
CS 153

Design of Operating

Systems

Winter 2016

Lecture 12: Scheduling & Deadlock

2

Priority Scheduling

 Priority Scheduling

 Choose next job based on priority

» Airline checkin for first class passengers

 Can implement SJF, priority = 1/(expected CPU burst)

 Also can be either preemptive or non-preemptive

 Problem?

 Starvation – low priority jobs can wait indefinitely

 Solution

 “Age” processes

» Increase priority as a function of waiting time

» Decrease priority as a function of CPU consumption

3

More on Priority Scheduling

 For real-time (predictable) systems, priority is often

used to isolate a process from those with lower

priority. Priority inversion is a risk unless all resources

are jointly scheduled.

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

time

time

How can this be avoided?

PH

PL

PH

PL

PM

Priority Inversion on Mars

Pathfinder

 PH = (Frequent) Bus Management

 PM = (Long-Running) Communications

 PL = (Infrequent and short) Data Gathering

4

x->Acquire()

x->Acquire()

x->Release()

time

PH

PL

PM

Killed by watchdog

5

Combining Algorithms

 Scheduling algorithms can be combined

 Have multiple queues

 Use a different algorithm for each queue

 Move processes among queues

 Example: Multiple-level feedback queues (MLFQ)

 Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.

 Queues have priorities, jobs on same queue scheduled RR

 Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior

Multi-level Feedback Queue

(MFQ)

 Goals:

 Responsiveness

 Low overhead

 Starvation-free

 Some tasks are high/low priority

 Fairness (among equal priority tasks)

 Not perfect at any of them!

 Used in Linux (and probably Windows, MacOS)

6

MFQ

 Set of Round Robin queues

 Each queue has a separate priority

 High priority queues have short time slices

 Low priority queues have long time slices

 Scheduler picks first task in highest priority queue

 If time slice expires, task drops one level

7

MFQ

8

9

Unix Scheduler

 The canonical Unix scheduler uses a MLFQ
 3-4 classes spanning ~170 priority levels

» Timesharing: first 60 priorities

» System: next 40 priorities

» Real-time: next 60 priorities

» Interrupt: next 10 (Solaris)

 Priority scheduling across queues, RR within a queue
 The process with the highest priority always runs

 Processes with the same priority are scheduled RR

 Processes dynamically change priority
 Increases over time if process blocks before end of quantum

 Decreases over time if process uses entire quantum

10

Motivation of Unix Scheduler

 The idea behind the Unix scheduler is to reward

interactive processes over CPU hogs

 Interactive processes (shell, editor, etc.) typically run

using short CPU bursts

 They do not finish quantum before waiting for more input

 Want to minimize response time

 Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)

 Don’t want editor to wait until CPU hog finishes quantum

 This policy delays execution of CPU-bound jobs

 But that’s ok

Multiprocessor Scheduling

 This is its own topic, we won’t go into it in detail

 Could come back to it towards the end of the quarter

 What would happen if we used MFQ on a

multiprocessor?

 Contention for scheduler spinlock

 Multiple MFQ used – this optimization technique is called

distributed locking and is common in concurrent programming

 A couple of other considerations

 Co-scheduling for parallel programs

 Core affinity

11

12

Scheduling Summary

 Scheduler (dispatcher) is the module (not a thread)

that gets invoked when a context switch needs to

happen

 Scheduling algorithm determines which process runs,

where processes are placed on queues

 Many potential goals of scheduling algorithms

 Utilization, throughput, wait time, response time, etc.

 Various algorithms to meet these goals

 FCFS/FIFO, SJF, Priority, RR

 Can combine algorithms

 Multiple-level feedback queues

Deadlock!

13

14

Deadlock—the deadly embrace!

 Synchronization– we can easily shoot ourselves in the foot

 Incorrect use of synchronization can block all processes

 You have likely been intuitively avoiding this situation already

 More generally, processes that allocate multiple resources

generate dependencies on those resources

 Locks, semaphores, monitors, etc., just represent the resources that

they protect

 If one process tries to access a resource that a second process holds, and

vice-versa, they can never make progress

 We call this situation deadlock, and we’ll look at:

 Definition and conditions necessary for deadlock

 Representation of deadlock conditions

 Approaches to dealing with deadlock

Deadlock Definition

 Resource: any (passive) thing needed by a thread to

do its job (CPU, disk space, memory, lock)

 Preemptable: can be taken away by OS

 Non-preemptable: must leave with thread

 Starvation: thread waits indefinitely

 Deadlock: circular waiting for resources

 Deadlock => starvation, but not vice versa

lockA->Acquire();

…

lockB->Acquire();

lockB->Acquire();

…

lockA->Acquire();

Process 1 Process 2

15

Dining Philosophers

Each lawyer needs two chopsticks to eat.

Each grabs chopstick on the right first.
18

Real example!

19

20

Conditions for Deadlock

 Deadlock can exist if and only if the following four

conditions hold simultaneously:

1. Mutual exclusion – At least one resource must be held in a

non-sharable mode

2. Hold and wait – There must be one process holding one

resource and waiting for another resource

3. No preemption – Resources cannot be preempted (critical

sections cannot be aborted externally)

4. Circular wait – There must exist a set of processes [P1, P2,

P3,…,Pn] such that P1 is waiting for P2, P2 for P3, etc.

Circular Waiting

21

22

Dealing With Deadlock

 There are four approaches for dealing with deadlock:

 Ignore it – responsibility of the developers. UNIX and

Windows take this approach

 Detection and Recovery – look for a cycle in dependencies

 Prevention – make it impossible for deadlock to happen

 Avoidance – control allocation of resources

23

Resource Allocation Graph

 Deadlock can be described using a resource allocation

graph (RAG)

 The RAG consists of a set of vertices P={P1, P2, …,

Pn} of processes and R={R1, R2, …, Rm} of resources

 A directed edge from a process to a resource, PiRi, means

that Pi has requested Rj

 A directed edge from a resource to a process, RiPi, means

that Rj has been allocated to Pi

 Each resource has a fixed number of units

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock may exist

24

RAG Example

A cycle…and

deadlock!

Same cycle…but no

deadlock. Why?

R1

P1

P2

P3

R3

R2

R1

P1

P2

P3

R3

R2

P4

25

A Simpler Case

 If all resources are single unit and all processes make

single requests, then we can represent the resource

state with a simpler waits-for graph (WFG)

 The WFG consists of a set of vertices P={P1, P2, …,

Pn} of processes

 A directed edge PiPj means that Pi has requested a

resource that Pj currently holds

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock exists

#1: Detection and Recovery

 Algorithm

 Scan waits-for graph (WFG) or RAG

 Detect cycles

 Fix cycles

 May be expensive

 How?

 Remove one or more threads, reassign its resources

» Requires exception handling code to be very robust

 Roll back actions of one thread (Preempt resources)

» Databases: all actions are provisional until committed

» Hard for general cases

26

27

#2: Deadlock Prevention

 Prevention – Ensure that at least one of the necessary

conditions cannot happen

 Mutual exclusion

» Make resources sharable (not generally practical)

 Hold and wait

» Process cannot hold one resource when requesting another

» Process requests all needed resources at once (in the beginning)

 Preemption

» OS can preempt resource (costly)

 Circular wait

» Impose an ordering (numbering) on the resources and request

them in order (popular implementation technique)

28

#2: Deadlock Prevention

 How would you do each of the following for dining

philosophers?

 Don't enforce mutex?

 Don't allow hold and wait?

 Allow preemption?

 Don't allow circular waiting?

29

#3: Deadlock Avoidance

 Avoidance – dynamic strategy

 Provide information in advance about what resources will be

needed by processes to guarantee that deadlock will not

happen

 System only grants resource requests if it knows that the

process can obtain all resources it needs in future requests

» Hint: it will release all resources eventually

 Avoids circularities (wait dependencies)

 Tough

 Hard to determine all resources needed in advance

 Good theoretical problem, not as practical to use

30

Banker’s Algorithm

 The Banker’s Algorithm is the classic approach to

deadlock avoidance for resources with multiple units

1. Assign a credit limit to each customer (process)

 Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state

 A dangerous state is one where a sudden request by any

customer for the full credit limit could lead to deadlock

 A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well

below capacity to maintain a resource surplus

 Rarely used in practice due to low resource utilization

31

Banker’s Algorithm Simplified

3 3 2 3

OK OK

2 2

OK

1 2

UNSAFE

P1 P2 P1 P2 P1 P2
P1 P2

Possible System States

32

33

Deadlock Summary

 Deadlock occurs when processes are waiting on each

other and cannot make progress

 Cycles in Resource Allocation Graph (RAG)

 Deadlock requires four conditions

 Mutual exclusion, hold and wait, no resource preemption,

circular wait

 Four approaches to dealing with deadlock:

 Ignore it – Living life on the edge

 Detection and Recovery – Look for a cycle, preempt or abort

 Prevention – Make one of the four conditions impossible

 Avoidance – Banker’s Algorithm (control allocation)

Concurrency Bugs

 Subtle to detect compared to deterministic bugs

 A huge problem in critical infrastructure (airplane

control, power systems)

 Extensive research still ongoing

 Hardest traditional OS research problem, the others:

 Memory problems

 File system problems

34

Example Concurrency Bug

35
A concurrency bug in Mozilla

Example Concurrency Bug

36
Another concurrency bug in Mozilla

Research on Concurrency

Problems

 Jie Yu and Satish Narayanasamy, A Case for an

Interleaving Constrained Shared-Memory Multi-

Processor, ISCA 09

 Observe safe thread inter-leavings during software testing

phase

 Disallow any unseen inter-leavings

 Safe but may be too conservative

37

Next Class

 Preparation for Exam

39

