CS 153
Design of Operating
Systems

Winter 2016

Lecture 21: File system optimizations

Physical Disk Structure

o Disk components
+ Platters
Arm
+ Surfaces
N\

+ Tracks —

¢ Sectors

+ Cylinders
e Arm
+ Heads

Heads

Track Sector
Surface
<
Cylinder
\
Platter

Cylinder Groups

« BSD FFS addressed these problems using the notion
of a cylinder group
+ Disk partitioned into groups of cylinders
+ Data blocks in same file allocated in same cylinder group
+ Files in same directory allocated in same cylinder group
+ Same for inodes

o Free space requirement

+ To be able to allocate according to cylinder groups, the disk
must have free space scattered across cylinders

+ 10% of the disk is reserved just for this purpose
» Only used by root — this is why “df” may report >100%

Other Problems

o Small blocks (1K) caused two problems:
+ Low bandwidth utilization
+ Small max file size (function of block size)

o Fix: Use a larger block (4K)
+ Very large files, only need two levels of indirection for 232
+ Problem: internal fragmentation
+ Fix: Introduce “fragments” (1K pieces of a block)

o Problem: Media failures
+ Replicate master block (superblock)

o Problem: Device oblivious
+ Parameterize according to device characteristics

The Results

Table IIa. Reading Rates of the Qld and New UNIX File Systems

Type of Processor and Speed Read % CPU
file sysiem bus measured (Kbytes/s) bandwidth %

01d 1024 750/UNIBUS 29 29/983 3 11
New 4006/1024 750/UNIBUS 221 221/983 22 43
New 8192/1024 750/UNIBUS 233 233/983 24 29
New 4096/1024 T50/MASSBUS 466 466,983 47 3
New 8192/1024 7T50/MASSBUS 466 466/983 47 bd

Table IIb. Writing Rates of the Old and New UNIX File Systems

Type of Processor and Speed Write o CPU
file system bus measured {(Kbytes/s) bandwidth %

Old 1024 760/UNIBUS 48 48/983 5 29
New 4096/1024 T60/UNIBUS 142 142/983 14 43
New 8192/1024 750/UNIBUS 215 215/983 22 46
New 4096,/1024 160/MASSBUS 323 323/983 33 94
New 8192/1024 150/MASSBUS 466 466,983 47 a9b

Log-structured File System

o The Log-structured File System (LFS) was designed in
response to two trends in workload and technology:
1. Disk bandwidth scaling significantly (40% a year)
» While seek latency is not

2. Large main memories in machines
» Large buffer caches
» Absorb large fraction of read requests
» Can use for writes as well
» Coalesce small writes into large writes

o LFS takes advantage of both of these to increase FS

performance
+ Rosenblum and Ousterhout (Berkeley, 1991)

LFS Approach

o Treat the disk as a single log for appending

+ Collect writes in disk cache, write out entire collection in one
large disk request
» Leverages disk bandwidth
» No seeks (assuming head is at end of log)
+ All info written to disk is appended to log
» Data blocks, attributes, inodes, directories, etc.

o Looks simple, but only in abstract

LFS Challenges

o LFS has two challenges it must address for it to be
practical
1. Locating data written to the log
» FFS places files in a location, LFS writes data “at the end”

2. Managing free space on the disk
» Disk is finite, so log is finite, cannot always append
» Need to recover deleted blocks in old parts of log

LFS: Locating Data

e FFS uses inodes to locate data blocks
+ Inodes pre-allocated in each cylinder group
+ Directories contain locations of inodes

o LFS appends inodes to end of the log just like data
+ Makes them hard to find

o Approach
+ Use another level of indirection: inode maps
+ Inode maps maintain the location of each inode
+ Inode map is itself divided into blocks that are written to the log
+ Fixed checkpoint region on disk stores locations of all inode maps
+ Cache inode maps in memory for performance

10

LFS Layout

Diisk

Sprite LFS il Unix FFS

Fig. 1. A comparison between Sprite LFS and Unix FFS. This example shows the modified disk
blocks written by Sprite LFS and Unix FFS when creating two single-block files named dir1 /file1
and dr2 /file2. Each system must write new data blocks and inodes for file1 and file2, plus new
data blocks and inodes for the containing directories. Unix FFS requires ten nonsequential
writes for the new information (the inodes for the new files are each written twice to ease
recovery from crashes), while Sprite LFS performs the operations in a single large write. The
same number of disk accesses will be required to read the files in the two systems. Sprite LFS
also writes out new inode map blocks to record the new inode locations

11

LFS: Free Space Management

o LFS append-only quickly runs out of disk space
+ Need to recover deleted blocks

o Approach:
+ Fragment log into segments

+ Thread segments on disk
» Segments can be anywhere

+ Reclaim space by cleaning segments
» Read segment
» Copy live data to end of log
» Now have free segment you can reuse

o Cleaning is a big problem
+ Costly overhead

12

Write Cost Comparison

Write cost
14.0 --;r---------'--------------"....J.........‘L.. —
12.0

Write cost of 2 | 100+ ====-—-—--- -~

if 20% full \&\ﬂ

~~~~..] Write cost of 10
5.'[}\';

if 80% full

2.0

0.0 S N
00 02 04 06 08 1.0

Fraction alive in segment cleaned (u)

Fig. 3. Write cost as a function of u for small files In a log-structured file system, the write
cost depends strongly on the utilization of the segments thatl are cleaned. The more live data in
segments cleaned, the more disk bandwidth that is needed for cleaning and not available for
writing new data. The figure also shows two reference points: “FFS today,” which represenis
Unix FFS today, and “FFS improved,” which is our estimate of the best performance possible in
an improved Unix FFS. Write cost for Unix FFS iz not sensitive to the amount of disk space in
use.

13



RAID

o Redundant Array of Inexpensive Disks (RAID)
+ A storage system, not a file system
+ Patterson, Katz, and Gibson (Berkeley, 1988)

o ldea: Use many disks in parallel to increase storage
bandwidth, improve reliability
+ Files are striped across disks
+ Each stripe portion is read/written in parallel
+ Bandwidth increases with more disks

15



RAID




RAID Challenges

o Small files (small writes less than a full stripe)
+ Still write to one disk at a time
o Reliability
+ More disks increases the chance of media failure (MTBF)

o Turn reliability problem into a feature

+ Use one disk to store parity data
» XOR of all data blocks in stripe

+ Can recover any data block from all others + parity block
+ Hence “redundant” in name
+ Introduces overhead, but, hey, disks are “inexpensive”

17



RAID with parity




RAID Levels

In marketing literature, you will see RAID systems
advertised as supporting different “RAID Levels”

Here are some common levels:
+ RAID 0: Striping
» Good for random access (no reliability)
+ RAID 1: Mirroring
» Two disks, write data to both (expensive, 1X storage overhead)
+ RAID 5: Floating parity
» Parity blocks for different stripes written to different disks
» No single parity disk, hence no bottleneck at that disk
+ RAID *“10": Striping plus mirroring

» Higher bandwidth, but still have large overhead
» See this on PC RAID disk cards

19



RAID 0O

o RAID 0: Striping
® Good for random access (no reliability)
® Better read/write speed

RAID 0

striping

20



RAID 1

o RAID 1: Mirroring
® Two disks, write data to both (expensive, 1X storage overhead)

RAID 1

mirroring

21



RAID 5

o RAID 5: Floating parity
+ Parity blocks for different stripes written to different disks
+ No single parity disk, hence no bottleneck at that disk
+ Fast read while slower write (parity computation)

RAID 5

striping with parity across drives

{block 13:’}

Dlock 22,

“‘----..________._.--"r
blﬁck 33
Darlty bﬂ'

drive 1

block 1,
“h,,_._______,.--"'
hl{)ck Zb

Danty b3
block 42

drive 2

blc}ck 1‘
Danty t:l2

"-,,___________,.-"
1;b|nck 31’)

block 4

drive 3

22



RAID 1+0

o RAID “10”: Striping plus mirroring
+ Higher bandwidth, but still have large overhead
+ See this on PC RAID disk cards

RAID 1+0

mirroring + striping

¢ block 3 il L block 3 1 B block 4 )

—_— — e
\ block5) \ blcck5) \ blockﬁ)

block7 | block7 M block 8

drive 1 drive 2 drive 3




Summary

e LFS

+ Improve write performance by treating disk as a log
+ Need to clean log complicates things

« RAID
+ Spread data across disks and store parity on separate disk

24



