 invoked (traps to kernel)

4. System call runs. Result in eax

Typical 32-bit x86: Executing

system calls

25 * using sysenter is faster, but this is the traditional explanation

1. Put syscall number in eax
2. Set up arg 1 in ebx, arg 2 in

ecx, arg 3 in edx
3. Call int 0x80*

4. System call runs. Result in eax

execve(“/bin/sh”, 0, 0);

Typical 32-bit x86: Executing

system calls

25 * using sysenter is faster, but this is the traditional explanation

1. Put syscall number in eax
2. Set up arg 1 in ebx, arg 2 in

ecx, arg 3 in edx
3. Call int 0x80*

4. System call runs. Result in eax

execve(“/bin/sh”, 0, 0);

execve is

0xb

Typical 32-bit x86: Executing

system calls

25 * using sysenter is faster, but this is the traditional explanation

1. Put syscall number in eax
2. Set up arg 1 in ebx, arg 2 in

ecx, arg 3 in edx
3. Call int 0x80*

4. System call runs. Result in eax

execve(“/bin/sh”, 0, 0);

execve is

0xb

addr. in ebx,

0 in ecx

PintOS syscalls

11

Kernel Stack

Kernel Code

User Stack

User Code

Arguments pushed to

the top of the stack

0x00000000

0xFFFFFFFF

Argument passing over stack

int orange(int a, int b)

{

 char buf[16];

 int c, d;

 if(a > b)
 c = a;

 else
 c = b;

 d = read_sys(c, buf);

 return d;

}

…

b

a

return addr

Local variables:
buf, c, d

Arg: buf

Arg: c

return addr

orange’s ebp

…

%esp
stack

parameter
area (caller)

orange’s
initial
stack

frame

to be created
before

calling read

after read has
been called

gr
o

w

0xFFFFFFFF

0x00000000

Argument passing over stack

int orange(int a, int b)

{

 char buf[16];

 int c, d;

 if(a > b)
 c = a;

 else
 c = b;

 d = read_sys(c, buf);

 return d;

}

…

b

a

return addr

Local variables:
buf, c, d

Arg: buf

Arg: c

return addr

orange’s ebp

…

%esp
stack

parameter
area (caller)

orange’s
initial
stack

frame

to be created
before

calling read

after read has
been called

gr
o

w

Don’t worry!
We will walk

through these
one by one.

0xFFFFFFFF

0x00000000

When orange attains control,

1. return address has already been
pushed onto stack by caller

…

b

a

return addr
%esp

14

When orange attains control,

1. return address has already been
pushed onto stack by caller

2. allocate space for locals

- subtracting from esp

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)
%esp

orange’s
initial
stack

frame

15

For caller orange to call syscall read,

1. push arguments to read from
right to left (reversed) and the
syscall #

- from callee’s perspective,
argument 1 is nearest in stack
(syscall#). See Pintos
lib/user/syscall.c

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #
%esp

16

Why push arguments in reverse order?

17

int main(int argc, char**argv)

{

 printf(“String %s, int %d”, argv[0], argc);

}

…

argv

argc

return addr

argc

argv[0]

return addr

gr
o

w

main’s
stack

frame

int printf(const char *format, ...);

For caller orange to call syscall read,

1. push arguments to read from
right to left (reversed) and the
syscall #

- from callee’s perspective,
argument 1 is nearest in stack
(syscall#). See Pintos
lib/user/syscall.c

2. trap into kernel through the
instruction “int 0x30”, which saves
the stack pointer and return
address on the stack.
- The return address will be used by the

 kernel to return control back to
orange (through “iret” instruction)

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

18

For caller orange to call syscall read,

1. push arguments to read from
right to left (reversed) and the
syscall #

- from callee’s perspective,
argument 1 is nearest in stack
(syscall#). See Pintos
lib/user/syscall.c

2. trap into kernel through the
instruction “int 0x30”, which saves
the stack pointer and return
address on the stack.
- The return address will be used by the

 kernel to return control back to
orange (through “iret” instruction)

3. transfer control to interrupt
handler.
- Pintos from threads/intr-stubs.S ->

threads/interrupt.c ->
threads/userprog/syscall.c

19

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

= struct intr_frame *frame

When syscall read() attains control,

1. return address has already been
pushed onto stack by orange

20

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

= struct intr_frame *frame

When syscall read() attains control,

1. return address has already been
pushed onto stack by orange

2. validate the address of “frame-
>esp”

21

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

= struct intr_frame *frame

When syscall read() attains control,

1. return address has already been
pushed onto stack by orange

2. validate the address of “frame-
>esp”

3. extract the syscall #, the two
arguments of read()

22

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

= struct intr_frame *frame

When syscall read() attains control,

1. return address has already been
pushed onto stack by orange

2. validate the address of “frame-
>esp”

3. extract the syscall #, the two
arguments of read()

4. do the syscall (most
implementations provided in
places such as filesys/file.c
already)

23

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

= struct intr_frame *frame

When syscall read() attains control,

1. return address has already been
pushed onto stack by orange

2. validate the address of “frame-
>esp”

3. extract the syscall #, the two
arguments of read()

4. do the syscall (most
implementations provided in
places such as filesys/file.c
already)

5. return to orange by iret which
pops the return addr on the stack

24

…

b

a

return addr

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

buf

c

syscall #

esp

return addr
%esp

orange’s
stack

frame

= struct intr_frame *frame

Passing arguments to main()

25

1. As the program is loaded, allocate a page (or more) to serve as user stack

2. Set up the esp to point to the new page

3. Put arguments on the top of the stack (pointed to by esp)
 - Note: stack grows from higher addresses to lower addresses

argv[n-1]

…

argv[0]

argc
%esp

Why do we need kernel stack?

26

Kernel Stack

Kernel Code

User Stack

User Code

0x00000000

0xFFFFFFFF

Function calls executed

in kernel space need the

protected kernel stack

that cannot be tampered

by user program

