
CS 153

Design of Operating

Systems

Winter 2016

Lecture 19: File Systems

OS Abstractions

2

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

3

File Systems

 First we’ll discuss properties of physical disks

 Structure

 Performance

 Scheduling

 Then we’ll discuss how we build file systems on them

 Files

 Directories

 Sharing

 Protection

 File System Layouts

 File Buffer Cache

 Read Ahead

4

Disks and the OS

 Disks are messy physical devices:

 Errors, bad blocks, missed seeks, etc.

 OS’s job is to hide this mess from higher level

software

 Low-level device control (initiate a disk read, etc.)

 Higher-level abstractions (files, databases, etc.)

5

Physical Disk Structure

 Disk components

 Platters

 Surfaces

 Tracks

 Sectors

 Cylinders

 Arm

 Heads

Arm

Heads Platter

Surface

Cylinder

Track

Sector

(512 bytes)

Arm

6

Disk Interaction

 Specifying disk requests requires a lot of info:

 Cylinder #, surface #, track #, sector #, transfer size…

 Older disks required the OS to specify all of this

 The OS needed to know all disk parameters

 Modern disks are more complicated

 Not all sectors are the same size, sectors are remapped, etc.

 Current disks provide a higher-level interface (SCSI)

 The disk exports its data as a logical array of blocks [0…N]

» Disk maps logical blocks to cylinder/surface/track/sector

 Only need to specify the logical block # to read/write

 But now the disk parameters are hidden from the OS

7

Disks Heterogeneity

 Seagate Barracuda 3.5" (workstation)

 capacity: 250 - 750 GB

 rotational speed: 7,200 RPM

 sequential read performance: 78 MB/s (outer) - 44 MB/s (inner)

 seek time (average): 8.1 ms

 Seagate Cheetah 3.5" (server)

 capacity: 73 - 300 GB

 rotational speed: 15,000 RPM

 sequential read performance: 135 MB/s (outer) - 82 MB/s (inner)

 seek time (average): 3.8 ms

 Seagate Savvio 2.5" (smaller form factor)

 capacity: 73 GB

 rotational speed: 10,000 RPM

 sequential read performance: 62 MB/s (outer) - 42 MB/s (inner)

 seek time (average): 4.3 ms

8

Disk Performance

 What does disk performance depend upon?

 Seek – moving the disk arm to the correct cylinder

» Depends on how fast disk arm can move (increasing very slowly)

 Rotation – waiting for the sector to rotate under the head

» Depends on rotation rate of disk (increasing, but slowly)

 Transfer – transferring data from surface into disk controller

electronics, sending it back to the host

» Depends on density (increasing quickly)

 When the OS uses the disk, it tries to minimize the cost

of all of these steps

 Particularly seeks and rotation

9

Disk Scheduling

 Because seeks are so expensive (milliseconds!), OS
schedules requests that are queued waiting for the disk
 FCFS (do nothing)

» Reasonable when load is low

» Does nothing to minimize overhead of seeks

 SSTF (shortest seek time first)

» Minimize arm movement (seek time), maximize request rate

» Favors middle blocks, potential starvation of blocks at ends

 SCAN (elevator)

» Service requests in one direction until done, then reverse

» Long waiting times for blocks at ends

 C-SCAN

» Like SCAN, but only go in one direction (typewriter)

10

Disk Scheduling (2)

 In general, unless there are request queues, disk

scheduling does not have much impact

 Important for servers, less so for PCs

 Modern disks often do the disk scheduling themselves

 Disks know their layout better than OS, can optimize better

 Ignores, undoes any scheduling done by OS

11

File Systems

 File systems

 Implement an abstraction (files) for secondary storage

 Organize files logically (directories)

 Permit sharing of data between processes, people, and

machines

 Protect data from unwanted access (security)

12

Files

 A file is a sequence of bytes with some properties

 Owner, last read/write time, protection, etc.

 A file can also have a type

 Understood by the file system

» Block, character, device, portal, link, etc.

 Understood by other parts of the OS or runtime libraries

» Executable, dll, souce, object, text, etc.

 A file’s type can be encoded in its name or contents

 Windows encodes type in name

» .com, .exe, .bat, .dll, .jpg, etc.

 Unix encodes type in contents

» Magic numbers, initial characters (e.g., #! for shell scripts)

13

Basic File Operations

Unix

 creat(name)

 open(name, how)

 read(fd, buf, len)

 write(fd, buf, len)

 sync(fd)

 seek(fd, pos)

 close(fd)

 unlink(name)

NT

 CreateFile(name, CREATE)

 CreateFile(name, OPEN)

 ReadFile(handle, …)

 WriteFile(handle, …)

 FlushFileBuffers(handle, …)

 SetFilePointer(handle, …)

 CloseHandle(handle, …)

 DeleteFile(name)

 CopyFile(name)

 MoveFile(name)

14

File Access Methods

 Different file systems differ in the manner that data in a

file can be accessed

 Sequential access – read bytes one at a time, in order

 Direct access – random access given block/byte number

 Record access – file is array of fixed- or variable-length

records, read/written sequentially or randomly by record #

 Indexed access – file system contains an index to a particular

field of each record in a file, reads specify a value for that field

and the system finds the record via the index (DBs)

 Older systems provide more complicated methods

 What file access method do Unix, Windows provide?

15

Directories

 Directories serve two purposes

 For users, they provide a structured way to organize files

 For the file system, they provide a convenient naming interface

that allows the implementation to separate logical file organization

from physical file placement on the disk

 Most file systems support multi-level directories

 Naming hierarchies (/, /usr, /usr/local/, …)

 Most file systems support the notion of a current directory

 Relative names specified with respect to current directory

 Absolute names start from the root of directory tree

16

Directory Internals

 A directory is a list of entries

 <name, location>

 Name is just the name of the file or directory

 Location depends upon how file is represented on disk

 List is usually unordered (effectively random)

 Entries usually sorted by program that reads directory

 Directories typically stored in files

 Only need to manage one kind of secondary storage unit

17

Basic Directory Operations

Unix

 Directories implemented in files

 Use file ops to create dirs

 C runtime library provides a

higher-level abstraction for

reading directories

 opendir(name)

 readdir(DIR)

 seekdir(DIR)

 closedir(DIR)

Windows

 Explicit dir operations

 CreateDirectory(name)

 RemoveDirectory(name)

 Very different method for

reading directory entries

 FindFirstFile(pattern)

 FindNextFile()

18

Path Name Translation

 Let’s say you want to open “/one/two/three”

 What does the file system do?

 Open directory “/” (well known, can always find)

 Search for the entry “one”, get location of “one” (in dir entry)

 Open directory “one”, search for “two”, get location of “two”

 Open directory “two”, search for “three”, get location of “three”

 Open file “three”

 Systems spend a lot of time walking directory paths

 This is why open is separate from read/write

 OS will cache prefix lookups for performance

» /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

19

File Sharing

 File sharing is important for getting work done

 Basis for communication between processes and users

 Two key issues when sharing files

 Semantics of concurrent access

» What happens when one process reads while another writes?

» What happens when two processes open a file for writing?

 Protection

20

Summary

 Files
 Operations, access methods

 Directories
 Operations, using directories to do path searches

 Sharing

21

Next time…

 File system optimizations

