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Scheduling Overview 

 Scheduler runs when we context switching among 

processes/threads on the ready queue 

 What should it do?  Does it matter? 

 

 Making this decision is called scheduling 

 

 Now, we’ll look at: 

 The goals of scheduling 

 Starvation 

 Various well-known scheduling algorithms 

 Standard Unix scheduling algorithm 
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Multiprogramming 

 In a multiprogramming system, we try to increase CPU 

utilization and job throughput by overlapping I/O and 

CPU activities 

 Doing this requires a combination of mechanisms and policy 

 We have covered the mechanisms 

 Context switching, how and when it happens 

 Process queues and process states 

 Now we’ll look at the policies 

 Which process (thread) to run, for how long, etc. 

 We’ll refer to schedulable entities as jobs (standard 

usage) – could be processes, threads, people, etc. 
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Scheduling Goals 

 Scheduling works at two levels in an operating system 
1. To determine the multiprogramming level – the number of 

jobs loaded into primary memory 

» Moving jobs to/from memory is often called swapping 

» Long term scheduler: infrequent 

 

 

2. To decide what job to run next to guarantee “good service” 
» Good service could be one of many different criteria 

» Short term scheduler: frequent 

» We are concerned with this level of scheduling 

» Is scheduler a thread always running in kernel space?  

    (Use your PintOS experience) 
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Scheduling 

 The scheduler (aka dispatcher) is the module that manipulates 

the queues, moving jobs to and from them 

 

 The scheduling algorithm determines which jobs are chosen to 

run next and what queues they wait on 

 

 In general, the scheduler runs, when PintOS calls 

next_thread_to_run: 

 When a job switches from running to waiting 

 When an interrupt occurs 

 When a job is created or terminated 

 

 The scheduler runs inside the kernel. Therefore, kernel has to be 

entered before scheduler can run. 



Preemptive vs. Non-

preemptive scheduling 

 We’ll discuss scheduling algorithms in two contexts 

 In preemptive systems the scheduler can interrupt a running job 

(involuntary context switch) 

 

 In non-preemptive systems, the scheduler waits for a running job to 

explicitly block (voluntary context switch) 

 

6 



7 

Scheduling Goals 

 What are some reasonable goals for a scheduler? 

 Scheduling algorithms can have many different goals: 

 CPU utilization 

 Job throughput (# jobs/unit time) 

 Turnaround time (Tfinish – Tstart) 

 Waiting time (Avg(Twait): avg time spent on wait queues) 

 Response time (Avg(Tready): avg time spent on ready queue) 

 Batch systems 

 Strive for job throughput, turnaround time (supercomputers) 

 Interactive systems 

 Strive to minimize response time for interactive jobs (PC) 
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Starvation 

Starvation is a scheduling “non-goal”: 

 Starvation is a situation where a process is prevented 

from making progress because some other process 

has the resource it requires 

 Resource could be the CPU, or a lock (recall readers/writers) 

 Starvation usually a side effect of the sched. algorithm 

 A high priority process always prevents a low priority process 

from running on the CPU 

 One thread always beats another when acquiring a lock 

 Starvation can be a side effect of synchronization 

 Constant supply of readers always blocks out writers 



First In First Out (FIFO) 

 Schedule tasks in the order they arrive 

 Continue running them until they complete or give up the 

processor 

 Example: many cases in real life 

 

 On what workloads is FIFO particularly bad? 

 Imagine being at supermarket to buy a drink of water, but get 

stuck behind someone with a huge cart (or two!)  

»…and who pays in pennies! 

 Can we do better? 
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Shortest Job First (SJF) 

 Always do the task that has the shortest remaining 

amount of work to do 

 Often called Shortest Remaining Time First (SRTF) 

 

 Suppose we have five tasks arrive one right after each 

other, but the first one is much longer than the others 

 Which completes first in FIFO? Next? 

 Which completes first in SJF? Next? 
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FIFO vs. SJF 

Whats the big deal?  

Don’t they finish at  

the same time? 
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Average Turnaround Time (ATT) 

ATT = (8 + (8+4)+(8+4+2))/3 = 11.33 

ATT = (4 + (4+8)+(4+8+2))/3 = 10 

ATT = (4+ (4+2)+(4+2+8))/3 = 8 

ATT = (2 + (2+4)+(2+4+8))/3 = 7.33� 

FIFO:  

SJF: 
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Average Response Time (ART) 

ART = (0 + 8 + (8+4))/3 = 6.67 

ART = (0 + 4 + (4+8))/3 = 5.33 

ART = (0 + 4 + (4+2))/3 = 3.33 

ART = (0 + 2 + (2+4))/3 = 2.67� 

FIFO:  

SJF: 



SJF 

 Claim: SJF is optimal for average 

response time 

 Why? 

 

 For what workloads is FIFO optimal? 

 For what is it pessimal (i.e., worst)? 

 

 Does SJF have any downsides? 

 Does it work in a supermarket? 
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Shortest Job First (SJF) 

 Problems? 

 Impossible to know size of CPU burst 

» Like choosing person in line without looking inside basket/cart  

 How can you make a reasonable guess? 

 Can potentially starve 

 

 Flavors 

 Can be either preemptive or non-preemptive 

 Preemptive SJF is called shortest remaining time first (SRTF) 



Round Robin 

 Each task gets resource for a fixed period of time (time 

quantum) 

 If task doesn’t complete, it goes back in line 

 Need to pick a time quantum 

 What if time quantum is too long?   

»Infinite? 

 What if time quantum is too short?   

»One instruction? 
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Round Robin 
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Round Robin vs. FIFO 

 Many context switches can be costly 

 Other than that, is Round Robin always 

better than FIFO, in terms of average 

response time or average turnaround 

time? 
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Round Robin vs. FIFO 

Is Round Robin always fair? 
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Next Class 

 Deadlock continued 
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