
CS 153

Design of Operating

Systems

Winter 2016

Lecture 9: Semaphores and Monitors

Some slides from Matt Welsh

2

Summarize Where We Are

 Goal: Use mutual exclusion to protect critical sections

of code that access shared resources

 Method: Use locks (spinlocks or disable interrupts)

 Problem: Critical sections can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts:

 Should not disable interrupts

for long periods of time

 Can miss or delay important

events (e.g., timer, I/O)

Spinlocks:

 Threads waiting to acquire

lock spin in test-and-set loop

 Wastes CPU cycles

 Longer the CS, the longer

the spin

 Greater the chance for lock

holder to be interrupted

Implementing Locks (4)

-- (no spin)

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (test-and-set(&lock->held))

 thread_yield();

}

void release (lock) {

 lock->held = 0;

}

3

Implementing Locks (4)

-- (no spin)

 mutex_lock:

 TSL REGISTER, MUTEX |copy mutex to register, set mutex to 1

 CMP REGISTER, #0 |was mutex zero?

 JNE ok |if zero, mutex was unlocked, so return

 CALL thread_yield |mutex busy, schedule another thread

 JMP mutex_lock |try again later

 ok: RET |return to caller; CR entered

 mutex_unlock:

 MOVE MUTEX, #0 |store a 0 in mutex

 RET |return to caller

4

Implementing Locks (5)

-- Mutex (true blocking)

struct lock {

 int held = 0;

}

void acquire (lock) {

 if(test-and-set(&lock->held))

 // block the thread;

 // send it to a waiting queue

}

void release (lock) {

 lock->held = 0;

 // move on thread from the waiting

 // queue to ready queue

}

5

System-wide

Higher-level synchronization

primitives

 We have looked at one synchronization primitive: locks

 Locks are useful, but may not satisfy all program needs

 Examples? Reader/Writer problem

 Say we had a shared variable where we wanted any number of

threads to read the variable, but only one thread to write it.

 How would you do this with locks? What's wrong with this code?

6

Reader() {

 lock.acquire();

 local_copy = shared_var;

 lock.release();

 return local_copy;

}

Writer() {

 lock.acquire();

 shared_var = NEW_VALUE;

 lock.release();

}

7

Semaphores

 Semaphores are an abstract data type that provide mutual
exclusion to critical sections

 Block waiters, interrupts enabled within critical section

 Described by Dijkstra in THE system in 1968

 Semaphores are integers that support two operations:

 wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()

 signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()

 That's it! No other operations – not even just reading its value – exist

 Semaphore safety property: the semaphore value is always
greater than or equal to 0

8

Blocking in Semaphores

 Associated with each semaphore is a queue of waiting

threads/processes

 When wait() is called by a thread:

 If semaphore is open, thread continues

 If semaphore is closed, thread blocks on queue

 Then signal() opens the semaphore:

 If a thread is waiting on the queue, the thread is unblocked

 If no threads are waiting on the queue, the signal is

remembered for the next thread

9

Semaphore Types

 Semaphores come in two types

 Mutex semaphore (or binary semaphore)

 Represents single access to a resource

 Guarantees mutual exclusion to a critical section

 Counting semaphore (or general semaphore)

 Multiple threads pass the semaphore determined by count

»mutex has count = 1, counting has count = N

 Represents a resource with many units available

 or a resource allowing some unsynchronized concurrent

access (e.g., reading)

10

Using Semaphores

 Use is similar to our locks, but semantics are different

struct Semaphore {

 int value;

 Queue q;

} S;

withdraw (account, amount) {

 wait(S);

 balance = get_balance(account);

 balance = balance – amount;

 put_balance(account, balance);

 signal(S);

 return balance;

}

wait(S);

balance =

get_balance(account);

balance = balance – amount;

wait(S);

put_balance(account,

balance);

signal(S);

wait(S);

…

signal(S);

…

signal(S);

Threads

block

It is undefined which

thread runs after a signal

critical

section

11

Using Semaphores

 We’ve looked at a simple example for using

synchronization

 Mutual exclusion while accessing a bank account

 Now we’re going to use semaphores to look at more

interesting examples

 Producer consumer with bounded buffers

 Readers/Writers

Producer-Consumer Problem /

Bounded Buffer

 Problem:

 Producer puts things into a shared buffer

 Consumer takes them out

 Need synchronization for coordinating producer and consumer

 Example

 Coke machine

12

Bounded Buffer

Producer Consumer

 Problem: There is a set of resource buffers shared by producer and
consumer threads

 Producer inserts resources into the buffer set
» Output, disk blocks, memory pages, processes, etc

 Buffer between producer and consumer allows them to

 operate somewhat independently (execute at different rates)

 Otherwise must operate in lockstep
 producer puts 1 thing in buffer, then consumer takes it out

 then producer adds another, then consumer takes it out, etc

 What is desired safety property?
 Sequence of consumed values is prefix of sequence of produced values

 If nc is number consumed, np number produced, and N the size of the buffer,
then 0 np nc N

 13

15

producer {

 while(TRUE) {

 // produce new item

 if (count==N) sleep(inf); // wait for buffer

 // insert item

 count=count+1;

 if(count==1) // just filled an empty buffer

 wakeup(consumer);

 }

}

First Try: Sleep and Wakeup

consumer {

 while(TRUE) {

 if (count==0) sleep(inf); // no more item

 // remove item

 count=count-1;

 if(count==N-1) // have spaces now

 wakeup(producer);

 // consume resource;

 }

}

#define N 100 //# of slots in the buffer

int count=0; //# of items in the buffer

What are the problems?

 Producer-consumer problem with fatal race condition

 Access to “count” is a race condition

 Access to “buffer” is a race condition

 Wakeup call could get lost

 count = count + 1; count = count – 1;

 Obviously, we need synchronization!

mov eax, count

inc eax

mov count, eax

mov eax, count

dec eax

mov count, eax

16

17

producer {

 while(TRUE) {

 // produce new item

 wait(mutex); // lock for shared data access

 if (count==N) sleep(inf); // wait for buffer

 // insert item

 count=count+1;

 if(count==1) // just filled an empty buffer

 wakeup(consumer);

 signal(mutex); // unlock

 }

}

Second Try: Mutual Exclusion

consumer {

 while(TRUE) {

 wait(mutex); // lock for shared data access

 if (count==0) sleep(inf); // no more item

 // remove item

 count=count-1;

 if(count==N-1) // have spaces now

 wakeup(producer);

 signal(mutex); // unlock

 // consume resource;

}

}

#define N 100 //# of slots in the buffer

int count=0; //# of items in the buffer

Semaphore mutex = 1; // mutual exclusion

19

Bounded Buffer (2)

 0 np nc N

 Use three semaphores:

 filled – count of filled buffers

» Counting semaphore

» filled = ?

 (np – nc)

 empty – count of empty buffers

» Counting semaphore

» empty = ?

 N - (np nc)

 mutex – mutual exclusion to shared set of buffers

»Binary semaphore

20

producer {

 while (1) {

 Produce new resource;

 wait(empty); // wait for empty slot

 wait(mutex); // lock buffer list

 Add resource to an empty slot;

 signal(mutex); // unlock buffer list

 signal(filled); // note a filled slot

 }

}

Last Try: Semaphores

consumer {

 while (1) {

 wait(filled); // wait for a filled slot

 wait(mutex); // lock buffer list

 Remove resource from a filled slot;

 signal(mutex); // unlock buffer list

 signal(empty); // note an empty slot

 Consume resource;

 }

}

Semaphore mutex = 1; // mutual exclusion to shared buffer

Semaphore empty = N; // count of empty buffer slots (all empty to start)

Semaphore filled = 0; // count of filled buffer slots (none to start)

21

Bounded Buffer (4)

 Why need the mutex at all?

 The pattern of signal/wait on full/empty is a common construct
often called an interlock

 Producer-Consumer and Bounded Buffer are classic examples of
synchronization problems

22

Next time…

 Scheduling

 Read Chapter 6

