
CS 153 

Design of Operating 

Systems 

 

Winter 2016 

Lecture 20: File Systems 

 



2 

Protection 

 File systems implement some kind of protection system 

 Who can access a file 

 How they can access it 

 More generally… 

 Objects are “what”, subjects are “who”, actions are “how” 

 A protection system dictates whether a given action 

performed by a given subject on a given object should 

be allowed 

 You can read and/or write your files, but others cannot 

 You can read “/etc/motd”, but you cannot write to it 



3 

Representing Protection 

Access Control Lists (ACL) 

 For each object, maintain a list 

of subjects and their permitted 

actions 

 

Capabilities 

 For each subject, maintain a list 

of objects and their permitted 

actions 

/one /two /three 

Alice rw - rw 

Bob w - r 

Charlie w r rw 

Subjects 

Objects 

ACL 

Capability 



4 

ACLs and Capabilities 

 The approaches differ only in how table is represented 
 What approach does Unix use? 

 Capabilities are easier to transfer 
 They are like keys, can handoff, does not depend on subject 

 In practice, ACLs are easier to manage 
 Object-centric, easy to grant, revoke 

 To revoke capabilities, have to keep track of all subjects that 
have the capability – a challenging problem 

 ACLs have a problem when objects are heavily shared 
 The ACLs become very large 

 Use groups (e.g., Unix) 



5 

File System Layout 

How do file systems use the disk to store files? 

 File systems define a block size (e.g., 4KB) 

 Disk space is allocated in granularity of blocks 

 A “Master Block” determines location of root directory 

 Always at a well-known disk location 

 Often replicated across disk for reliability 

 A free map determines which blocks are free, allocated 

 Usually a bitmap, one bit per block on the disk 

 Also stored on disk, cached in memory for performance 

 Remaining disk blocks used to store files (and dirs) 

 There are many ways to do this 



6 

Disk Layout Strategies 

 Files span multiple disk blocks 

 How do you find all of the blocks for a file? 

1. Contiguous allocation 

» Like memory 

» Fast, simplifies directory access 

» Inflexible, causes fragmentation, needs compaction 

2. Linked structure 

» Each block points to the next, directory points to the first 

» Bad for random access patterns 

3. Indexed structure (indirection, hierarchy) 

» An “index block” contains pointers to many other blocks 

» Handles random better, still good for sequential 

» May need multiple index blocks (linked together) 



7 

Unix Inodes 

 Unix inodes implement an indexed structure for files 

 Also store metadata info (protection, timestamps, length, ref count…) 

 Each inode contains 15 block pointers 

 First 12 are direct blocks (e.g., 4 KB blocks) 

 Then single, double, and triple indirect 

… 

0 

12 
13 
14 

1 

… 

… … 

  (Metadata) 

  (1) 

  (2) 

  (3) 

11 



8 

Unix Inodes and Path Search 

 Unix Inodes are not directories 

 Inodes describe where on disk the blocks for a file are placed 

 Directories are files, so inodes also describe where the blocks for 

directories are placed on the disk 

 Directory entries map file names to inodes 

 To open “/one”, use Master Block to find inode for “/” on disk 

 Open “/”, look for entry for “one” 

 This entry gives the disk block number for the inode for “one” 

 Read the inode for “one” into memory 

 The inode says where first data block is on disk 

 Read that block into memory to access the data in the file 

 This is why we have open in addition to read and write 



9 

File Buffer Cache 

 Applications exhibit significant locality for reading and 

writing files 

 Idea: Cache file blocks in memory to capture locality 

 This is called the file buffer cache 

 Cache is system wide, used and shared by all processes 

 Reading from the cache makes a disk perform like memory 

 Even a 4 MB cache can be very effective 

 Issues 

 The file buffer cache competes with VM (tradeoff here) 

 Like VM, it has limited size 

 Need replacement algorithms again (LRU usually used) 



10 

Caching Writes 

 On a write, some applications assume that data 
makes it through the buffer cache and onto the disk 
 As a result, writes are often slow even with caching 

 Several ways to compensate for this 
 “write-behind” 

» Maintain a queue of uncommitted blocks 

» Periodically flush the queue to disk 

» Unreliable 

 Battery backed-up RAM (NVRAM) 

» As with write-behind, but maintain queue in NVRAM 

» Expensive 

 Log-structured file system 

» Always write next block after last block written 

» Complicated 



11 

Read Ahead 

 Many file systems implement “read ahead” 

 FS predicts that the process will request next block 

 FS goes ahead and requests it from the disk 

 This can happen while the process is computing on previous 

block 

» Overlap I/O with execution 

 When the process requests block, it will be in cache 

 Compliments the disk cache, which also is doing read ahead 

 For sequentially accessed files can be a big win 

 Unless blocks for the file are scattered across the disk 

 File systems try to prevent that, though (during allocation) 



Improving Performance 

 Disk reads and writes take order of milliseconds 

 Very slow compared to CPU and memory speeds 

 

 How to speed things up? 

 File buffer cache 

 Cache writes 

 Read ahead 

12 



16 

FFS, LFS, RAID 

 Now we’re going to look at some example file and 

storage systems 

 BSD Unix Fast File System (FFS) 

 Log-structured File System (LFS) 

 Redundant Array of Inexpensive Disks (RAID) 



17 

Fast File System 

 The original Unix file system had a simple, 

straightforward implementation 

 Easy to implement and understand 

 But very poor utilization of disk bandwidth (lots of seeking) 

 BSD Unix folks did a redesign (mid 80s) that they called 

the Fast File System (FFS) 

 Improved disk utilization, decreased response time 

 McKusick, Joy, Leffler, and Fabry 

 Now the FS from which all other Unix FS’s are compared 

 Good example of being device-aware for performance 



18 

Data and Inode Placement 

Original Unix FS had two placement problems: 

1. Data blocks allocated randomly in aging file systems 
 Blocks for the same file allocated sequentially when FS is new 

 As FS “ages” and fills, need to allocate into blocks freed up 
when other files are deleted 

 Problem: Deleted files essentially randomly placed 

 So, blocks for new files become scattered across the disk 

2. Inodes allocated far from blocks 
 All inodes at beginning of disk, far from data 

 Traversing file name paths, manipulating files, directories 
requires going back and forth from inodes to data blocks 

Both of these problems generate many long seeks 



19 

Summary 

 Protection 
 ACLs vs. capabilities 

 File System Layouts 
 Unix inodes 

 File Buffer Cache 
 Strategies for handling writes 

 Read Ahead 

 UNIX file system 

 Indexed access to files using inodes 

 FFS 

 Improve performance by localizing files to cylinder groups 

 

 



20 

Next time… 

 File system optimizations 


