
CS 153

Design of Operating

Systems

Winter 2016

Lecture 9: Semaphores and Monitors

Some slides from Matt Welsh

2

Summarize Where We Are

 Goal: Use mutual exclusion to protect critical sections

of code that access shared resources

 Method: Use locks (spinlocks or disable interrupts)

 Problem: Critical sections can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts:

 Should not disable interrupts

for long periods of time

 Can miss or delay important

events (e.g., timer, I/O)

Spinlocks:

 Threads waiting to acquire

lock spin in test-and-set loop

 Wastes CPU cycles

 Longer the CS, the longer

the spin

 Greater the chance for lock

holder to be interrupted

Implementing Locks (4)

-- (no spin)

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (test-and-set(&lock->held))

 thread_yield();

}

void release (lock) {

 lock->held = 0;

}

3

Implementing Locks (4)

-- (no spin)

 mutex_lock:

 TSL REGISTER, MUTEX |copy mutex to register, set mutex to 1

 CMP REGISTER, #0 |was mutex zero?

 JNE ok |if zero, mutex was unlocked, so return

 CALL thread_yield |mutex busy, schedule another thread

 JMP mutex_lock |try again later

 ok: RET |return to caller; CR entered

 mutex_unlock:

 MOVE MUTEX, #0 |store a 0 in mutex

 RET |return to caller

4

Implementing Locks (5)

-- Mutex (true blocking)

struct lock {

 int held = 0;

}

void acquire (lock) {

 if(test-and-set(&lock->held))

 // block the thread;

 // send it to a waiting queue

}

void release (lock) {

 lock->held = 0;

 // move on thread from the waiting

 // queue to ready queue

}

5

System-wide

Higher-level synchronization

primitives

 We have looked at one synchronization primitive: locks

 Locks are useful, but may not satisfy all program needs

 Examples? Reader/Writer problem

 Say we had a shared variable where we wanted any number of

threads to read the variable, but only one thread to write it.

 How would you do this with locks? What's wrong with this code?

6

Reader() {

 lock.acquire();

 local_copy = shared_var;

 lock.release();

 return local_copy;

}

Writer() {

 lock.acquire();

 shared_var = NEW_VALUE;

 lock.release();

}

7

Semaphores

 Semaphores are an abstract data type that provide mutual
exclusion to critical sections

 Block waiters, interrupts enabled within critical section

 Described by Dijkstra in THE system in 1968

 Semaphores are integers that support two operations:

 wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()

 signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()

 That's it! No other operations – not even just reading its value – exist

 Semaphore safety property: the semaphore value is always
greater than or equal to 0

8

Blocking in Semaphores

 Associated with each semaphore is a queue of waiting

threads/processes

 When wait() is called by a thread:

 If semaphore is open, thread continues

 If semaphore is closed, thread blocks on queue

 Then signal() opens the semaphore:

 If a thread is waiting on the queue, the thread is unblocked

 If no threads are waiting on the queue, the signal is

remembered for the next thread

9

Semaphore Types

 Semaphores come in two types

 Mutex semaphore (or binary semaphore)

 Represents single access to a resource

 Guarantees mutual exclusion to a critical section

 Counting semaphore (or general semaphore)

 Multiple threads pass the semaphore determined by count

»mutex has count = 1, counting has count = N

 Represents a resource with many units available

 or a resource allowing some unsynchronized concurrent

access (e.g., reading)

10

Using Semaphores

 Use is similar to our locks, but semantics are different

struct Semaphore {

 int value;

 Queue q;

} S;

withdraw (account, amount) {

 wait(S);

 balance = get_balance(account);

 balance = balance – amount;

 put_balance(account, balance);

 signal(S);

 return balance;

}

wait(S);

balance =

get_balance(account);

balance = balance – amount;

wait(S);

put_balance(account,

balance);

signal(S);

wait(S);

…

signal(S);

…

signal(S);

Threads

block

It is undefined which

thread runs after a signal

critical

section

11

Using Semaphores

 We’ve looked at a simple example for using

synchronization

 Mutual exclusion while accessing a bank account

 Now we’re going to use semaphores to look at more

interesting examples

 Producer consumer with bounded buffers

 Readers/Writers

Producer-Consumer Problem /

Bounded Buffer

 Problem:

 Producer puts things into a shared buffer

 Consumer takes them out

 Need synchronization for coordinating producer and consumer

 Example

 Coke machine

12

Bounded Buffer

Producer Consumer

 Problem: There is a set of resource buffers shared by producer and
consumer threads

 Producer inserts resources into the buffer set
» Output, disk blocks, memory pages, processes, etc

 Buffer between producer and consumer allows them to

 operate somewhat independently (execute at different rates)

 Otherwise must operate in lockstep
 producer puts 1 thing in buffer, then consumer takes it out

 then producer adds another, then consumer takes it out, etc

 What is desired safety property?
 Sequence of consumed values is prefix of sequence of produced values

 If nc is number consumed, np number produced, and N the size of the buffer,
then 0  np  nc  N

 13

15

producer {

 while(TRUE) {

 // produce new item

 if (count==N) sleep(inf); // wait for buffer

 // insert item

 count=count+1;

 if(count==1) // just filled an empty buffer

 wakeup(consumer);

 }

}

First Try: Sleep and Wakeup

consumer {

 while(TRUE) {

 if (count==0) sleep(inf); // no more item

 // remove item

 count=count-1;

 if(count==N-1) // have spaces now

 wakeup(producer);

 // consume resource;

 }

}

#define N 100 //# of slots in the buffer

int count=0; //# of items in the buffer

What are the problems?

 Producer-consumer problem with fatal race condition

 Access to “count” is a race condition

 Access to “buffer” is a race condition

 Wakeup call could get lost

 count = count + 1; count = count – 1;

 Obviously, we need synchronization!

mov eax, count

inc eax

mov count, eax

mov eax, count

dec eax

mov count, eax

16

17

producer {

 while(TRUE) {

 // produce new item

 wait(mutex); // lock for shared data access

 if (count==N) sleep(inf); // wait for buffer

 // insert item

 count=count+1;

 if(count==1) // just filled an empty buffer

 wakeup(consumer);

 signal(mutex); // unlock

 }

}

Second Try: Mutual Exclusion

consumer {

 while(TRUE) {

 wait(mutex); // lock for shared data access

 if (count==0) sleep(inf); // no more item

 // remove item

 count=count-1;

 if(count==N-1) // have spaces now

 wakeup(producer);

 signal(mutex); // unlock

 // consume resource;

}

}

#define N 100 //# of slots in the buffer

int count=0; //# of items in the buffer

Semaphore mutex = 1; // mutual exclusion

19

Bounded Buffer (2)

 0  np  nc  N

 Use three semaphores:

 filled – count of filled buffers

» Counting semaphore

» filled = ?

 (np – nc)

 empty – count of empty buffers

» Counting semaphore

» empty = ?

 N - (np  nc)

 mutex – mutual exclusion to shared set of buffers

»Binary semaphore

20

producer {

 while (1) {

 Produce new resource;

 wait(empty); // wait for empty slot

 wait(mutex); // lock buffer list

 Add resource to an empty slot;

 signal(mutex); // unlock buffer list

 signal(filled); // note a filled slot

 }

}

Last Try: Semaphores

consumer {

 while (1) {

 wait(filled); // wait for a filled slot

 wait(mutex); // lock buffer list

 Remove resource from a filled slot;

 signal(mutex); // unlock buffer list

 signal(empty); // note an empty slot

 Consume resource;

 }

}

Semaphore mutex = 1; // mutual exclusion to shared buffer

Semaphore empty = N; // count of empty buffer slots (all empty to start)

Semaphore filled = 0; // count of filled buffer slots (none to start)

21

Bounded Buffer (4)

 Why need the mutex at all?

 The pattern of signal/wait on full/empty is a common construct
often called an interlock

 Producer-Consumer and Bounded Buffer are classic examples of
synchronization problems

22

Next time…

 Scheduling

 Read Chapter 6

