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Announcements 

 Get started on project 2 ASAP 

 

 

 Please ask questions if unclear 

 REMINDER: 4% for class participation 

 Come to office hours 
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OS Abstractions 
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Operating System 

Hardware 

Applications 

CPU Disk RAM 

Process File system Virtual memory 
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Need for Virtual Memory 

 Rewind to the days of “second-generation” computers 

 Programs use physical addresses directly 

 OS loads job, runs it, unloads it 

 

 Multiprogramming changes all of this 

 Want multiple processes in memory at once 

» Overlap I/O and CPU of multiple jobs 

 How to share physical memory across multiple processes? 

» Many programs do not need all of their code and data at once (or 

ever) – no need to allocate memory for it 

» A program can run on machine with less memory than it “needs” 

 Run DOS games in Windows XP 
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Virtual Addresses 

 To make it easier to manage the memory of processes 

running in the system, we’re going to make them use 

virtual addresses (logical addresses) 

 Virtual addresses are independent of the actual physical 

location of the data referenced 

 OS determines location of data in physical memory 

 Instructions executed by the CPU issue virtual 

addresses 

 Virtual addresses are translated by hardware into physical 

addresses (with help from OS) 

 The set of virtual addresses that can be used by a process 

comprises its virtual address space 
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Virtual Addresses 

 Many ways to do this translation… 
 Need hardware support and OS management algorithms  

 Requirements 

 Need protection – restrict which addresses jobs can use 

 Fast translation – lookups need to be fast 

 Fast change – updating memory hardware on context switch 

 

vmap processor 
physical 

memory 

virtual 

addresses 

physical 

addresses 
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First Try: Fixed Partitions 

 Physical memory is broken up into 

fixed partitions 

 Size of each partition is the same and 

fixed 

 Hardware requirements: base register 

 Physical address = virtual address + 

base register 

 Base register loaded by OS when it 

switches to a process (part of PCB) 

Physical Memory 

P1 

P2 

P3 

P4 

P5 
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First Try: Fixed Partitions 

P4’s Base 

+ Offset 

Virtual Address 

Physical Memory 

Base Register P1 

P2 

P3 

P4 

P5 
How do we provide protection? 

 

[0,  MAX_PART_SIZE) 
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First Try: Fixed Partitions 

 Advantages 

 Easy to implement 

» Need base register 

» Verify that offset is less than fixed partition size 

 Fast context switch 

 

 Problems? 

 Internal fragmentation: memory in a partition not used by a 

process is not available to other processes 

 Partition size: one size does not fit all (very large processes?) 
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Second Try: Variable Partitions 

 Natural extension – physical memory is broken up into 

variable sized partitions 

 Hardware requirements: base register and limit register 

 Physical address = virtual address + base register 

 

 Why do we need the limit register? 

 Protection: if (virtual address > limit) then fault 
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Second Try: Variable 

Partitions 

P3’s Base 

+ Offset 

Virtual Address 

Base Register 

P2 

P3 < 

Protection Fault 

Yes? 

No? 

P3’s Limit 

Limit Register 

P1 

[0,  LIMIT) 
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Variable Partitions 

 Advantages 

 No internal fragmentation: allocate just enough for process 

 Problems? 

 External fragmentation: job loading and unloading produces 

empty holes scattered throughout memory 

P2 

P3 

P1 

P4 
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State-of-the-Art: Paging 

 Paging solves the external fragmentation problem by 

using tiny and fixed sized units in both physical and 

virtual memory 

 
Virtual Memory 

Page 1 

Page 2 

Page 3 

Page N 

Physical Memory 



16 

Process Perspective 

 Processes view memory as one contiguous address 

space from 0 through N (N = 2^32 on 32-bit arch.) 

 Virtual address space (VAS) 

 In reality, pages are scattered throughout physical 

memory 

 The mapping is invisible to the program 

 Protection is provided because a program cannot 

reference memory outside of its VAS 

 The address “0x1000” maps to different physical addresses in 

different processes 
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Paging 

 Translating addresses 

 Virtual address has two parts: virtual page number and offset 

 Virtual page number (VPN) is an index into a page table 

 Page table determines page frame number (PFN) 

 Physical address is PFN::offset 

 Page tables 

 Map virtual page number (VPN) to page frame number (PFN) 

» VPN is the index into the table that determines PFN 

 One page table entry (PTE) per page in virtual address space 

» Or, one PTE per VPN 

 Where is page table stored? Kernel or user space? 
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Page Lookups 

Page frame 

Page number Offset 

Virtual Address 

Page Table 
Page frame Offset 

Physical Address 

Physical Memory 

Base Addr Register storing page table addr 



Virtual Memory 

Physical Memory 

In-use 
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Page out (the cold pages) 

 What if we run short on physical memory? Well, we 

transfer a page worth of physical memory to disks 

 

 

Page 1 

Page 2 

Page 3 

Page N 

In-use 

In-use 

In-use 

Disk 
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Page out 

 What if we run short on physical memory? Well, we 

transfer a page worth of physical memory to disks 

 

 Virtual Memory 

of Process 1 

Page 1 

Page 2 

Page 3 

Page N 

In-use 2 

Physical Memory 

In-use 2 

In-use 1 

In-use 1 

In-use 2 

In-use 1 

Disk 

Virtual Memory 

of Process 2 

Page 1 

Page 2 

Page 3 

Page N 
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Paging question 

 Can we serve a process asking for more memory than 

we physically have?  

 

 Virtual Memory 

of Process 1 

Page 1 

Page 2 

Page 3 

Page N 

Physical Memory 
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Paging Example 

 Pages are 4KB 

 Offset is 12 bits (because 4KB = 212 bytes) 

 VPN is 20 bits (32 bits is the length of every virtual address) 

 Virtual address is 0x7468 

 Virtual page is 0x7, offset is 0x468 

 Page table entry 0x7 contains 0x2000 

 Page frame number is 0x2000 

 Seventh virtual page is at address 0x2000 (2nd physical page) 

 Physical address = 0x2000 + 0x468 = 0x2468 

 

 



23 

Page Table Entries (PTEs) 

 Page table entries control mapping 

 The Modify bit says whether or not the page has been written 

» It is set when a write to the page occurs 

 The Reference bit says whether the page has been accessed 

» It is set when a read or write to the page occurs 

 The Valid bit says whether or not the PTE can be used 

» It is checked each time the virtual address is used (Why?) 

 The Protection bits say what operations are allowed on page 

» Read, write, execute (Why do we need these?) 

 The page frame number (PFN) determines physical page 

R V M Prot Page Frame Number 

1 1 1 3 20 
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Paging Advantages 

 Easy to allocate memory 

 Memory comes from a free list of fixed size chunks 

 Allocating a page is just removing it from the list 

 External fragmentation not a problem 

» All pages of the same size 

 

 Easy to swap out chunks of a program 

 All chunks are the same size 

 Use valid bit to detect references to swapped pages 

 Pages are a convenient multiple of the disk block size 

» 4KB vs. 512 bytes 
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Paging Limitations 

 Can still have internal fragmentation 

 Process may not use memory in multiples of a page 

 Memory reference overhead 

 2 references per address lookup (page table, then memory) 

 Solution – use a hardware cache of lookups (more later) 

 Memory required to hold page table can be significant 

 Need one PTE per page 

 32 bit address space w/ 4KB pages = 220 PTEs 

 4 bytes/PTE = 4MB/page table 

 25 processes = 100MB just for page tables! 

 Solution – page the page tables (more later) 
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Summary 

 Virtual memory 

 Processes use virtual addresses 

 OS + hardware translates virtual address into physical 

addresses 

 Various techniques 

 Fixed partitions – easy to use, but internal fragmentation 

 Variable partitions – more efficient, but external fragmentation 

 Paging – use small, fixed size chunks, efficient for OS 
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Next time… 

 Read chapters 8 and 9 in either textbook 


