CS 153
Design of Operating
Systems

Winter 2016

Lecture 19: File Systems



OS Abstractions

Applications

Process Virtual memory File system

Operating System

CPU RAM Disk




File Systems

o First we'll discuss properties of physical disks
+ Structure
+ Performance
+ Scheduling

o Then we’ll discuss how we build file systems on them
+ Files
+ Directories
+ Sharing
+ Protection
+ File System Layouts
+ File Buffer Cache
+ Read Ahead



Disks and the OS

o Disks are messy physical devices:
+ Errors, bad blocks, missed seeks, etc.

« OS's job is to hide this mess from higher level
software
+ Low-level device control (initiate a disk read, etc.)
+ Higher-level abstractions (files, databases, etc.)



Physical Disk Structure

o Disk components

Platters \ Surtace
Surfaces - —

Tracks
Sectors \ Cylinder
Cylinders Heads Platter

Arm

Heads Arm

* & 6 O o o o

Sector
(512 bytes)




Disk Interaction

o Specifying disk requests requires a lot of info:
+ Cylinder #, surface #, track #, sector #, transfer size...

o Older disks required the OS to specify all of this

+ The OS needed to know all disk parameters

o Modern disks are more complicated
+ Not all sectors are the same size, sectors are remapped, etc.

o Current disks provide a higher-level interface (SCSI)

+ The disk exports its data as a logical array of blocks [0...N]
» Disk maps logical blocks to cylinder/surface/track/sector
+ Only need to specify the logical block # to read/write

+ But now the disk parameters are hidden from the OS



Disks Heterogeneity

o Seagate Barracuda 3.5" (workstation)
+ capacity: 250 - 750 GB
+ rotational speed: 7,200 RPM
+ sequential read performance: 78 MB/s (outer) - 44 MB/s (inner)
+ seek time (average): 8.1 ms
o Seagate Cheetah 3.5" (server)
+ capacity: 73 - 300 GB
+ rotational speed: 15,000 RPM
+ sequential read performance: 135 MB/s (outer) - 82 MB/s (inner)
+ seektime (average): 3.8 ms
o Seagate Savvio 2.5" (smaller form factor)
+ capacity: 73 GB
+ rotational speed: 10,000 RPM
+ sequential read performance: 62 MB/s (outer) - 42 MB/s (inner)
+ seektime (average): 4.3 ms



Disk Performance

o What does disk performance depend upon?
+ Seek — moving the disk arm to the correct cylinder
» Depends on how fast disk arm can move (increasing very slowly)

+ Rotation — waiting for the sector to rotate under the head
» Depends on rotation rate of disk (increasing, but slowly)

+ Transfer — transferring data from surface into disk controller
electronics, sending it back to the host

» Depends on density (increasing quickly)
« When the OS uses the disk, it tries to minimize the cost
of all of these steps
+ Particularly seeks and rotation



Disk Scheduling

o Because seeks are so expensive (milliseconds!), OS
schedules requests that are queued waiting for the disk
+ FCFS (do nothing)
» Reasonable when load is low
» Does nothing to minimize overhead of seeks
+ SSTF (shortest seek time first)
» Minimize arm movement (seek time), maximize request rate
» Favors middle blocks, potential starvation of blocks at ends
+ SCAN (elevator)

» Service requests in one direction until done, then reverse
» Long waiting times for blocks at ends

+ C-SCAN
» Like SCAN, but only go in one direction (typewriter)



Disk Scheduling (2)

o In general, unless there are request queues, disk
scheduling does not have much impact
+ Important for servers, less so for PCs

o Modern disks often do the disk scheduling themselves
+ Disks know their layout better than OS, can optimize better
+ Ignores, undoes any scheduling done by OS

10



File Systems

o File systems

*

*

*

Implement an abstraction (files) for secondary storage
Organize files logically (directories)

Permit sharing of data between processes, people, and
machines

Protect data from unwanted access (security)

11



Files

o A file is a sequence of bytes with some properties
+ Owner, last read/write time, protection, etc.

o A file can also have a type
+ Understood by the file system
» Block, character, device, portal, link, etc.

+ Understood by other parts of the OS or runtime libraries
» Executable, dll, souce, object, text, etc.

o Afile’s type can be encoded in its name or contents
+ Windows encodes type in name
» .com, .exe, .bat, .dll, .jpg, etc.

+ Unix encodes type in contents
» Magic numbers, initial characters (e.qg., #! for shell scripts)

12



Basic File Operations

Unix

o creat(name)

o oOpen(name, how)
o read(fd, buf, len)

o write(fd, buf, len)

o sync(fd)

o Seek(fd, pos)

o close(fd)

o unlink(name)

o CreateFile(name, CREATE)
o CreateFile(name, OPEN)

« ReadFile(handle, ...)

o WriteFile(handle, ...)

o FlushFileBuffers(handle, ...)
o SetFilePointer(handle, ...)

o CloseHandle(handle, ...)

o DeleteFile(name)

o CopyFile(name)

o MoveFile(name)

13



File Access Methods

« Different file systems differ in the manner that data in a
file can be accessed

*

*

*

Sequential access — read bytes one at a time, in order
Direct access — random access given block/byte number

Record access — file is array of fixed- or variable-length
records, read/written sequentially or randomly by record #

Indexed access — file system contains an index to a particular
field of each record in a file, reads specify a value for that field
and the system finds the record via the index (DBSs)

o Older systems provide more complicated methods
o What file access method do Unix, Windows provide?

14



Directories

o Directories serve two purposes
+ For users, they provide a structured way to organize files

+ For the file system, they provide a convenient naming interface
that allows the implementation to separate logical file organization
from physical file placement on the disk

o Most file systems support multi-level directories
+ Naming hierarchies (/, /usr, /usr/locall, ...)

o Most file systems support the notion of a current directory
+ Relative names specified with respect to current directory
+ Absolute names start from the root of directory tree

15



Directory Internals

o A directory is a list of entries
+ <name, location>
+ Name is just the name of the file or directory
+ Location depends upon how file is represented on disk

o Listis usually unordered (effectively random)
+ Entries usually sorted by program that reads directory

« Directories typically stored in files
+ Only need to manage one kind of secondary storage unit

16



Basic Directory Operations

Unix Windows
o Directories implemented in files o EXxplicit dir operations
+ Use file ops to create dirs + CreateDirectory(name)

« C runtime library provides a + RemoveDirectory(name)
higher-level abstraction for « Very different method for
reading directories reading directory entries

+ opendir(name) + FindFirstFile(pattern)
+ readdir(DIR) + FindNextFile()

+ Seekdir(DIR)
+ Closedir(DIR)



Path Name Translation

o Let's say you want to open “/one/two/three”
o What does the file system do?

*

*

*

*

*

Open directory “/” (well known, can always find)
Search for the entry “one”, get location of “one” (in dir entry)
Open directory “one”, search for “two”, get location of “two”

Open directory “two”, search for “three”, get location of “three”

Open file “three”

o Systems spend a lot of time walking directory paths
+ This is why open is separate from read/write

*

OS will cache prefix lookups for performance
» [alb, /a/bb, /a/bbb, etc., all share “/a” prefix

18



File Sharing

o File sharing is important for getting work done
+ Basis for communication between processes and users

« Two key issues when sharing files

+ Semantics of concurrent access
» What happens when one process reads while another writes?
» What happens when two processes open a file for writing?

+ Protection

19



Summary

o Files
+ Operations, access methods

o Directories
+ Operations, using directories to do path searches

o Sharing

20



Next time...

o File system optimizations

21



