
CS 153

Design of Operating

Systems

Winter 2016

Lecture 8: Synchronization

2

Locks

 A lock is an object in memory providing two operations

 acquire(): before entering the critical section

 release(): after leaving a critical section

 Threads pair calls to acquire() and release()

 Between acquire()/release(), the thread holds the lock

 acquire() does not return until any previous holder releases

 What can happen if the calls are not paired?

3

Using Locks

 Why is the “return” outside the critical section? Is this ok?

 What happens when a third thread calls acquire?

withdraw (account, amount) {

 acquire(lock);

 balance = get_balance(account);

 balance = balance – amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

release(lock);

acquire(lock);

put_balance(account, balance);

release(lock);

Critical

Section

4

 How do we implement locks? Here is one attempt:

 This is called a spinlock because a thread spins
waiting for the lock to be released

 Does this work?

Implementing Locks (1)

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (lock->held);

 lock->held = 1;

}

void release (lock) {

 lock->held = 0;

}

busy-wait (spin-wait)

for lock to be released

5

Implementing Locks (2)

 No. Two independent threads may both notice that a

lock has been released and thereby acquire it.

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (lock->held);

 lock->held = 1;

}

void release (lock) {

 lock->held = 0;

}

A context switch can occur

here, causing a race condition

6

Implementing Locks (3)

 The problem is that the implementation of locks has

critical sections, too

 How do we stop the recursion?

 The implementation of acquire/release must be atomic

 An atomic operation is one which executes as though it could

not be interrupted

 Code that executes “all or nothing”

 How do we make them atomic?

 Need help from hardware

 Atomic instructions (e.g., test-and-set)

 Disable/enable interrupts (prevents context switches)

7

Atomic Instructions:

Test-And-Set

 The semantics of test-and-set are:
 Record the old value

 Set the value to indicate available

 Return the old value

 Hardware executes it atomically!

 When executing test-and-set on “flag”
 What is value of flag afterwards if it was initially False? True?

 What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {

 bool old = *flag;

 *flag = True;

 return old;

}

while (lock->held);

 lock->held = 1;

One read

One write

8

Using Test-And-Set (Spinlocks)

 Here is our lock implementation with test-and-set:

 When will the while return? What is the value of held?

struct lock {

 int held = 0;

}

void acquire (lock) {

 while (test-and-set(&lock->held));

}

void release (lock) {

 lock->held = 0;

}

9

Problems with Spinlocks

 The problem with spinlocks is that they are wasteful

 If a thread is spinning on a lock, then the scheduler

thinks that this thread needs CPU and puts it on the

ready queue

 If N threads are contending for the lock, the thread

which holds the lock gets only 1/N’th of the CPU

10

Disabling Interrupts

 Another implementation of acquire/release is to

disable interrupts:

 Note that there is no state associated with the lock

 Can two threads disable interrupts simultaneously?

struct lock {

}

void acquire (lock) {

 disable interrupts;

}

void release (lock) {

 enable interrupts;

}

11

On Disabling Interrupts

 Disabling interrupts blocks notification of external

events that could trigger a context switch (e.g., timer)

 In a “real” system, this is only available to the kernel

 Why?

 Disabling interrupts is insufficient on a multiprocessor

 Back to atomic instructions

 Like spinlocks, only want to disable interrupts to

implement higher-level synchronization primitives

 This is what PintOS does

 Don’t want interrupts disabled between acquire and release

12

Next time…

 Semaphores, monitors and other synchronization

primitives

 Read Chapter 5.4 – 5.7

