CS 153
Design of Operating
Systems

Winter 2016

Lecture 16: Memory Management and
Paging

Announcement

« Homework 2 is out
+ To be posted on ilearn today
+ Due in a week (the end of Feb 19t).

Recap: Fixed Partitions

Physical Memory

Base Register P1
P4’s Base

P2

P3

Virtual Address

Offset >+
__/ P4

PS5

Y

Recap: Paging

o Paging solves the external fragmentation problem by
using fixed sized units in both physical and virtual
memory

Physical Memory

Virtual Memory

Page 1

Page 2

Page 3

Pagehl*\\\\\\\\\\\\\\\\\\\)

Segmentation

o Segmentation is a technique that partitions memory
Into logically related data units
+ Module, procedure, stack, data, file, etc.
+ Units of memory from user’'s perspective

o Natural extension of variable-sized partitions

+ Variable-sized partitions = 1 segment/process

+ Segmentation = many segments/process

+ Fixed partition : Paging :: Variable partition : Segmentation
o Hardware support

+ Multiple base/limit pairs, one per segment (segment table)

+ Segments named by #, used to index into table

+ Virtual addresses become <segment #, offset>

Segmentation

Program perspective Physical memory

Segment Lookups

—

Segment #

Offset

Virtual Address

Segment Table

Y

limit

base

Y

es?

Physical Memory

No?

Protection Fault

Y

Segmentation Example

o Assuming we have 4 segments, we need 2 bits In

virtual address to represent it
2 30
Seg# Offset

o 0x01234567 goes to segment #0, whose base is
0x01000000, then physical address is
0x02234567

Segmentation fault?

Segmentation and Paging

« Can combine segmentation and paging
+ The x86 supports segments and paging

o Use segments to manage logically related units
+ Module, procedure, stack, file, data, etc.
+ Segments vary in size, but usually large (multiple pages)

o Use pages to partition segments into fixed size chunks

+ Makes segments easier to manage within physical memory

» Segments become “pageable” — rather than moving segments
into and out of memory, just move page portions of segment

+ Need to allocate page table entries only for those pieces of
the segments that have themselves been allocated

o Tends to be complex...

10

Managing Page Tables

o Last lecture we computed the size of the page table
for a 32-bit address space w/ 4K pages to be 4MB
+ This is far too much overhead for each process

« How can we reduce this overhead?

+ Observation: Only need to map the portion of the address
space actually being used (tiny fraction of entire addr space)

« How do we only map what is being used?
+ Can dynamically extend page table

« Use another level of indirection: two-level page tables

11

Two-Level Page Tables

o Two-level page tables
+ Virtual addresses (VAs) have three parts:
» Master page number, secondary page number, and offset
+ Master page table maps VAs to secondary page table
+ Secondary page table maps page number to physical page
+ Offset indicates where in physical page address is located

12

Page Lookups

Physical Memory

Virtual Address

Page number Offset

Physical Address

Page Table

Y

Page frame Offset

- Page frame -/

13

Two-Level Page Tables

Physical Memory

Virtual Address

Master page number Secondary Offset

Physical Address

Page table

Y

Page frame Offset

Master Page Table
Page frame

Secondary Page Table

14

Example

« How many bits in offset? 4K = 12 bits
o 4KB pages, 4 bytes/PTE

o Want master page table in one page: 4K/4 bytes = 1K
entries

o Hence, 1K secondary page tables

o How many bits?
+ Master page number = 10 bits (because 1K entries)
+ Offset =12 bits
+ Secondary page number =32 - 10 - 12 = 10 bits

15

Addressing Page Tables

Where do we store page tables (which address space)?

o Physical memory
+ Easy to address, no translation required
+ But, allocated page tables consume memory for lifetime of VAS

 Virtual memory (OS virtual address space)

+ Cold (unused) page table pages can be paged out to disk
+ But, addressing page tables requires translation

+ How do we stop recursion?

+ Do not page the outer page table (called wiring)

o If we're going to page the page tables, might as well
page the entire OS address space, too
+ Need to wire special code and data (fault, interrupt handlers)

16

Page Table in Physical Memory

Virtual Address

Page number

Offset

Page Table

Physical Address

Physical Memory

Page frame Offset

Y

Page frame

Base Addr

e Page table of P2

Page table of P1

Register storing page table’s
physical addr
17

Two-level Paging

o Two-level paging reduces memory overhead of paging

+ Only need one master page table and one secondary page
table when a process begins

+ As address space grows, allocate more secondary page
tables and add PTEs to master page table

o What problem remains?
+ Hint: what about memory lookups?

19

Efficient Translations

o Recall that our original page table scheme doubled the
latency of doing memory lookups
+ One lookup into the page table, another to fetch the data

« Now two-level page tables triple the latency!
+ Two lookups into the page tables, a third to fetch the data
+ And this assumes the page table is in memory

« How can we use paging but also have lookups cost
about the same as fetching from memory?
+ Cache translations in hardware
+ Translation Lookaside Buffer (TLB)
+ TLB managed by Memory Management Unit (MMU)

20

TLBs

o Translation Lookaside Buffers
+ Translate virtual page #s into PTEs (not physical addrs)
+ Can be done in a single machine cycle

o TLBs implemented in hardware

+ Fully associative cache (all entries looked up in parallel)
» Keys are virtual page numbers
» Values are PTEs (entries from page tables)

+ With PTE + offset, can directly calculate physical address
o Why does this help?

+ Exploits locality: Processes use only handful of pages at a time
» 16-48 entries/pages (64-192K)
» Only need those pages to be “mapped”

+ Hit rates are therefore very important

21

TLB Hit

CPU Chip LB

9 PTE
VPN e

w

VA PA

CPU MMU o > Cache/
] Memory

Data
o

A TLB hit eliminates one or more memory accesses

22

Managing TLBs

o Hit rate: Address translations for most instructions are
handled using the TLB

+ >99% of translations, but there are misses (TLB miss)...

o Who places translations into the TLB (loads the TLB)?

+ Hardware (Memory Management Unit) [x86]
» Knows where page tables are in main memory
» OS maintains tables, HW accesses them directly
» Tables have to be in HW-defined format (inflexible)
+ Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]
» TLB faults to the OS, OS finds appropriate PTE, loads it in TLB
» Must be fast (but still 20-200 cycles)
» CPU ISA has instructions for manipulating TLB
» Tables can be in any format convenient for OS (flexible)

23

Managing TLBs (2)

o OS ensures that TLB and page tables are consistent

+ When it changes the protection bits of a PTE, it needs to
iInvalidate the PTE if it is in the TLB (special hardware
Instruction)

« Reload TLB on a process context switch

+ Invalidate all entries

+ Why? Who does it?

« When the TLB misses and a new PTE has to be
loaded, a cached PTE must be evicted
+ Choosing PTE to evict is called the TLB replacement policy

+ Implemented in hardware, often simple, e.g., Least Recently
Used (LRU)

24

Summary

o Virtual memory
+ Fixed partitions — easy to use, but internal fragmentation
+ Variable partitions — more efficient, but external fragmentation
+ Paging — use small, fixed size chunks, efficient for OS
+ Segmentation — manage in chunks from user’s perspective
+ Combine paging and segmentation to get benefits of both

o Optimizations
+ Managing page tables (space)
+ Efficient translations (TLBSs) (time)

25

Next time...

o Read chapters 8 and 9 in either textbook

26

