
CS 153

Design of Operating

Systems

Winter 2016

Lecture 21: File system optimizations

2

Physical Disk Structure

 Disk components

 Platters

 Surfaces

 Tracks

 Sectors

 Cylinders

 Arm

 Heads

Arm

Heads

Track

Platter

Surface

Cylinder

Sector

3

Cylinder Groups

 BSD FFS addressed these problems using the notion

of a cylinder group

 Disk partitioned into groups of cylinders

 Data blocks in same file allocated in same cylinder group

 Files in same directory allocated in same cylinder group

 Same for inodes

 Free space requirement

 To be able to allocate according to cylinder groups, the disk

must have free space scattered across cylinders

 10% of the disk is reserved just for this purpose

» Only used by root – this is why “df” may report >100%

4

Other Problems

 Small blocks (1K) caused two problems:

 Low bandwidth utilization

 Small max file size (function of block size)

 Fix: Use a larger block (4K)

 Very large files, only need two levels of indirection for 2^32

 Problem: internal fragmentation

 Fix: Introduce “fragments” (1K pieces of a block)

 Problem: Media failures

 Replicate master block (superblock)

 Problem: Device oblivious

 Parameterize according to device characteristics

5

The Results

6

Log-structured File System

 The Log-structured File System (LFS) was designed in

response to two trends in workload and technology:

1. Disk bandwidth scaling significantly (40% a year)

» While seek latency is not

2. Large main memories in machines

» Large buffer caches

» Absorb large fraction of read requests

» Can use for writes as well

» Coalesce small writes into large writes

 LFS takes advantage of both of these to increase FS

performance

 Rosenblum and Ousterhout (Berkeley, 1991)

8

LFS Approach

 Treat the disk as a single log for appending

 Collect writes in disk cache, write out entire collection in one

large disk request

» Leverages disk bandwidth

» No seeks (assuming head is at end of log)

 All info written to disk is appended to log

» Data blocks, attributes, inodes, directories, etc.

 Looks simple, but only in abstract

9

LFS Challenges

 LFS has two challenges it must address for it to be

practical

1. Locating data written to the log

» FFS places files in a location, LFS writes data “at the end”

2. Managing free space on the disk

» Disk is finite, so log is finite, cannot always append

» Need to recover deleted blocks in old parts of log

10

LFS: Locating Data

 FFS uses inodes to locate data blocks

 Inodes pre-allocated in each cylinder group

 Directories contain locations of inodes

 LFS appends inodes to end of the log just like data

 Makes them hard to find

 Approach

 Use another level of indirection: inode maps

 inode maps maintain the location of each inode

 inode map is itself divided into blocks that are written to the log

 Fixed checkpoint region on disk stores locations of all inode maps

 Cache inode maps in memory for performance

11

LFS Layout

12

LFS: Free Space Management

 LFS append-only quickly runs out of disk space

 Need to recover deleted blocks

 Approach:

 Fragment log into segments

 Thread segments on disk

» Segments can be anywhere

 Reclaim space by cleaning segments

» Read segment

» Copy live data to end of log

» Now have free segment you can reuse

 Cleaning is a big problem

 Costly overhead

13

Write Cost Comparison

Write cost of 2

if 20% full

Write cost of 10

if 80% full

15

RAID

 Redundant Array of Inexpensive Disks (RAID)

 A storage system, not a file system

 Patterson, Katz, and Gibson (Berkeley, 1988)

 Idea: Use many disks in parallel to increase storage

bandwidth, improve reliability

 Files are striped across disks

 Each stripe portion is read/written in parallel

 Bandwidth increases with more disks

RAID

16

17

RAID Challenges

 Small files (small writes less than a full stripe)

 Still write to one disk at a time

 Reliability

 More disks increases the chance of media failure (MTBF)

 Turn reliability problem into a feature

 Use one disk to store parity data

» XOR of all data blocks in stripe

 Can recover any data block from all others + parity block

 Hence “redundant” in name

 Introduces overhead, but, hey, disks are “inexpensive”

RAID with parity

18

+ + + =

19

RAID Levels

 In marketing literature, you will see RAID systems
advertised as supporting different “RAID Levels”

 Here are some common levels:
 RAID 0: Striping

» Good for random access (no reliability)

 RAID 1: Mirroring

» Two disks, write data to both (expensive, 1X storage overhead)

 RAID 5: Floating parity

» Parity blocks for different stripes written to different disks

» No single parity disk, hence no bottleneck at that disk

 RAID “10”: Striping plus mirroring

» Higher bandwidth, but still have large overhead

» See this on PC RAID disk cards

RAID 0

 RAID 0: Striping

 Good for random access (no reliability)

 Better read/write speed

20

RAID 1

 RAID 1: Mirroring

 Two disks, write data to both (expensive, 1X storage overhead)

21

RAID 5

 RAID 5: Floating parity

 Parity blocks for different stripes written to different disks

 No single parity disk, hence no bottleneck at that disk

 Fast read while slower write (parity computation)

22

RAID 1+0

 RAID “10”: Striping plus mirroring

 Higher bandwidth, but still have large overhead

 See this on PC RAID disk cards

23

24

Summary

 LFS

 Improve write performance by treating disk as a log

 Need to clean log complicates things

 RAID

 Spread data across disks and store parity on separate disk

