
CS 153

Design of Operating

Systems

Winter 2016

Lecture 21: File system optimizations

2

Physical Disk Structure

 Disk components

 Platters

 Surfaces

 Tracks

 Sectors

 Cylinders

 Arm

 Heads

Arm

Heads

Track

Platter

Surface

Cylinder

Sector

3

Cylinder Groups

 BSD FFS addressed these problems using the notion

of a cylinder group

 Disk partitioned into groups of cylinders

 Data blocks in same file allocated in same cylinder group

 Files in same directory allocated in same cylinder group

 Same for inodes

 Free space requirement

 To be able to allocate according to cylinder groups, the disk

must have free space scattered across cylinders

 10% of the disk is reserved just for this purpose

» Only used by root – this is why “df” may report >100%

4

Other Problems

 Small blocks (1K) caused two problems:

 Low bandwidth utilization

 Small max file size (function of block size)

 Fix: Use a larger block (4K)

 Very large files, only need two levels of indirection for 2^32

 Problem: internal fragmentation

 Fix: Introduce “fragments” (1K pieces of a block)

 Problem: Media failures

 Replicate master block (superblock)

 Problem: Device oblivious

 Parameterize according to device characteristics

5

The Results

6

Log-structured File System

 The Log-structured File System (LFS) was designed in

response to two trends in workload and technology:

1. Disk bandwidth scaling significantly (40% a year)

» While seek latency is not

2. Large main memories in machines

» Large buffer caches

» Absorb large fraction of read requests

» Can use for writes as well

» Coalesce small writes into large writes

 LFS takes advantage of both of these to increase FS

performance

 Rosenblum and Ousterhout (Berkeley, 1991)

8

LFS Approach

 Treat the disk as a single log for appending

 Collect writes in disk cache, write out entire collection in one

large disk request

» Leverages disk bandwidth

» No seeks (assuming head is at end of log)

 All info written to disk is appended to log

» Data blocks, attributes, inodes, directories, etc.

 Looks simple, but only in abstract

9

LFS Challenges

 LFS has two challenges it must address for it to be

practical

1. Locating data written to the log

» FFS places files in a location, LFS writes data “at the end”

2. Managing free space on the disk

» Disk is finite, so log is finite, cannot always append

» Need to recover deleted blocks in old parts of log

10

LFS: Locating Data

 FFS uses inodes to locate data blocks

 Inodes pre-allocated in each cylinder group

 Directories contain locations of inodes

 LFS appends inodes to end of the log just like data

 Makes them hard to find

 Approach

 Use another level of indirection: inode maps

 inode maps maintain the location of each inode

 inode map is itself divided into blocks that are written to the log

 Fixed checkpoint region on disk stores locations of all inode maps

 Cache inode maps in memory for performance

11

LFS Layout

12

LFS: Free Space Management

 LFS append-only quickly runs out of disk space

 Need to recover deleted blocks

 Approach:

 Fragment log into segments

 Thread segments on disk

» Segments can be anywhere

 Reclaim space by cleaning segments

» Read segment

» Copy live data to end of log

» Now have free segment you can reuse

 Cleaning is a big problem

 Costly overhead

13

Write Cost Comparison

Write cost of 2

if 20% full

Write cost of 10

if 80% full

15

RAID

 Redundant Array of Inexpensive Disks (RAID)

 A storage system, not a file system

 Patterson, Katz, and Gibson (Berkeley, 1988)

 Idea: Use many disks in parallel to increase storage

bandwidth, improve reliability

 Files are striped across disks

 Each stripe portion is read/written in parallel

 Bandwidth increases with more disks

RAID

16

17

RAID Challenges

 Small files (small writes less than a full stripe)

 Still write to one disk at a time

 Reliability

 More disks increases the chance of media failure (MTBF)

 Turn reliability problem into a feature

 Use one disk to store parity data

» XOR of all data blocks in stripe

 Can recover any data block from all others + parity block

 Hence “redundant” in name

 Introduces overhead, but, hey, disks are “inexpensive”

RAID with parity

18

+ + + =

19

RAID Levels

 In marketing literature, you will see RAID systems
advertised as supporting different “RAID Levels”

 Here are some common levels:
 RAID 0: Striping

» Good for random access (no reliability)

 RAID 1: Mirroring

» Two disks, write data to both (expensive, 1X storage overhead)

 RAID 5: Floating parity

» Parity blocks for different stripes written to different disks

» No single parity disk, hence no bottleneck at that disk

 RAID “10”: Striping plus mirroring

» Higher bandwidth, but still have large overhead

» See this on PC RAID disk cards

RAID 0

 RAID 0: Striping

 Good for random access (no reliability)

 Better read/write speed

20

RAID 1

 RAID 1: Mirroring

 Two disks, write data to both (expensive, 1X storage overhead)

21

RAID 5

 RAID 5: Floating parity

 Parity blocks for different stripes written to different disks

 No single parity disk, hence no bottleneck at that disk

 Fast read while slower write (parity computation)

22

RAID 1+0

 RAID “10”: Striping plus mirroring

 Higher bandwidth, but still have large overhead

 See this on PC RAID disk cards

23

24

Summary

 LFS

 Improve write performance by treating disk as a log

 Need to clean log complicates things

 RAID

 Spread data across disks and store parity on separate disk

