
CS 153

Design of Operating

Systems

Winter 2016

Lecture 20: File Systems

2

Protection

 File systems implement some kind of protection system

 Who can access a file

 How they can access it

 More generally…

 Objects are “what”, subjects are “who”, actions are “how”

 A protection system dictates whether a given action

performed by a given subject on a given object should

be allowed

 You can read and/or write your files, but others cannot

 You can read “/etc/motd”, but you cannot write to it

3

Representing Protection

Access Control Lists (ACL)

 For each object, maintain a list

of subjects and their permitted

actions

Capabilities

 For each subject, maintain a list

of objects and their permitted

actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects

Objects

ACL

Capability

4

ACLs and Capabilities

 The approaches differ only in how table is represented
 What approach does Unix use?

 Capabilities are easier to transfer
 They are like keys, can handoff, does not depend on subject

 In practice, ACLs are easier to manage
 Object-centric, easy to grant, revoke

 To revoke capabilities, have to keep track of all subjects that
have the capability – a challenging problem

 ACLs have a problem when objects are heavily shared
 The ACLs become very large

 Use groups (e.g., Unix)

5

File System Layout

How do file systems use the disk to store files?

 File systems define a block size (e.g., 4KB)

 Disk space is allocated in granularity of blocks

 A “Master Block” determines location of root directory

 Always at a well-known disk location

 Often replicated across disk for reliability

 A free map determines which blocks are free, allocated

 Usually a bitmap, one bit per block on the disk

 Also stored on disk, cached in memory for performance

 Remaining disk blocks used to store files (and dirs)

 There are many ways to do this

6

Disk Layout Strategies

 Files span multiple disk blocks

 How do you find all of the blocks for a file?

1. Contiguous allocation

» Like memory

» Fast, simplifies directory access

» Inflexible, causes fragmentation, needs compaction

2. Linked structure

» Each block points to the next, directory points to the first

» Bad for random access patterns

3. Indexed structure (indirection, hierarchy)

» An “index block” contains pointers to many other blocks

» Handles random better, still good for sequential

» May need multiple index blocks (linked together)

7

Unix Inodes

 Unix inodes implement an indexed structure for files

 Also store metadata info (protection, timestamps, length, ref count…)

 Each inode contains 15 block pointers

 First 12 are direct blocks (e.g., 4 KB blocks)

 Then single, double, and triple indirect

…

0

12
13
14

1

…

… …

 (Metadata)

 (1)

 (2)

 (3)

11

8

Unix Inodes and Path Search

 Unix Inodes are not directories

 Inodes describe where on disk the blocks for a file are placed

 Directories are files, so inodes also describe where the blocks for

directories are placed on the disk

 Directory entries map file names to inodes

 To open “/one”, use Master Block to find inode for “/” on disk

 Open “/”, look for entry for “one”

 This entry gives the disk block number for the inode for “one”

 Read the inode for “one” into memory

 The inode says where first data block is on disk

 Read that block into memory to access the data in the file

 This is why we have open in addition to read and write

9

File Buffer Cache

 Applications exhibit significant locality for reading and

writing files

 Idea: Cache file blocks in memory to capture locality

 This is called the file buffer cache

 Cache is system wide, used and shared by all processes

 Reading from the cache makes a disk perform like memory

 Even a 4 MB cache can be very effective

 Issues

 The file buffer cache competes with VM (tradeoff here)

 Like VM, it has limited size

 Need replacement algorithms again (LRU usually used)

10

Caching Writes

 On a write, some applications assume that data
makes it through the buffer cache and onto the disk
 As a result, writes are often slow even with caching

 Several ways to compensate for this
 “write-behind”

» Maintain a queue of uncommitted blocks

» Periodically flush the queue to disk

» Unreliable

 Battery backed-up RAM (NVRAM)

» As with write-behind, but maintain queue in NVRAM

» Expensive

 Log-structured file system

» Always write next block after last block written

» Complicated

11

Read Ahead

 Many file systems implement “read ahead”

 FS predicts that the process will request next block

 FS goes ahead and requests it from the disk

 This can happen while the process is computing on previous

block

» Overlap I/O with execution

 When the process requests block, it will be in cache

 Compliments the disk cache, which also is doing read ahead

 For sequentially accessed files can be a big win

 Unless blocks for the file are scattered across the disk

 File systems try to prevent that, though (during allocation)

Improving Performance

 Disk reads and writes take order of milliseconds

 Very slow compared to CPU and memory speeds

 How to speed things up?

 File buffer cache

 Cache writes

 Read ahead

12

16

FFS, LFS, RAID

 Now we’re going to look at some example file and

storage systems

 BSD Unix Fast File System (FFS)

 Log-structured File System (LFS)

 Redundant Array of Inexpensive Disks (RAID)

17

Fast File System

 The original Unix file system had a simple,

straightforward implementation

 Easy to implement and understand

 But very poor utilization of disk bandwidth (lots of seeking)

 BSD Unix folks did a redesign (mid 80s) that they called

the Fast File System (FFS)

 Improved disk utilization, decreased response time

 McKusick, Joy, Leffler, and Fabry

 Now the FS from which all other Unix FS’s are compared

 Good example of being device-aware for performance

18

Data and Inode Placement

Original Unix FS had two placement problems:

1. Data blocks allocated randomly in aging file systems
 Blocks for the same file allocated sequentially when FS is new

 As FS “ages” and fills, need to allocate into blocks freed up
when other files are deleted

 Problem: Deleted files essentially randomly placed

 So, blocks for new files become scattered across the disk

2. Inodes allocated far from blocks
 All inodes at beginning of disk, far from data

 Traversing file name paths, manipulating files, directories
requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

19

Summary

 Protection
 ACLs vs. capabilities

 File System Layouts
 Unix inodes

 File Buffer Cache
 Strategies for handling writes

 Read Ahead

 UNIX file system

 Indexed access to files using inodes

 FFS

 Improve performance by localizing files to cylinder groups

20

Next time…

 File system optimizations

