
CS 153

Design of Operating

Systems

Winter 2016

Lecture 19: File Systems

OS Abstractions

2

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

3

File Systems

 First we’ll discuss properties of physical disks

 Structure

 Performance

 Scheduling

 Then we’ll discuss how we build file systems on them

 Files

 Directories

 Sharing

 Protection

 File System Layouts

 File Buffer Cache

 Read Ahead

4

Disks and the OS

 Disks are messy physical devices:

 Errors, bad blocks, missed seeks, etc.

 OS’s job is to hide this mess from higher level

software

 Low-level device control (initiate a disk read, etc.)

 Higher-level abstractions (files, databases, etc.)

5

Physical Disk Structure

 Disk components

 Platters

 Surfaces

 Tracks

 Sectors

 Cylinders

 Arm

 Heads

Arm

Heads Platter

Surface

Cylinder

Track

Sector

(512 bytes)

Arm

6

Disk Interaction

 Specifying disk requests requires a lot of info:

 Cylinder #, surface #, track #, sector #, transfer size…

 Older disks required the OS to specify all of this

 The OS needed to know all disk parameters

 Modern disks are more complicated

 Not all sectors are the same size, sectors are remapped, etc.

 Current disks provide a higher-level interface (SCSI)

 The disk exports its data as a logical array of blocks [0…N]

» Disk maps logical blocks to cylinder/surface/track/sector

 Only need to specify the logical block # to read/write

 But now the disk parameters are hidden from the OS

7

Disks Heterogeneity

 Seagate Barracuda 3.5" (workstation)

 capacity: 250 - 750 GB

 rotational speed: 7,200 RPM

 sequential read performance: 78 MB/s (outer) - 44 MB/s (inner)

 seek time (average): 8.1 ms

 Seagate Cheetah 3.5" (server)

 capacity: 73 - 300 GB

 rotational speed: 15,000 RPM

 sequential read performance: 135 MB/s (outer) - 82 MB/s (inner)

 seek time (average): 3.8 ms

 Seagate Savvio 2.5" (smaller form factor)

 capacity: 73 GB

 rotational speed: 10,000 RPM

 sequential read performance: 62 MB/s (outer) - 42 MB/s (inner)

 seek time (average): 4.3 ms

8

Disk Performance

 What does disk performance depend upon?

 Seek – moving the disk arm to the correct cylinder

» Depends on how fast disk arm can move (increasing very slowly)

 Rotation – waiting for the sector to rotate under the head

» Depends on rotation rate of disk (increasing, but slowly)

 Transfer – transferring data from surface into disk controller

electronics, sending it back to the host

» Depends on density (increasing quickly)

 When the OS uses the disk, it tries to minimize the cost

of all of these steps

 Particularly seeks and rotation

9

Disk Scheduling

 Because seeks are so expensive (milliseconds!), OS
schedules requests that are queued waiting for the disk
 FCFS (do nothing)

» Reasonable when load is low

» Does nothing to minimize overhead of seeks

 SSTF (shortest seek time first)

» Minimize arm movement (seek time), maximize request rate

» Favors middle blocks, potential starvation of blocks at ends

 SCAN (elevator)

» Service requests in one direction until done, then reverse

» Long waiting times for blocks at ends

 C-SCAN

» Like SCAN, but only go in one direction (typewriter)

10

Disk Scheduling (2)

 In general, unless there are request queues, disk

scheduling does not have much impact

 Important for servers, less so for PCs

 Modern disks often do the disk scheduling themselves

 Disks know their layout better than OS, can optimize better

 Ignores, undoes any scheduling done by OS

11

File Systems

 File systems

 Implement an abstraction (files) for secondary storage

 Organize files logically (directories)

 Permit sharing of data between processes, people, and

machines

 Protect data from unwanted access (security)

12

Files

 A file is a sequence of bytes with some properties

 Owner, last read/write time, protection, etc.

 A file can also have a type

 Understood by the file system

» Block, character, device, portal, link, etc.

 Understood by other parts of the OS or runtime libraries

» Executable, dll, souce, object, text, etc.

 A file’s type can be encoded in its name or contents

 Windows encodes type in name

» .com, .exe, .bat, .dll, .jpg, etc.

 Unix encodes type in contents

» Magic numbers, initial characters (e.g., #! for shell scripts)

13

Basic File Operations

Unix

 creat(name)

 open(name, how)

 read(fd, buf, len)

 write(fd, buf, len)

 sync(fd)

 seek(fd, pos)

 close(fd)

 unlink(name)

NT

 CreateFile(name, CREATE)

 CreateFile(name, OPEN)

 ReadFile(handle, …)

 WriteFile(handle, …)

 FlushFileBuffers(handle, …)

 SetFilePointer(handle, …)

 CloseHandle(handle, …)

 DeleteFile(name)

 CopyFile(name)

 MoveFile(name)

14

File Access Methods

 Different file systems differ in the manner that data in a

file can be accessed

 Sequential access – read bytes one at a time, in order

 Direct access – random access given block/byte number

 Record access – file is array of fixed- or variable-length

records, read/written sequentially or randomly by record #

 Indexed access – file system contains an index to a particular

field of each record in a file, reads specify a value for that field

and the system finds the record via the index (DBs)

 Older systems provide more complicated methods

 What file access method do Unix, Windows provide?

15

Directories

 Directories serve two purposes

 For users, they provide a structured way to organize files

 For the file system, they provide a convenient naming interface

that allows the implementation to separate logical file organization

from physical file placement on the disk

 Most file systems support multi-level directories

 Naming hierarchies (/, /usr, /usr/local/, …)

 Most file systems support the notion of a current directory

 Relative names specified with respect to current directory

 Absolute names start from the root of directory tree

16

Directory Internals

 A directory is a list of entries

 <name, location>

 Name is just the name of the file or directory

 Location depends upon how file is represented on disk

 List is usually unordered (effectively random)

 Entries usually sorted by program that reads directory

 Directories typically stored in files

 Only need to manage one kind of secondary storage unit

17

Basic Directory Operations

Unix

 Directories implemented in files

 Use file ops to create dirs

 C runtime library provides a

higher-level abstraction for

reading directories

 opendir(name)

 readdir(DIR)

 seekdir(DIR)

 closedir(DIR)

Windows

 Explicit dir operations

 CreateDirectory(name)

 RemoveDirectory(name)

 Very different method for

reading directory entries

 FindFirstFile(pattern)

 FindNextFile()

18

Path Name Translation

 Let’s say you want to open “/one/two/three”

 What does the file system do?

 Open directory “/” (well known, can always find)

 Search for the entry “one”, get location of “one” (in dir entry)

 Open directory “one”, search for “two”, get location of “two”

 Open directory “two”, search for “three”, get location of “three”

 Open file “three”

 Systems spend a lot of time walking directory paths

 This is why open is separate from read/write

 OS will cache prefix lookups for performance

» /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

19

File Sharing

 File sharing is important for getting work done

 Basis for communication between processes and users

 Two key issues when sharing files

 Semantics of concurrent access

» What happens when one process reads while another writes?

» What happens when two processes open a file for writing?

 Protection

20

Summary

 Files
 Operations, access methods

 Directories
 Operations, using directories to do path searches

 Sharing

21

Next time…

 File system optimizations

