
CS 153

Design of Operating

Systems

Winter 2016

Lecture 12: Scheduling & Deadlock

2

Priority Scheduling

 Priority Scheduling

 Choose next job based on priority

» Airline checkin for first class passengers

 Can implement SJF, priority = 1/(expected CPU burst)

 Also can be either preemptive or non-preemptive

 Problem?

 Starvation – low priority jobs can wait indefinitely

 Solution

 “Age” processes

» Increase priority as a function of waiting time

» Decrease priority as a function of CPU consumption

3

More on Priority Scheduling

 For real-time (predictable) systems, priority is often

used to isolate a process from those with lower

priority. Priority inversion is a risk unless all resources

are jointly scheduled.

x->Acquire()

x->Acquire()

x->Release()

x->Acquire()

x->Acquire()

time

time

How can this be avoided?

PH

PL

PH

PL

PM

Priority Inversion on Mars

Pathfinder

 PH = (Frequent) Bus Management

 PM = (Long-Running) Communications

 PL = (Infrequent and short) Data Gathering

4

x->Acquire()

x->Acquire()

x->Release()

time

PH

PL

PM

Killed by watchdog

5

Combining Algorithms

 Scheduling algorithms can be combined

 Have multiple queues

 Use a different algorithm for each queue

 Move processes among queues

 Example: Multiple-level feedback queues (MLFQ)

 Multiple queues representing different job types

» Interactive, CPU-bound, batch, system, etc.

 Queues have priorities, jobs on same queue scheduled RR

 Jobs can move among queues based upon execution history

» Feedback: Switch from interactive to CPU-bound behavior

Multi-level Feedback Queue

(MFQ)

 Goals:

 Responsiveness

 Low overhead

 Starvation-free

 Some tasks are high/low priority

 Fairness (among equal priority tasks)

 Not perfect at any of them!

 Used in Linux (and probably Windows, MacOS)

6

MFQ

 Set of Round Robin queues

 Each queue has a separate priority

 High priority queues have short time slices

 Low priority queues have long time slices

 Scheduler picks first task in highest priority queue

 If time slice expires, task drops one level

7

MFQ

8

9

Unix Scheduler

 The canonical Unix scheduler uses a MLFQ
 3-4 classes spanning ~170 priority levels

» Timesharing: first 60 priorities

» System: next 40 priorities

» Real-time: next 60 priorities

» Interrupt: next 10 (Solaris)

 Priority scheduling across queues, RR within a queue
 The process with the highest priority always runs

 Processes with the same priority are scheduled RR

 Processes dynamically change priority
 Increases over time if process blocks before end of quantum

 Decreases over time if process uses entire quantum

10

Motivation of Unix Scheduler

 The idea behind the Unix scheduler is to reward

interactive processes over CPU hogs

 Interactive processes (shell, editor, etc.) typically run

using short CPU bursts

 They do not finish quantum before waiting for more input

 Want to minimize response time

 Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)

 Don’t want editor to wait until CPU hog finishes quantum

 This policy delays execution of CPU-bound jobs

 But that’s ok

Multiprocessor Scheduling

 This is its own topic, we won’t go into it in detail

 Could come back to it towards the end of the quarter

 What would happen if we used MFQ on a

multiprocessor?

 Contention for scheduler spinlock

 Multiple MFQ used – this optimization technique is called

distributed locking and is common in concurrent programming

 A couple of other considerations

 Co-scheduling for parallel programs

 Core affinity

11

12

Scheduling Summary

 Scheduler (dispatcher) is the module (not a thread)

that gets invoked when a context switch needs to

happen

 Scheduling algorithm determines which process runs,

where processes are placed on queues

 Many potential goals of scheduling algorithms

 Utilization, throughput, wait time, response time, etc.

 Various algorithms to meet these goals

 FCFS/FIFO, SJF, Priority, RR

 Can combine algorithms

 Multiple-level feedback queues

Deadlock!

13

14

Deadlock—the deadly embrace!

 Synchronization– we can easily shoot ourselves in the foot

 Incorrect use of synchronization can block all processes

 You have likely been intuitively avoiding this situation already

 More generally, processes that allocate multiple resources

generate dependencies on those resources

 Locks, semaphores, monitors, etc., just represent the resources that

they protect

 If one process tries to access a resource that a second process holds, and

vice-versa, they can never make progress

 We call this situation deadlock, and we’ll look at:

 Definition and conditions necessary for deadlock

 Representation of deadlock conditions

 Approaches to dealing with deadlock

Deadlock Definition

 Resource: any (passive) thing needed by a thread to

do its job (CPU, disk space, memory, lock)

 Preemptable: can be taken away by OS

 Non-preemptable: must leave with thread

 Starvation: thread waits indefinitely

 Deadlock: circular waiting for resources

 Deadlock => starvation, but not vice versa

lockA->Acquire();

…

lockB->Acquire();

lockB->Acquire();

…

lockA->Acquire();

Process 1 Process 2

15

Dining Philosophers

Each lawyer needs two chopsticks to eat.

Each grabs chopstick on the right first.
18

Real example!

19

20

Conditions for Deadlock

 Deadlock can exist if and only if the following four

conditions hold simultaneously:

1. Mutual exclusion – At least one resource must be held in a

non-sharable mode

2. Hold and wait – There must be one process holding one

resource and waiting for another resource

3. No preemption – Resources cannot be preempted (critical

sections cannot be aborted externally)

4. Circular wait – There must exist a set of processes [P1, P2,

P3,…,Pn] such that P1 is waiting for P2, P2 for P3, etc.

Circular Waiting

21

22

Dealing With Deadlock

 There are four approaches for dealing with deadlock:

 Ignore it – responsibility of the developers. UNIX and

Windows take this approach

 Detection and Recovery – look for a cycle in dependencies

 Prevention – make it impossible for deadlock to happen

 Avoidance – control allocation of resources

23

Resource Allocation Graph

 Deadlock can be described using a resource allocation

graph (RAG)

 The RAG consists of a set of vertices P={P1, P2, …,

Pn} of processes and R={R1, R2, …, Rm} of resources

 A directed edge from a process to a resource, PiRi, means

that Pi has requested Rj

 A directed edge from a resource to a process, RiPi, means

that Rj has been allocated to Pi

 Each resource has a fixed number of units

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock may exist

24

RAG Example

A cycle…and

deadlock!

Same cycle…but no

deadlock. Why?

R1

P1

P2

P3

R3

R2

R1

P1

P2

P3

R3

R2

P4

25

A Simpler Case

 If all resources are single unit and all processes make

single requests, then we can represent the resource

state with a simpler waits-for graph (WFG)

 The WFG consists of a set of vertices P={P1, P2, …,

Pn} of processes

 A directed edge PiPj means that Pi has requested a

resource that Pj currently holds

 If the graph has no cycles, deadlock cannot exist

 If the graph has a cycle, deadlock exists

#1: Detection and Recovery

 Algorithm

 Scan waits-for graph (WFG) or RAG

 Detect cycles

 Fix cycles

 May be expensive

 How?

 Remove one or more threads, reassign its resources

» Requires exception handling code to be very robust

 Roll back actions of one thread (Preempt resources)

» Databases: all actions are provisional until committed

» Hard for general cases

26

27

#2: Deadlock Prevention

 Prevention – Ensure that at least one of the necessary

conditions cannot happen

 Mutual exclusion

» Make resources sharable (not generally practical)

 Hold and wait

» Process cannot hold one resource when requesting another

» Process requests all needed resources at once (in the beginning)

 Preemption

» OS can preempt resource (costly)

 Circular wait

» Impose an ordering (numbering) on the resources and request

them in order (popular implementation technique)

28

#2: Deadlock Prevention

 How would you do each of the following for dining

philosophers?

 Don't enforce mutex?

 Don't allow hold and wait?

 Allow preemption?

 Don't allow circular waiting?

29

#3: Deadlock Avoidance

 Avoidance – dynamic strategy

 Provide information in advance about what resources will be

needed by processes to guarantee that deadlock will not

happen

 System only grants resource requests if it knows that the

process can obtain all resources it needs in future requests

» Hint: it will release all resources eventually

 Avoids circularities (wait dependencies)

 Tough

 Hard to determine all resources needed in advance

 Good theoretical problem, not as practical to use

30

Banker’s Algorithm

 The Banker’s Algorithm is the classic approach to

deadlock avoidance for resources with multiple units

1. Assign a credit limit to each customer (process)

 Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state

 A dangerous state is one where a sudden request by any

customer for the full credit limit could lead to deadlock

 A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well

below capacity to maintain a resource surplus

 Rarely used in practice due to low resource utilization

31

Banker’s Algorithm Simplified

3 3 2 3

OK OK

2 2

OK

1 2

UNSAFE

P1 P2 P1 P2 P1 P2
P1 P2

Possible System States

32

33

Deadlock Summary

 Deadlock occurs when processes are waiting on each

other and cannot make progress

 Cycles in Resource Allocation Graph (RAG)

 Deadlock requires four conditions

 Mutual exclusion, hold and wait, no resource preemption,

circular wait

 Four approaches to dealing with deadlock:

 Ignore it – Living life on the edge

 Detection and Recovery – Look for a cycle, preempt or abort

 Prevention – Make one of the four conditions impossible

 Avoidance – Banker’s Algorithm (control allocation)

Concurrency Bugs

 Subtle to detect compared to deterministic bugs

 A huge problem in critical infrastructure (airplane

control, power systems)

 Extensive research still ongoing

 Hardest traditional OS research problem, the others:

 Memory problems

 File system problems

34

Example Concurrency Bug

35
A concurrency bug in Mozilla

Example Concurrency Bug

36
Another concurrency bug in Mozilla

Research on Concurrency

Problems

 Jie Yu and Satish Narayanasamy, A Case for an

Interleaving Constrained Shared-Memory Multi-

Processor, ISCA 09

 Observe safe thread inter-leavings during software testing

phase

 Disallow any unseen inter-leavings

 Safe but may be too conservative

37

Next Class

 Preparation for Exam

39

