
CS 153

Design of Operating

Systems

Winter 2016

Lecture 15: Memory Management

Announcements

 Get started on project 2 ASAP

 Please ask questions if unclear

 REMINDER: 4% for class participation

 Come to office hours

2

OS Abstractions

3

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

6

Need for Virtual Memory

 Rewind to the days of “second-generation” computers

 Programs use physical addresses directly

 OS loads job, runs it, unloads it

 Multiprogramming changes all of this

 Want multiple processes in memory at once

» Overlap I/O and CPU of multiple jobs

 How to share physical memory across multiple processes?

» Many programs do not need all of their code and data at once (or

ever) – no need to allocate memory for it

» A program can run on machine with less memory than it “needs”

 Run DOS games in Windows XP

7

Virtual Addresses

 To make it easier to manage the memory of processes

running in the system, we’re going to make them use

virtual addresses (logical addresses)

 Virtual addresses are independent of the actual physical

location of the data referenced

 OS determines location of data in physical memory

 Instructions executed by the CPU issue virtual

addresses

 Virtual addresses are translated by hardware into physical

addresses (with help from OS)

 The set of virtual addresses that can be used by a process

comprises its virtual address space

8

Virtual Addresses

 Many ways to do this translation…
 Need hardware support and OS management algorithms

 Requirements

 Need protection – restrict which addresses jobs can use

 Fast translation – lookups need to be fast

 Fast change – updating memory hardware on context switch

vmap processor
physical

memory

virtual

addresses

physical

addresses

9

First Try: Fixed Partitions

 Physical memory is broken up into

fixed partitions

 Size of each partition is the same and

fixed

 Hardware requirements: base register

 Physical address = virtual address +

base register

 Base register loaded by OS when it

switches to a process (part of PCB)

Physical Memory

P1

P2

P3

P4

P5

10

First Try: Fixed Partitions

P4’s Base

+ Offset

Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5
How do we provide protection?

[0, MAX_PART_SIZE)

11

First Try: Fixed Partitions

 Advantages

 Easy to implement

» Need base register

» Verify that offset is less than fixed partition size

 Fast context switch

 Problems?

 Internal fragmentation: memory in a partition not used by a

process is not available to other processes

 Partition size: one size does not fit all (very large processes?)

12

Second Try: Variable Partitions

 Natural extension – physical memory is broken up into

variable sized partitions

 Hardware requirements: base register and limit register

 Physical address = virtual address + base register

 Why do we need the limit register?

 Protection: if (virtual address > limit) then fault

13

Second Try: Variable

Partitions

P3’s Base

+ Offset

Virtual Address

Base Register

P2

P3 <

Protection Fault

Yes?

No?

P3’s Limit

Limit Register

P1

[0, LIMIT)

14

Variable Partitions

 Advantages

 No internal fragmentation: allocate just enough for process

 Problems?

 External fragmentation: job loading and unloading produces

empty holes scattered throughout memory

P2

P3

P1

P4

15

State-of-the-Art: Paging

 Paging solves the external fragmentation problem by

using tiny and fixed sized units in both physical and

virtual memory

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

16

Process Perspective

 Processes view memory as one contiguous address

space from 0 through N (N = 2^32 on 32-bit arch.)

 Virtual address space (VAS)

 In reality, pages are scattered throughout physical

memory

 The mapping is invisible to the program

 Protection is provided because a program cannot

reference memory outside of its VAS

 The address “0x1000” maps to different physical addresses in

different processes

17

Paging

 Translating addresses

 Virtual address has two parts: virtual page number and offset

 Virtual page number (VPN) is an index into a page table

 Page table determines page frame number (PFN)

 Physical address is PFN::offset

 Page tables

 Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

 One page table entry (PTE) per page in virtual address space

» Or, one PTE per VPN

 Where is page table stored? Kernel or user space?

18

Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

Base Addr Register storing page table addr

Virtual Memory

Physical Memory

In-use

19

Page out (the cold pages)

 What if we run short on physical memory? Well, we

transfer a page worth of physical memory to disks

Page 1

Page 2

Page 3

Page N

In-use

In-use

In-use

Disk

20

Page out

 What if we run short on physical memory? Well, we

transfer a page worth of physical memory to disks

 Virtual Memory

of Process 1

Page 1

Page 2

Page 3

Page N

In-use 2

Physical Memory

In-use 2

In-use 1

In-use 1

In-use 2

In-use 1

Disk

Virtual Memory

of Process 2

Page 1

Page 2

Page 3

Page N

21

Paging question

 Can we serve a process asking for more memory than

we physically have?

 Virtual Memory

of Process 1

Page 1

Page 2

Page 3

Page N

Physical Memory

22

Paging Example

 Pages are 4KB

 Offset is 12 bits (because 4KB = 212 bytes)

 VPN is 20 bits (32 bits is the length of every virtual address)

 Virtual address is 0x7468

 Virtual page is 0x7, offset is 0x468

 Page table entry 0x7 contains 0x2000

 Page frame number is 0x2000

 Seventh virtual page is at address 0x2000 (2nd physical page)

 Physical address = 0x2000 + 0x468 = 0x2468

23

Page Table Entries (PTEs)

 Page table entries control mapping

 The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs

 The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs

 The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used (Why?)

 The Protection bits say what operations are allowed on page

» Read, write, execute (Why do we need these?)

 The page frame number (PFN) determines physical page

R V M Prot Page Frame Number

1 1 1 3 20

24

Paging Advantages

 Easy to allocate memory

 Memory comes from a free list of fixed size chunks

 Allocating a page is just removing it from the list

 External fragmentation not a problem

» All pages of the same size

 Easy to swap out chunks of a program

 All chunks are the same size

 Use valid bit to detect references to swapped pages

 Pages are a convenient multiple of the disk block size

» 4KB vs. 512 bytes

25

Paging Limitations

 Can still have internal fragmentation

 Process may not use memory in multiples of a page

 Memory reference overhead

 2 references per address lookup (page table, then memory)

 Solution – use a hardware cache of lookups (more later)

 Memory required to hold page table can be significant

 Need one PTE per page

 32 bit address space w/ 4KB pages = 220 PTEs

 4 bytes/PTE = 4MB/page table

 25 processes = 100MB just for page tables!

 Solution – page the page tables (more later)

26

Summary

 Virtual memory

 Processes use virtual addresses

 OS + hardware translates virtual address into physical

addresses

 Various techniques

 Fixed partitions – easy to use, but internal fragmentation

 Variable partitions – more efficient, but external fragmentation

 Paging – use small, fixed size chunks, efficient for OS

27

Next time…

 Read chapters 8 and 9 in either textbook

