CS 153
Design of Operating
Systems

Winter 2016

Lecture 15: Memory Management

Announcements

o Get started on project 2 ASAP

o Please ask questions if unclear
+ REMINDER: 4% for class participation
+ Come to office hours

OS Abstractions

Applications

Process Virtual memory File system

Operating System

CPU RAM Disk

Need for Virtual Memory

o Rewind to the days of “second-generation” computers
+ Programs use physical addresses directly
+ OS loads job, runs it, unloads it

o Multiprogramming changes all of this

+ Want multiple processes in memory at once
» Overlap 1/0 and CPU of multiple jobs
+ How to share physical memory across multiple processes?

» Many programs do not need all of their code and data at once (or
ever) — no need to allocate memory for it

» A program can run on machine with less memory than it “needs”
= Run DOS games in Windows XP

Virtual Addresses

o To make it easier to manage the memory of processes
running in the system, we’re going to make them use
virtual addresses (logical addresses)

+ Virtual addresses are independent of the actual physical
location of the data referenced

+ OS determines location of data in physical memory

 Instructions executed by the CPU issue virtual
addresses

+ Virtual addresses are translated by hardware into physical
addresses (with help from OS)

+ The set of virtual addresses that can be used by a process
comprises its virtual address space

Virtual Addresses

virtual physical
addresses addresses
~ ~ hysical
processor >l vmap > phy
memory

o Many ways to do this translation...
+ Need hardware support and OS management algorithms

o Requirements
+ Need protection — restrict which addresses jobs can use

+ Fast translation — lookups need to be fast
+ Fast change — updating memory hardware on context switch

First Try: Fixed Partitions

o Physical memory is broken up into
fixed partitions

*

Size of each partition is the same and
fixed

Hardware requirements: base register

Physical address = virtual address +
base register

Base register loaded by OS when it
switches to a process (part of PCB)

Physical Memory

P1

P2

P3

P4

PS5

First Try: Fixed Partitions

Physical Memory

Base Register P1
P4’s Base

P2

Virtual Address e

Offset >+
__/ P4

[0, MAX_PART_SIZE)

Y

PS5

How do we provide protection?

First Try: Fixed Partitions

o Advantages
+ Easy to implement
» Need base register
» Verify that offset is less than fixed partition size
+ Fast context switch

e Problems?

+ Internal fragmentation: memory in a partition not used by a
process is not available to other processes

+ Partition size: one size does not fit all (very large processes?)

11

Second Try: Variable Partitions

o Natural extension — physical memory is broken up into
variable sized partitions
+ Hardware requirements: base register and limit register
+ Physical address = virtual address + base register

o Why do we need the limit register?
+ Protection: if (virtual address > limit) then fault

12

Second Try: Variable

Partitions

Base Register

P3’s Base

Limit Register

P1

P3’s Limit
Virtual Address l
Offset > <
[0, LIMIT)

Protection Fault

Y

P2

P3

Variable Partitions

o Advantages
+ No internal fragmentation: allocate just enough for process

e Problems?

+ External fragmentation: job loading and unloading produces
empty holes scattered throughout memory

P1

P2

P3

P4

State-of-the-Art: Paging

o Paging solves the external fragmentation problem by
using tiny and fixed sized units in both physical and
virtual memory

Physical Memory

Virtual Memory

Page 1

Page 2

Page 3

Pagehl*\\\\\\\\\\\\\\\\\\\)

Process Perspective

o Processes view memory as one contiguous address
space from 0 through N (N = 2*32 on 32-bit arch.)

+ Virtual address space (VAS)

« Inreality, pages are scattered throughout physical
memory

o The mapping is invisible to the program

o Protection is provided because a program cannot
reference memory outside of its VAS

+ The address “0x1000” maps to different physical addresses in
different processes

16

Paging

o Translating addresses
+ Virtual address has two parts: virtual page number and offset
+ Virtual page number (VPN) is an index into a page table
+ Page table determines page frame number (PFN)
+ Physical address is PFN::offset

o Page tables

+ Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

+ One page table entry (PTE) per page in virtual address space

» Or, one PTE per VPN
+ Where is page table stored? Kernel or user space?

17

Page Lookups

Virtual Address

Page number

Offset

Page Table

Physical Address

Page frame

Offset

Physical Memory

Page frame

-

Y

Base Addr | Register storing page table addr

18

Page out (the cold pages)

o What if we run short on physical memory? Well, we
transfer a page worth of physical memory to disks

Physical Memory

Virtual Memory

Page 1
Disk Page 2 In-use
Page 3 In-use

Page N \

In-use

Page out

o What if we run short on physical memory? Well, we
transfer a page worth of physical memory to disks

_ Physical Memory _
Virtual Memory Virtual Memory

of Process 1 In-use 2 \of Process 2
Page 1 Page 1

Ej\ In-use 2
Disk Page 2 In-use 1 - Page 2
Page 3 Page 3

In-use 1

In-use 2

Page N \ Page N

In-use 1

20

Paging

question

o Can we serve a process asking for more memory than
we physically have?

Virtual Memory
of Process 1

Page 1

Physical Memory

Page 2

Page 3

e

Page N

-

21

Paging Example

o« Pages are 4KB
+ Offsetis 12 bits (because 4KB = 212 bytes)
+ VPN is 20 bits (32 bits is the length of every virtual address)

« Virtual address is 0x7468
+ Virtual page is 0x7, offset is 0x468

o Page table entry 0x7 contains 0x2000
+ Page frame number is 0x2000
+ Seventh virtual page is at address 0x2000 (2nd physical page)

o Physical address = 0x2000 + 0x468 = 0x2468

22

Page Table Entries (PTESs)

1 11

3

20

M|IR |V

Prot

Page Frame Number

« Page table entries control mapping

+ The Modify bit says whether or not the page has been written

*

*

*

*

» |t is set when a write to the page occurs
The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs

The Valid bit says whether or not the PTE can be used
» It is checked each time the virtual address is used (Why?)

The Protection bits say what operations are allowed on page
» Read, write, execute (Why do we need these?)

The page frame number (PFN) determines physical page

23

Paging Advantages

o Easy to allocate memory
+ Memory comes from a free list of fixed size chunks
+ Allocating a page is just removing it from the list

+ External fragmentation not a problem
» All pages of the same size

o Easy to swap out chunks of a program
+ All chunks are the same size
+ Use valid bit to detect references to swapped pages

+ Pages are a convenient multiple of the disk block size
» 4KB vs. 512 bytes

24

Paging Limitations

o Can still have internal fragmentation
+ Process may not use memory in multiples of a page

« Memory reference overhead
+ 2 references per address lookup (page table, then memory)
+ Solution — use a hardware cache of lookups (more later)

« Memory required to hold page table can be significant
+ Need one PTE per page
+ 32 bit address space w/ 4KB pages = 22° PTEs
+ 4 bytes/PTE = 4MB/page table
o 25 processes = 100MB just for page tables!
+ Solution — page the page tables (more later)

Summary

o Virtual memory
+ Processes use virtual addresses

+ OS + hardware translates virtual address into physical
addresses

o Various techniques
+ Fixed partitions — easy to use, but internal fragmentation
+ Variable partitions — more efficient, but external fragmentation
+ Paging — use small, fixed size chunks, efficient for OS

26

Next time...

o Read chapters 8 and 9 in either textbook

27

