
CS 153

Design of Operating

Systems

Winter 2016

Lecture 10: Synchronization

Announcements

 Project 1 due Friday

 TAs will send out instructions for how to submit

 Mid-term coming up soon

 Feb 8, Monday.

 Two review sessions before then

2

3

Readers/Writers Problem

 Go back to Readers/Writers Problem:
 An object is shared among several threads

 Some threads only read the object, others only write it

 We can allow multiple readers but only one writer

» Let #r be the number of readers, #w be the number of writers

» Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) ⇒ (#w = 0))

 Use three variables
 int readcount – number of threads reading object

 Semaphore mutex – control access to readcount

 Semaphore w_or_r – exclusive writing or reading

4

// number of readers

int readcount = 0;

// mutual exclusion to readcount

Semaphore mutex = 1;

// exclusive writer or reader

Semaphore w_or_r = 1;

writer {

 wait(w_or_r); // lock out readers

 Write;

 signal(w_or_r); // up for grabs

}

Readers/Writers

reader {

 readcount += 1; // one more reader

 if (readcount == 1)

 wait(w_or_r); // synch w/ writers

 Read;

 readcount -= 1; // one less reader

 if (readcount == 0)

 signal(w_or_r); // up for grabs

}

5

// number of readers

int readcount = 0;

// mutual exclusion to readcount

Semaphore mutex = 1;

// exclusive writer or reader

Semaphore w_or_r = 1;

writer {

 wait(w_or_r); // lock out readers

 Write;

 signal(w_or_r); // up for grabs

}

Readers/Writers

reader {

 wait(mutex); // lock readcount

 readcount += 1; // one more reader

 if (readcount == 1)

 wait(w_or_r); // synch w/ writers

 signal(mutex); // unlock readcount

 Read;

 wait(mutex); // lock readcount

 readcount -= 1; // one less reader

 if (readcount == 0)

 signal(w_or_r); // up for grabs

 signal(mutex); // unlock readcount

}

 w_or_r provides mutex between readers and writers

 Readers wait/signal when readcount goes from 0 to 1 or 1 to 0

 If a writer is writing, where will readers be waiting?

 Once a writer exits, all readers can fall through

 Which reader gets to go first?

 Is it guaranteed that all readers will fall through?

 If readers and writers are waiting, and a writer exits,

who goes first?

 If read in progress when writer arrives, when can writer

get access?

 In Java:

 readWriteLock.readLock().lock()

 readWriterLock.writeLock().lock()

6

Readers/Writers Notes

8

Semaphore Summary

 Semaphores can be used to solve any of the

traditional synchronization problems

 However, they have some drawbacks

 They are essentially shared global variables

» Can potentially be accessed anywhere in program

 No connection between the semaphore and the data being

controlled by the semaphore

 Used both for critical sections (mutual exclusion) and

coordination (scheduling)

» Note that I had to use comments in the code to distinguish

 No control or guarantee of proper usage

 Sometimes hard to use and prone to bugs

 Another approach: Use programming language support

Java Synchronization Support

Compiler ensures that lock is released before leaving the

synchronized block --- Even if there is an exception!!

9

try {

 synchronized(foo) {

 if (foo.doSomething() == false)

 throw new Exception(“Bad!!”);

 }

catch (Exception e) {

 /* Lock was released before getting here! */

 System.err.println(“Something bad happened!”);

}

Object foo; // shared across threads

synchronized (foo) {

 /* Do some stuff with 'foo' locked... */

 foo.counter++;

}

Condition Variables

 Main idea:

 make it possible for thread to sleep inside a critical section

 Approach:

 by atomically releasing lock, putting thread on wait queue and

sleep

 Each variable has a queue of waiting threads

 threads that are sleeping, waiting for a condition

 Each variable is associated with one lock

10

Condition Variables in Java

 All condition variable operations must be within a

synchronized block on the same object

 Why is the “synchronized” necessary?

11

/* Thread A */

synchronized (foo) {

 while (foo.counter < 10) {

 foo.wait();

 }

}

/* Thread B */

synchronized (foo) {

 foo.counter++;

 if (foo.counter >= 10) {

 foo.notify();

 }

}

12

Condition Vars != Semaphores

 Condition variables != semaphores

 Although their operations have the same names, they have

entirely different semantics

 However, they each can be used to implement the other

 Condition variable is protected by a lock

 wait() blocks the calling thread, and gives up the lock

» To call wait, the thread has to be in the monitor (hence has lock)

» Semaphore::wait just blocks the thread on the queue

 signal() causes a waiting thread to wake up

» If there is no waiting thread, the signal is lost

» Semaphore::signal increases the semaphore count, allowing

future entry even if no thread is waiting

» Condition variables have no history

Monitor

 monitor = a lock + the condition variables

associated with that lock

 A lock and condition variable are in every Java object

 No explicit classes for locks or condition variables

 Every object is/has a monitor

 A thread enters an object’s monitor by

» Executing a method declared “synchronized”
 Can mix synchronized/unsynchronized methods in same class

» Executing the body of a “synchronized” statement

 Supports finer-grained locking than an entire procedure

 Every object can be treated as a condition variable

 Object::notify() has similar semantics as Condition::signal()

13

14

Hoare vs. Mesa Monitors --

Signal Semantics

 There are two flavors of monitors that differ in the

scheduling semantics of signal()

 Hoare monitors (original)

» signal() immediately switches from the caller to a waiting thread

» The condition that the waiter was anticipating is guaranteed to

hold when waiter executes

» Signaler must restore monitor invariants before signaling

 Mesa monitors (Mesa, Java)

» signal() places a waiter on the ready queue, but signaler

continues inside monitor

» Condition is not necessarily true when waiter runs again

 Returning from wait() is only a hint that something changed

 Must recheck conditional case

