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Administrivia 

 Homework 1  

 Due today by the end of day 

 

 Hopefully you have started on project 1 by now? 

 Kernel-level threads (preemptable scheduling) 

 Be prepared with questions for this weeks Lab 

 Read up on scheduling and synchronization in textbook and 

start early! 

 Need to read and understand a lot of code before starting to 

code 

 Students typically find this to be the hardest of the three 

projects 
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Aside: PintOS Threads 
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 Looked at kernel code “threads/thread.c” 

 The code executes in kernel space (Ring 0) 

 In project 1, test cases run in Ring 0 as well. They 

create kernel-level threads directly from the kernel. 

 



Cooperation between Threads 

 Threads cooperate in multithreaded programs 

 To share resources, access shared data structures 

» Threads accessing a memory cache in a Web server 

 To coordinate their execution 

» One thread executes relative to another 
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Threads: Sharing Data 

 int num_connections = 0; 

 

 web_server() { 

 while (1) { 

  int sock = accept(); 

    thread_fork(handle_request, sock); 

 } 

 } 

  

 handle_request(int sock) { 

  ++num_connections; 

  Process request 

  close(sock); 

 } 
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Threads: Cooperation 

 Threads voluntarily give up the CPU with thread_yield 

 

 

 

 

 

 

 

 

while (1) { 

    printf(“ping\n”); 

    thread_yield(); 

} 

while (1) { 

    printf(“pong\n”); 

    thread_yield(); 

} 

Ping Thread Pong Thread 
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Synchronization 

 For correctness, we need to control this cooperation 

 Threads interleave executions arbitrarily and at different rates 

 Scheduling is not under program control 

 We control cooperation using synchronization 

 Synchronization enables us to restrict the possible inter-

leavings of thread executions 

 

 Discussed in terms of threads, but also applies to 

processes 
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Shared Resources 

We initially focus on coordinating access to shared resources 

 Basic problem 

 If two concurrent threads are accessing a shared variable, and that 

variable is read/modified/written by those threads, then access to 

the variable must be controlled to avoid erroneous behavior 

 

 Over the next couple of lectures, we will look at 

 Mechanisms to control access to shared resources 

» Locks, mutexes, semaphores, monitors, condition variables, etc. 

 Patterns for coordinating accesses to shared resources 

» Bounded buffer, producer-consumer, etc. 
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Classic Example 

 Suppose we have to implement a function to handle 

withdrawals from a bank account: 
withdraw (account, amount) { 

balance = get_balance(account); 

balance = balance – amount; 

put_balance(account, balance); 

return balance; 

} 

 Now suppose that you and your father share a bank 

account with a balance of $1000 

 Then you each go to separate ATM machines and 

simultaneously withdraw $100 from the account 
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Example Continued 

 We’ll represent the situation by creating a separate 

thread for each person to do the withdrawals 

 These threads run on the same bank machine: 

 

 

 

 

 

 

 What’s the problem with this implementation? 

 What resource is shared? 

 Think about potential schedules of these two threads 

withdraw (account, amount) { 

    balance = get_balance(account); 

    balance = balance – amount; 

    put_balance(account, balance); 

    return balance; 

} 

withdraw (account, amount) { 

    balance = get_balance(account); 

    balance = balance – amount; 

    put_balance(account, balance); 

    return balance; 

} 

int  balance[MAX_ACCOUNT_ID];    // shared across threads 
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Interleaved Schedules 

 The problem is that the execution of the two threads 

can be interleaved: 

 

 

 

 

 

 

 What is the balance of the account now? 

balance = get_balance(account); 

balance = balance – amount; 

balance = get_balance(account); 

balance = balance – amount; 

put_balance(account, balance); 

put_balance(account, balance); 

Execution 

sequence 

seen by CPU Context switch 
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Shared Resources 

 Problem: two threads accessed a shared resource  

 Known as a race condition (memorize this buzzword) 

 

 Need mechanisms to control this access 

 So we can reason about how the program will operate 

 

 Our example was updating a shared bank account 

 

 Also necessary for synchronizing access to any 

shared data structure 

 Buffers, queues, lists, hash tables, etc. 



13 

When Are Resources 

Shared? 

 Local variables? 

 Not shared: refer to data on the stack 

 Each thread has its own stack 

 Never pass/share/store a pointer to a local variable on the 

stack for thread T1 to another thread T2 

 

 Global variables and static objects? 

  Shared: in static data segment, accessible by all threads 

 

 Dynamic objects and other heap objects? 

  Shared: Allocated from heap with malloc/free or new/delete 

Stack (T1) 

Code 

Static Data 

Heap 

Stack (T2) 

Stack (T3) 
Thread 3 

Thread 2 

PC (T1) 

PC (T3) 
PC (T2) 

Thread 1 
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How Interleaved Can It Get? 

............... get_balance(account); 

put_balance(account, balance); 

put_balance(account, balance); 

balance = balance – amount; 

balance = balance – amount; 

balance = get_balance(account); 

balance = ................................... 

How contorted can the interleavings be? 

 We'll assume that the only atomic operations are reads 
and writes of individual memory locations 
 Some architectures don't even give you that! 

 We'll assume that a context 
switch can occur at any time 

 We'll assume that you can 
delay a thread as long as you 
like as long as it's not delayed 
forever 
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Mutual Exclusion 

 Mutual exclusion to synchronize access to shared 
resources 
 This allows us to have larger atomic blocks 

 What does atomic mean? 

 

 Code that uses mutual called a critical section 
 Only one thread at a time can execute in the critical section 

 All other threads are forced to wait on entry 

 When a thread leaves a critical section, another can enter 

 Example: sharing an ATM with others 

 

 What requirements would you place on a critical 
section? 
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Critical Section Requirements 

Critical sections have the following requirements: 

1) Mutual exclusion (mutex) 

 If one thread is in the critical section, then no other is 

2) Progress 

 A thread in the critical section will eventually leave the critical section 

 If some thread T is not in the critical section, then T cannot prevent 

some other thread S from entering the critical section 

3) Bounded waiting (no starvation) 

 If some thread T is waiting on the critical section, then T will 

eventually enter the critical section 

4) Performance 

 The overhead of entering and exiting the critical section is small with 

respect to the work being done within it 
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About Requirements 

There are three kinds of requirements that we'll use 

 Safety property: nothing bad happens 

 Mutex 

 Liveness property: something good happens 

 Progress, Bounded Waiting 

 Performance requirement 

 Performance 

 Properties hold for each run, while performance 

depends on all the runs 

 Rule of thumb: When designing a concurrent algorithm, worry 

about safety first (but don't forget liveness!). 
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Mechanisms For Building 

Critical Sections 

 Atomic read/write 
 Can it be done? 

 

 Locks 
 Primitive, minimal semantics, used to build others 

 

 Semaphores 
 Basic, easy to get the hang of, but hard to program with 

 

 Monitors 
 High-level, requires language support, operations implicit 
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Mutual Exclusion with Atomic 

Read/Writes: First Try 

while (true) { 

    while (turn != 1) ; 

    critical section 

    turn = 2; 

    outside of critical section 

} 

while (true) { 

    while (turn != 2) ; 

    critical section 

    turn = 1; 

    outside of critical section 

} 

int turn = 1; 

This is called alternation 

It satisfies mutex: 

• If blue is in the critical section, then turn == 1 and if yellow is in the critical section then 

   turn == 2 

• (turn == 1) ≡ (turn != 2) 

Is there anything wrong with this solution? 
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Mutual Exclusion with Atomic 

Read/Writes: First Try 

while (true) { 

    while (turn != 1) ; 

    critical section 

    turn = 2; 

    outside of critical section 

} 

while (true) { 

    while (turn != 2) ; 

    critical section 

    turn = 1; 

    outside of critical section 

} 

int turn = 1; 

This is called alternation 

It satisfies mutex: 

• If blue is in the critical section, then turn == 1 and if yellow is in the critical section then 

   turn == 2 

• (turn == 1) ≡ (turn != 2) 

 

It violates progress: blue thread could go into an infinite loop outside of the 

critical section, which will prevent the yellow one from entering 
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Mutex with Atomic R/W: 

Peterson's Algorithm 

while (true) { 

    try1 = true; 

    turn = 2; 

    while (try2 && turn != 1) ; 

    critical section 

    try1 = false; 

    outside of critical section 

} 

while (true) { 

    try2 = true; 

    turn = 1; 

    while (try1 && turn != 2) ; 

    critical section 

    try2 = false; 

    outside of critical section 

} 

int turn = 1; 

bool try1 = false, try2 = false; 

• This satisfies all the requirements 

• Here's why... 
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Mutex with Atomic R/W: 

Peterson's Algorithm 

while (true) { 

    {¬ try1 ∧ (turn == 1 ∨ turn == 2) } 

1  try1 = true; 

    { try1 ∧ (turn == 1 ∨ turn == 2) } 

2  turn = 2; 

    { try1 ∧ (turn == 1 ∨ turn == 2) } 

3  while (try2 && turn != 1) ; 

   {  try1 ∧ (turn == 1 ∨ ¬ try2 ∨  

        (try2 ∧ (yellow at 6 or at 7)) } 

    critical section 

4  try1 = false; 

    {¬ try1 ∧ (turn == 1 ∨ turn == 2) } 

    outside of critical section 

} 

while (true) { 

    {¬ try2 ∧ (turn == 1 ∨ turn == 2) } 

5  try2 = true; 

    { try2 ∧ (turn == 1 ∨ turn == 2) } 

6  turn = 1; 

    { try2 ∧ (turn == 1 ∨ turn == 2) } 

7  while (try1 && turn != 2) ; 

    {  try2 ∧ (turn == 2 ∨ ¬ try1 ∨  

        (try1 ∧ (blue at 2 or at 3)) } 

    critical section 

8  try2 = false; 

    {¬ try2 ∧ (turn == 1 ∨ turn == 2) } 

    outside of critical section 

} 

int turn = 1; 

bool try1 = false, try2 = false; 

(blue at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2 ∧ (yellow at 6 or at 7)) 

       ∧  (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1 ∧ (blue at 2 or at 3)) 

... ⇒ (turn == 1  ∧ turn == 2) 



Peterson’s Algorithm 
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 Hard to reason 

 Simpler ways to implement Mutex exists (see later) 



24 

Locks 

 A lock is an object in memory providing two operations 

 acquire(): before entering the critical section 

 release(): after leaving a critical section 

 

 Threads pair calls to acquire() and release() 

 Between acquire()/release(), the thread holds the lock 

 acquire() does not return until any previous holder releases 

 What can happen if the calls are not paired? 
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Using Locks 

 

 

 

 

 

 

 

 

 
 

 Why is the “return” outside the critical section? Is this ok? 

 What happens when a third thread calls acquire? 

withdraw (account, amount) { 

    acquire(lock); 

    balance = get_balance(account); 

    balance = balance – amount; 

    put_balance(account, balance); 

    release(lock); 

    return balance; 

} 

acquire(lock); 

balance = get_balance(account); 

balance = balance – amount; 

balance = get_balance(account); 

balance = balance – amount; 

put_balance(account, balance); 

release(lock); 

acquire(lock); 

put_balance(account, balance); 

release(lock); 

Critical 

Section 
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Next time… 

 Semaphores and monitors 

 Read Chapter 5.2 – 5.7  
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Semaphores 

 Semaphores are data structures that also provide 

mutual exclusion to critical sections 

 Block waiters, interrupts enabled within CS 

 Described by Dijkstra in THE system in 1968 

 Semaphores count the number of threads using a 

critical section (more later) 

 Semaphores support two operations: 

 wait(semaphore): decrement, block until semaphore is open 

» Also P() after the Dutch word for test 

 signal(semaphore): increment, allow another thread to enter 

» Also V() after the Dutch word for increment 
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Blocking in Semaphores 

 Associated with each semaphore is a queue of waiting 

processes 

 When wait() is called by a thread: 

 If semaphore is open, thread continues 

 If semaphore is closed, thread blocks on queue 

 signal() opens the semaphore: 

 If a thread is waiting on the queue, the thread is unblocked 

 If no threads are waiting on the queue, the signal is 

remembered for the next thread 

» In other words, signal() has “history” 

» This history uses a counter 
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Using Semaphores 

 Use is similar to locks, but semantics are different 

struct account { 

    double balance; 

    semaphore S; 

} 

withdraw (account, amount) { 

    wait(account->S); 

    tmp = account->balance; 

    tmp = tmp - amount; 

    account->balance = tmp; 

    signal(account->S); 

    return tmp; 

} 

wait(account->S); 

tmp = account->balance; 

tmp = tmp – amount; 

wait(account->S); 

account->balance = tmp; 

signal(account->S); 

wait(account->S); 

… 

signal(account->S); 

… 

signal(account->S); 

Threads 

block 

It is undefined which 

thread runs after a signal 


