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Announcement 

 Homework 2 is out 

 To be posted on ilearn today 

 Due in a week (the end of Feb 19th). 
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Recap: Fixed Partitions 
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Recap: Paging 

 Paging solves the external fragmentation problem by 

using fixed sized units in both physical and virtual 

memory 
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Segmentation 

 Segmentation is a technique that partitions memory 

into logically related data units 

 Module, procedure, stack, data, file, etc. 

 Units of memory from user’s perspective 

 Natural extension of variable-sized partitions 

 Variable-sized partitions = 1 segment/process 

 Segmentation = many segments/process 

 Fixed partition : Paging :: Variable partition : Segmentation 

 Hardware support 

 Multiple base/limit pairs, one per segment (segment table) 

 Segments named by #, used to index into table 

 Virtual addresses become <segment #, offset> 

 



Segmentation 
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Program perspective Physical memory 
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Segment Lookups 
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Segmentation Example 

 Assuming we have 4 segments, we need 2 bits in 

virtual address to represent it  

 

 

 0x01234567 goes to segment #0, whose base is  

    0x01000000, then physical address is 

    0x02234567 

 

Segmentation fault? 
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Segmentation and Paging 

 Can combine segmentation and paging 

 The x86 supports segments and paging 

 Use segments to manage logically related units 

 Module, procedure, stack, file, data, etc. 

 Segments vary in size, but usually large (multiple pages) 

 Use pages to partition segments into fixed size chunks 

 Makes segments easier to manage within physical memory 

» Segments become “pageable” – rather than moving segments 

into and out of memory, just move page portions of segment 

 Need to allocate page table entries only for those pieces of 

the segments that have themselves been allocated 

 Tends to be complex… 
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Managing Page Tables 

 Last lecture we computed the size of the page table 

for a 32-bit address space w/ 4K pages to be 4MB 

 This is far too much overhead for each process 

 

 How can we reduce this overhead? 

 Observation: Only need to map the portion of the address 

space actually being used (tiny fraction of entire addr space) 

 How do we only map what is being used? 

 Can dynamically extend page table 

 Use another level of indirection: two-level page tables 
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Two-Level Page Tables 

 Two-level page tables 
 Virtual addresses (VAs) have three parts: 

» Master page number, secondary page number, and offset 

 Master page table maps VAs to secondary page table 

 Secondary page table maps page number to physical page 

 Offset indicates where in physical page address is located 



13 

Page Lookups 

Page frame 

Page number Offset 

Virtual Address 

Page Table 
Page frame Offset 

Physical Address 

Physical Memory 



14 

Two-Level Page Tables 
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Example 

 How many bits in offset? 4K = 12 bits 

 4KB pages, 4 bytes/PTE 

 Want master page table in one page: 4K/4 bytes = 1K 
entries 

 Hence, 1K secondary page tables 

 How many bits? 
 Master page number = 10 bits (because 1K entries) 

 Offset = 12 bits 

 Secondary page number = 32 – 10 – 12 = 10 bits 
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Addressing Page Tables 

Where do we store page tables (which address space)? 

 Physical memory 

 Easy to address, no translation required 

 But, allocated page tables consume memory for lifetime of VAS 

 Virtual memory (OS virtual address space) 

 Cold (unused) page table pages can be paged out to disk 

 But, addressing page tables requires translation 

 How do we stop recursion? 

 Do not page the outer page table (called wiring) 

 If we’re going to page the page tables, might as well 

page the entire OS address space, too 

 Need to wire special code and data (fault, interrupt handlers) 
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Page Table in Physical Memory 
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Two-level Paging 

 Two-level paging reduces memory overhead of paging 

 Only need one master page table and one secondary page 

table when a process begins 

 As address space grows, allocate more secondary page 

tables and add PTEs to master page table 

 

 What problem remains? 

 Hint: what about memory lookups? 
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Efficient Translations 

 Recall that our original page table scheme doubled the 

latency of doing memory lookups 

 One lookup into the page table, another to fetch the data 

 Now two-level page tables triple the latency! 

 Two lookups into the page tables, a third to fetch the data 

 And this assumes the page table is in memory 

 How can we use paging but also have lookups cost 

about the same as fetching from memory? 

 Cache translations in hardware 

 Translation Lookaside Buffer (TLB) 

 TLB managed by Memory Management Unit (MMU) 
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TLBs 

 Translation Lookaside Buffers 
 Translate virtual page #s into PTEs (not physical addrs) 

 Can be done in a single machine cycle 

 TLBs implemented in hardware 
 Fully associative cache (all entries looked up in parallel) 

» Keys are virtual page numbers 

» Values are PTEs (entries from page tables) 

 With PTE + offset, can directly calculate physical address 

 Why does this help? 
 Exploits locality: Processes use only handful of pages at a time 

» 16-48 entries/pages (64-192K) 

» Only need those pages to be “mapped” 

 Hit rates are therefore very important 
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A TLB hit eliminates one or more memory accesses 
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Managing TLBs 

 Hit rate: Address translations for most instructions are 
handled using the TLB 
 >99% of translations, but there are misses (TLB miss)… 

 Who places translations into the TLB (loads the TLB)? 
 Hardware (Memory Management Unit) [x86] 

» Knows where page tables are in main memory 

» OS maintains tables, HW accesses them directly 

» Tables have to be in HW-defined format (inflexible) 

 Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC] 

» TLB faults to the OS, OS finds appropriate PTE, loads it in TLB 

» Must be fast (but still 20-200 cycles) 

» CPU ISA has instructions for manipulating TLB 

» Tables can be in any format convenient for OS (flexible) 
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Managing TLBs (2) 

 OS ensures that TLB and page tables are consistent 

 When it changes the protection bits of a PTE, it needs to 

invalidate the PTE if it is in the TLB (special hardware 

instruction) 

 Reload TLB on a process context switch 

 Invalidate all entries 

 Why? Who does it? 

 When the TLB misses and a new PTE has to be 

loaded, a cached PTE must be evicted 

 Choosing PTE to evict is called the TLB replacement policy 

 Implemented in hardware, often simple, e.g., Least Recently 

Used (LRU) 
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Summary 

 Virtual memory 

 Fixed partitions – easy to use, but internal fragmentation 

 Variable partitions – more efficient, but external fragmentation 

 Paging – use small, fixed size chunks, efficient for OS 

 Segmentation – manage in chunks from user’s perspective 

 Combine paging and segmentation to get benefits of both 

 Optimizations 

 Managing page tables (space) 

 Efficient translations (TLBs) (time) 
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Next time… 

 Read chapters 8 and 9 in either textbook 


