
CS 153

Design of Operating

Systems

Winter 2016

Lecture 8: Synchronization

2

Locks

 A lock is an object in memory providing two operations

 acquire(): before entering the critical section

 release(): after leaving a critical section

 Threads pair calls to acquire() and release()

 Between acquire()/release(), the thread holds the lock

 acquire() does not return until any previous holder releases

 What can happen if the calls are not paired?

3

Using Locks

 Why is the “return” outside the critical section? Is this ok?

 What happens when a third thread calls acquire?

withdraw (account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance = balance – amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

acquire(lock);

put_balance(account, balance);

release(lock);

Critical

Section

4

 How do we implement locks? Here is one attempt:

 This is called a spinlock because a thread spins
waiting for the lock to be released

 Does this work?

Implementing Locks (1)

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (lock->held);

 lock->held = 1;

}

void release (lock) {

 lock->held = 0;

}

busy-wait (spin-wait)

for lock to be released

5

Implementing Locks (2)

 No. Two independent threads may both notice that a

lock has been released and thereby acquire it.

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (lock->held);

 lock->held = 1;

}

void release (lock) {

 lock->held = 0;

}

A context switch can occur

here, causing a race condition

6

Implementing Locks (3)

 The problem is that the implementation of locks has

critical sections, too

 How do we stop the recursion?

 The implementation of acquire/release must be atomic

 An atomic operation is one which executes as though it could

not be interrupted

 Code that executes “all or nothing”

 How do we make them atomic?

 Need help from hardware

 Atomic instructions (e.g., test-and-set)

 Disable/enable interrupts (prevents context switches)

7

Atomic Instructions:

Test-And-Set

 The semantics of test-and-set are:
 Record the old value

 Set the value to indicate available

 Return the old value

 Hardware executes it atomically!

 When executing test-and-set on “flag”
 What is value of flag afterwards if it was initially False? True?

 What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {

 bool old = *flag;

 *flag = True;

 return old;

}

while (lock->held);

 lock->held = 1;

One read

One write

8

Using Test-And-Set (Spinlocks)

 Here is our lock implementation with test-and-set:

 When will the while return? What is the value of held?

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (test-and-set(&lock->held));

}

void release (lock) {

 lock->held = 0;

}

9

Problems with Spinlocks

 The problem with spinlocks is that they are wasteful

 If a thread is spinning on a lock, then the scheduler

thinks that this thread needs CPU and puts it on the

ready queue

 If N threads are contending for the lock, the thread

which holds the lock gets only 1/N’th of the CPU

10

Disabling Interrupts

 Another implementation of acquire/release is to

disable interrupts:

 Note that there is no state associated with the lock

 Can two threads disable interrupts simultaneously?

struct lock {

}

void acquire (lock) {

 disable interrupts;

}

void release (lock) {

 enable interrupts;

}

11

On Disabling Interrupts

 Disabling interrupts blocks notification of external

events that could trigger a context switch (e.g., timer)

 In a “real” system, this is only available to the kernel

 Why?

 Disabling interrupts is insufficient on a multiprocessor

 Back to atomic instructions

 Like spinlocks, only want to disable interrupts to

implement higher-level synchronization primitives

 This is what PintOS does

 Don’t want interrupts disabled between acquire and release

12

Next time…

 Semaphores, monitors and other synchronization

primitives

 Read Chapter 5.4 – 5.7

