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Recap: Process Components 

 A process is named using its process ID (PID) 

 A process contains all of the state for a program in 

execution 

 An address space 

 The code for the executing program 

 The data for the executing program 

 A set of operating system resources 

» Open files, network connections, etc. 

 An execution stack encapsulating the state of procedure calls 

 The program counter (PC) indicating the next instruction 

 A set of general-purpose registers with current values 

 Current execution state (Ready/Running/Waiting) 
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Threads in a Process 
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Process/Thread Separation 

 Separating threads and processes makes it easier to 

support multithreaded applications 

 Concurrency does not require creating new processes 

  Concurrency (multithreading) can be very useful 

 Improving program structure  

 Handling concurrent events (e.g., Web requests) 

 Writing parallel programs 

 So multithreading is even useful on a uniprocessor 
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Threads: Concurrent Servers 

 Using fork() to create new processes to handle 

requests in parallel is overkill for such a simple task 

 Recall our forking Web server: 
 

while (1) { 

 int sock = accept(); 

 if ((child_pid = fork()) == 0) { 

  Handle client request 

  Close socket and exit 

 } else { 

  Close socket 

 } 

} 



6 

Threads: Concurrent Servers 

 Instead, we can create a new thread for each request 
 

 web_server() { 

 while (1) { 

  int sock = accept(); 

    thread_fork(handle_request, sock); 

 } 

 } 

  

 handle_request(int sock) { 

  Process request 

  close(sock); 

 } 



Input thread 

Backup thread 

Display thread 

A Word Process w/3 Threads 
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Kernel-Level Threads 

 We have taken the execution aspect of a process and 

separated it out into threads 

 To make concurrency cheaper 

 As such, the OS now manages threads and processes 

 All thread operations are implemented in the kernel 

 The OS schedules all of the threads in the system 

 OS-managed threads are called kernel-level threads 

or lightweight processes 

 Windows: threads 

 Solaris: lightweight processes (LWP) 

 POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM  
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Kernel Thread Limitations 

 Kernel-level threads make concurrency much cheaper 

than processes 

 Much less state to allocate and initialize 

 However, for fine-grained concurrency, kernel-level 

threads still suffer from too much overhead 

 Thread operations still require system calls 

» Ideally, want thread operations to be as fast as a procedure call 

 Kernel-level threads have to be general to support the needs 

of all programmers, languages, runtimes, etc. 

 For such fine-grained concurrency, need even 

“cheaper” threads 
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User-Level Threads 

 To make threads cheap and fast, they need to be 

implemented at user level 

 Kernel-level threads are managed by the OS 

 User-level threads are managed entirely by the run-time 

system (user-level library) 

 User-level threads are small and fast 

 A thread is simply represented by a PC, registers, stack, and 

small thread control block (TCB) 

 Creating a new thread, switching between threads, and 

synchronizing threads are done via procedure call  

» No kernel involvement 

 User-level thread operations 100x faster than kernel threads 

 pthreads: PTHREAD_SCOPE_PROCESS  
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User and Kernel Threads 

Multiplexing user-level threads 
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OS OS 
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U/L Thread Limitations 

 But, user-level threads are not a perfect solution 

 As with everything else, they are a tradeoff 

 User-level threads are invisible to the OS 

 They are not well integrated with the OS 

 As a result, the OS can make poor decisions 

 Scheduling a process with idle threads 

 Blocking a process whose thread initiated an I/O, even though 

the process has other threads that can execute 

 Unscheduling a process with a thread holding a lock 

 Solving this requires communication between the 

kernel and the user-level thread manager 



13 

Kernel vs. User Threads 

 Kernel-level threads 

 Integrated with OS (informed scheduling) 

 Slow to create, manipulate, synchronize 

 User-level threads 

 Fast to create, manipulate, synchronize 

 Not integrated with OS (uninformed scheduling) 

 Understanding the differences between kernel and 

user-level threads is important 

 For programming (correctness, performance) 

 For test-taking  
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Implementing Threads 

 Implementing threads has a number of issues 

 Interface 

 Context switch 

 Preemptive vs. non-preemptive 

 Scheduling 

 Synchronization (next lecture) 

 Focus on kernel-level threads 

 What you will be dealing with in Pintos 

 Not only will you be using threads in Pintos, you will be 

implementing more thread functionality (e.g., sleep) 
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Sample Thread Interface 

 thread_fork(procedure_t) 

 Create a new thread of control 

 Also thread_create(), thread_setstate() 

 thread_stop() 

 Stop the calling thread; also thread_block 

 thread_start(thread_t) 

 Start the given thread 

 thread_yield() 

 Voluntarily give up the processor 

 thread_exit() 

 Terminate the calling thread; also thread_destroy 

 Where are they called? User-space or kernel-space? 
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Thread Scheduling 

 The thread scheduler determines when a thread runs 

 It uses queues to keep track of what threads are doing 

 Just like the OS and processes 

 Implemented at user-level in a library for user-level threads 

 Run queue: Threads currently running (usually one) 

 Ready queue: Threads ready to run 

 Are there wait queues? 

 How would you implement thread_sleep(time)? 
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Non-Preemptive Scheduling 

 Threads voluntarily give up the CPU with thread_yield 

 

 

 

 

 

 

 

 

 What is the output of running these two threads? 

while (1) { 

    printf(“ping\n”); 

    thread_yield(); 

} 

while (1) { 

    printf(“pong\n”); 

    thread_yield(); 

} 

Ping Thread Pong Thread 
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thread_yield() 

 The semantics of thread_yield are that it gives up the 

CPU to another thread 

 In other words, it context switches to another thread 

 

 So what does it mean for thread_yield to return? 

 

 Execution trace of ping/pong 
 printf(“ping\n”); 

 thread_yield(); 

 printf(“pong\n”); 

 thread_yield(); 

 … 
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Implementing thread_yield() 

(PintOS hint) 

 

thread_yield() { 

 thread_t old_thread = current_thread; 

 current_thread = get_next_thread(); 

 append_to_queue(ready_queue, old_thread); 

 context_switch(old_thread, current_thread); 

 return; 

} 

 

 The magic step is invoking context_switch() 

 Why do we need to call append_to_queue()? 
 

As old thread 

As new thread 
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Thread Context Switch 

 The context switch routine does all of the magic 

 Saves context of the currently running thread (old_thread) 

 Restores context of the next thread 

 The next thread becomes the current thread 

 Return to caller as new thread 

 In Pintos, it is the switch_threads() in switch.S 

 This is all done in assembly language 

 It works at the level of the procedure calling convention, so it 

cannot be implemented using procedure calls 
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Preemptive Scheduling 

 Non-preemptive threads have to voluntarily give up CPU  

 A long-running thread will take over the machine 

 Only voluntary calls to thread_yield(), thread_stop(), or thread_exit() 

causes a context switch 

 

 Preemptive scheduling causes an involuntary context switch 

 Need to regain control of processor asynchronously 

 Use timer interrupt (How do you do this?) 

 Timer interrupt handler forces current thread to “call” thread_yield 
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Threads Summary 

 Processes are too heavyweight for multiprocessing 

 Time and space overhead 

 Solution is to separate threads from processes 

 Kernel-level threads much better, but still significant overhead 

 User-level threads even better, but not well integrated with OS 

 Scheduling of threads can be either preemptive or non-

preemptive 

 

 Now, how do we get our threads to correctly cooperate 

with each other? 

 Synchronization… 
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Next time… 

 Read 

 Chapter 5.1—5.3 in book 

 

 


