
CS 153

Design of Operating

Systems

Winter 2016

Lecture 16: Memory Management and

Paging

Announcement

 Homework 2 is out

 To be posted on ilearn today

 Due in a week (the end of Feb 19th).

2

3

Recap: Fixed Partitions

P4’s Base

+ Offset

Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5

4

Recap: Paging

 Paging solves the external fragmentation problem by

using fixed sized units in both physical and virtual

memory

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

5

Segmentation

 Segmentation is a technique that partitions memory

into logically related data units

 Module, procedure, stack, data, file, etc.

 Units of memory from user’s perspective

 Natural extension of variable-sized partitions

 Variable-sized partitions = 1 segment/process

 Segmentation = many segments/process

 Fixed partition : Paging :: Variable partition : Segmentation

 Hardware support

 Multiple base/limit pairs, one per segment (segment table)

 Segments named by #, used to index into table

 Virtual addresses become <segment #, offset>

Segmentation

6

Program perspective Physical memory

7

Segment Lookups

limit base

+ <

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory

Segmentation Example

 Assuming we have 4 segments, we need 2 bits in

virtual address to represent it

 0x01234567 goes to segment #0, whose base is

 0x01000000, then physical address is

 0x02234567

Segmentation fault?

8

Seg# Offset

2 30

10

Segmentation and Paging

 Can combine segmentation and paging

 The x86 supports segments and paging

 Use segments to manage logically related units

 Module, procedure, stack, file, data, etc.

 Segments vary in size, but usually large (multiple pages)

 Use pages to partition segments into fixed size chunks

 Makes segments easier to manage within physical memory

» Segments become “pageable” – rather than moving segments

into and out of memory, just move page portions of segment

 Need to allocate page table entries only for those pieces of

the segments that have themselves been allocated

 Tends to be complex…

11

Managing Page Tables

 Last lecture we computed the size of the page table

for a 32-bit address space w/ 4K pages to be 4MB

 This is far too much overhead for each process

 How can we reduce this overhead?

 Observation: Only need to map the portion of the address

space actually being used (tiny fraction of entire addr space)

 How do we only map what is being used?

 Can dynamically extend page table

 Use another level of indirection: two-level page tables

12

Two-Level Page Tables

 Two-level page tables
 Virtual addresses (VAs) have three parts:

» Master page number, secondary page number, and offset

 Master page table maps VAs to secondary page table

 Secondary page table maps page number to physical page

 Offset indicates where in physical page address is located

13

Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

14

Two-Level Page Tables

Page table

Master page number Secondary

Virtual Address

Master Page Table

Page frame Offset

Physical Address

Physical Memory

Offset

Page frame

Secondary Page Table

Example

 How many bits in offset? 4K = 12 bits

 4KB pages, 4 bytes/PTE

 Want master page table in one page: 4K/4 bytes = 1K
entries

 Hence, 1K secondary page tables

 How many bits?
 Master page number = 10 bits (because 1K entries)

 Offset = 12 bits

 Secondary page number = 32 – 10 – 12 = 10 bits

15

16

Addressing Page Tables

Where do we store page tables (which address space)?

 Physical memory

 Easy to address, no translation required

 But, allocated page tables consume memory for lifetime of VAS

 Virtual memory (OS virtual address space)

 Cold (unused) page table pages can be paged out to disk

 But, addressing page tables requires translation

 How do we stop recursion?

 Do not page the outer page table (called wiring)

 If we’re going to page the page tables, might as well

page the entire OS address space, too

 Need to wire special code and data (fault, interrupt handlers)

17

Page Table in Physical Memory

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

Base Addr Register storing page table’s

physical addr

Page table of P1

Page table of P2

Two-level Paging

 Two-level paging reduces memory overhead of paging

 Only need one master page table and one secondary page

table when a process begins

 As address space grows, allocate more secondary page

tables and add PTEs to master page table

 What problem remains?

 Hint: what about memory lookups?

19

20

Efficient Translations

 Recall that our original page table scheme doubled the

latency of doing memory lookups

 One lookup into the page table, another to fetch the data

 Now two-level page tables triple the latency!

 Two lookups into the page tables, a third to fetch the data

 And this assumes the page table is in memory

 How can we use paging but also have lookups cost

about the same as fetching from memory?

 Cache translations in hardware

 Translation Lookaside Buffer (TLB)

 TLB managed by Memory Management Unit (MMU)

21

TLBs

 Translation Lookaside Buffers
 Translate virtual page #s into PTEs (not physical addrs)

 Can be done in a single machine cycle

 TLBs implemented in hardware
 Fully associative cache (all entries looked up in parallel)

» Keys are virtual page numbers

» Values are PTEs (entries from page tables)

 With PTE + offset, can directly calculate physical address

 Why does this help?
 Exploits locality: Processes use only handful of pages at a time

» 16-48 entries/pages (64-192K)

» Only need those pages to be “mapped”

 Hit rates are therefore very important

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates one or more memory accesses

TLB

VPN 3

22

23

Managing TLBs

 Hit rate: Address translations for most instructions are
handled using the TLB
 >99% of translations, but there are misses (TLB miss)…

 Who places translations into the TLB (loads the TLB)?
 Hardware (Memory Management Unit) [x86]

» Knows where page tables are in main memory

» OS maintains tables, HW accesses them directly

» Tables have to be in HW-defined format (inflexible)

 Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]

» TLB faults to the OS, OS finds appropriate PTE, loads it in TLB

» Must be fast (but still 20-200 cycles)

» CPU ISA has instructions for manipulating TLB

» Tables can be in any format convenient for OS (flexible)

24

Managing TLBs (2)

 OS ensures that TLB and page tables are consistent

 When it changes the protection bits of a PTE, it needs to

invalidate the PTE if it is in the TLB (special hardware

instruction)

 Reload TLB on a process context switch

 Invalidate all entries

 Why? Who does it?

 When the TLB misses and a new PTE has to be

loaded, a cached PTE must be evicted

 Choosing PTE to evict is called the TLB replacement policy

 Implemented in hardware, often simple, e.g., Least Recently

Used (LRU)

25

Summary

 Virtual memory

 Fixed partitions – easy to use, but internal fragmentation

 Variable partitions – more efficient, but external fragmentation

 Paging – use small, fixed size chunks, efficient for OS

 Segmentation – manage in chunks from user’s perspective

 Combine paging and segmentation to get benefits of both

 Optimizations

 Managing page tables (space)

 Efficient translations (TLBs) (time)

26

Next time…

 Read chapters 8 and 9 in either textbook

