
CS 153

Design of Operating

Systems

Winter 2016

Lecture 18: Page Replacement

2

Terminology in Paging

 A virtual page corresponds to physical page/frame

 “Segment” should not be used anywhere

 Page out = Page eviction

 When we say “evict a page”, it means we transfer the

physical page/frame to disk, and then set the valid bit

off in the corresponding page table entry.

 When we say “load a page from disk to memory”, it

means that we load 4KB of data from disk to fill the

physical page/frame.

3

Terminology in Paging

 Page Fault can happen when

 PTE not found after TLB looks up the page table

 PTE not valid in TLB

 PTE protection fault in TLB

 TLB hit = PTE present in TLB

 Does not guarantee free of page fault

4

Memory Management

 Mechanisms for memory management

 Physical and virtual addressing (1)

 Techniques: Partitioning, paging, segmentation (1)

 Page table management, TLBs, VM tricks (2)

 Mechanism vs. Policy

 (Card key, Payroll department examples)

 Covered paging mechanisms

 Policies

 Page replacement algorithms (3)

6

Demand Paging (OS)

 Recall demand paging from the OS perspective:

 Pages are evicted to disk when memory is full

 Pages loaded from disk when referenced again

 References to evicted pages cause a TLB miss

» PTE was invalid, causes fault

 OS allocates a page frame, reads page from disk

 When I/O completes, the OS fills in PTE, marks it valid, and

restarts faulting process

 Dirty vs. clean pages

 Actually, only dirty pages (modified) need to be written to disk

 Clean pages do not – but you need to know where on disk to

read them from again

7

Demand Paging (Process)

 Demand paging is also used when a process first

starts up

 When a process is created, it has

 A brand new page table with all valid bits off

 No pages in memory

 When the process starts executing

 Instructions fault on code and data pages

 Faulting stops when all necessary code and data pages are in

memory

 Only code and data needed by a process needs to be loaded

 This, of course, changes over time…

8

Page Replacement

 When a page fault occurs, the OS loads the faulted page

from disk into a page frame of memory

 At some point, two of the following may happen:

 The process has used all of the page frames it is allowed to use

» This is likely (much) less than all of available memory

 Physical memory is used up

 When either happens, the OS must replace a page for

each page faulted in

 It must evict a page to free up a page frame

 Page replacement algorithm determines which page to

evict

Virtual Memory

Physical Memory

In-use

9

Page Out / Page Eviction

Page 1

Page 2

Page 3

Page N

In-use

In-use

Disk

Virtual Memory

Physical Memory

In-use In-use

10

Page Out / Page Eviction

Page 1

Page 2

Page 3

Page N

In-use

In-use

Disk

11

Locality

 All paging schemes depend on locality

 High cost of paging is acceptable, if infrequent

 Processes usually reference pages in localized patterns,

making paging practical

 Temporal locality

 Locations referenced recently likely to be referenced again

 Ex: counter variable used in a for loop

 Spatial locality

 Locations near recently referenced locations are likely to be

referenced soon

 Ex: when you iteratively access elements in an array

12

Evicting the Best Page

 The goal of the replacement algorithm is to reduce the

fault rate by selecting the best victim page to remove

 The best page to evict is the one never touched again

 Will never fault on it

 Never is a long time, so picking the page closest to

“never” is the next best thing

 Evicting the page that won’t be used for the longest period of

time minimizes the number of page faults

 Proved by Belady

 We’re now going to survey various replacement

algorithms, starting with Belady’s

13

Belady’s Algorithm

 Belady’s algorithm is known as the optimal page

replacement algorithm because it has the lowest fault

rate for any page reference stream

 Idea: Replace the page that will not be used for the longest

time in the future

 Problem: Have to predict the future

 Why is Belady’s useful then?

 Use it as a yardstick

 Compare implementations of page replacement algorithms

with the optimal to gauge room for improvement

 If optimal is not much better, then algorithm is pretty good

 If optimal is much better, then algorithm could use some work

» Random replacement is often the lower bound

14

First-In First-Out (FIFO)

 FIFO is an obvious algorithm and simple to implement

 Maintain a list of pages in order in which they were paged in

 On replacement, evict the one brought in longest time ago

 Why might this be good?

 Maybe the one brought in the longest ago is not being used

 Why might this be bad?

 Then again, maybe it’s not

 We don’t have any info to say one way or the other

 FIFO suffers from “Belady’s Anomaly”

 The fault rate might actually increase when the algorithm is

given more memory (very bad)

15

Least Recently Used (LRU)

 LRU uses reference information to make a more

informed replacement decision

 Idea: We can’t predict the future, but we can make a guess

based upon past experience

 On replacement, evict the page that has not been used for the

longest time in the past (Belady’s: future)

 When does LRU do well? When does LRU do poorly?

 Implementation

 To be perfect, need to time stamp every reference (or

maintain a stack) – much too costly

 So we need to approximate it

16

Approximating LRU

 LRU approximations use the PTE reference bit

 Keep a counter for each page

 At regular intervals, for every page do:

» If ref bit = 0, increment counter

» If ref bit = 1, zero the counter

» Zero the reference bit

 The counter will contain the number of intervals since the last

reference to the page

 The page with the largest counter is the least recently used

 Some architectures don’t have a reference bit

 Can simulate reference bit using the valid bit to induce faults

LRU Approximation

17

Reference bits LRU counter

Problem: Overhead of one counter value per page

18

LRU Clock

(Not Recently Used)

 Not Recently Used (NRU) – Used by Unix
 Replace page that is “old enough”

 Arrange all of physical page frames in a big circle (clock)

 A clock hand is used to select a good LRU candidate

» Sweep through the pages in circular order like a clock

» If the ref bit is off, it hasn’t been used recently

 minimum “age” allowed?

» If the ref bit is on, turn it off and go to next page

 Arm moves quickly when pages are needed

 Low overhead when plenty of memory

LRU Clock

19

P1: 1

P2: 1

P3: 1

P8: 0

P7: 0

P6: 0

P5: 1

P4: 0

P1: 0

P2: 0

P3: 0

P8: 1

P7: 0

P6: 0

P5: 1

P4: 0

Example: gcc Page Replace

20

Example: Belady’s Anomaly

21

22

Fixed vs. Variable Space

 In a multiprogramming system, we need a way to
allocate memory to competing processes

 Problem: How to determine how much memory to give
to each process?
 Fixed space algorithms

» Each process is given a limit of pages it can use

» When it reaches the limit, it replaces from its own pages

» Local replacement

 Some processes may do well while others suffer

 Variable space algorithms

» Process’ set of pages grows and shrinks dynamically

» Global replacement

 One process can ruin it for the rest

23

Working Set Model

 A working set of a process is used to model the

dynamic locality of its memory usage

 Defined by Peter Denning in 60s

 Definition

 WS(t,w) = {set of pages P, such that every page in P was

referenced in the time interval (t, t-w)}

 t – time, w – working set window (measured in page refs)

 A page is in the working set (WS) only if it was

referenced in the last w references

24

Working Set Size

 The working set size is the number of pages in the

working set

 The number of pages referenced in the interval (t, t-w)

 The working set size changes with program locality

 During periods of poor locality, you reference more pages

 Within that period of time, the working set size is larger

 Intuitively, want the working set to be the set of pages

a process needs in memory to prevent heavy faulting

 Each process has a parameter w that determines a working

set with few faults

 Denning: Don’t run a process unless working set is in memory

Example: gcc Working Set

25

26

Working Set Problems

 Problems

 How do we determine w?

 How do we know when the working set changes?

 Too hard to answer

 So, working set is not used in practice as a page replacement

algorithm

 However, it is still used as an abstraction

 The intuition is still valid

 When people ask, “How much memory does Firefox need?”,

they are in effect asking for the size of Firefox’s working set

27

Page Fault Frequency (PFF)

 Page Fault Frequency (PFF) is a variable space

algorithm that uses a more ad-hoc approach

 Monitor the fault rate for each process

 If the fault rate is above a high threshold, give it more memory

» So that it faults less

» But not always (FIFO, Belady’s Anomaly)

 If the fault rate is below a low threshold, take away memory

» Should fault more

» But not always

 Hard to use PFF to distinguish between changes in

locality and changes in size of working set

 High fault rate may be due to locality change, but the working

set size may be similar

28

Thrashing

 Page replacement algorithms avoid thrashing

 When most of the time is spent by the OS in paging data back

and forth from disk

 No time spent doing useful work (making progress)

 In this situation, the system is overcommitted

» No idea which pages should be in memory to reduce faults

» Could just be that there isn’t enough physical memory for all of

the processes in the system

» Ex1: Running Windows95 with 4 MB of memory…

» Ex2: Minimum memory requirement by games

 Possible solutions

» Swapping – write out all pages of a process

» Buy more memory

29

Summary

 Page replacement algorithms

 Belady’s – optimal replacement (minimum # of faults)

 FIFO – replace page loaded furthest in past

 LRU – replace page referenced furthest in past

» Approximate using PTE reference bit

 LRU Clock – replace page that is “old enough”

 Multiprogramming

 Should a process replace its own page, or that of another?

