CS 153
Design of Operating
Systems

Winter 2016

Lecture 6: Threads

Recap: Process Components

o A process is named using its process ID (PID)

o A process contains all of the state for a program in
execution

Per-
Process
State

Per-
Thread
State

*

*

*

An address space
The code for the executing program
The data for the executing program

A set of operating system resources
» Open files, network connections, etc.

An execution stack encapsulating the state of procedure calls
The program counter (PC) indicating the next instruction

A set of general-purpose registers with current values
Current execution state (Ready/Running/Waiting)

Threads in a Process

Stack (T1)

A

Thread 1

Thread 2 —

Stack (T2)

Stack (T3)

<— Thread 3

Heap

Static Data

PC (T2) —>

Code

<— PC(T3)

< PC (T1)

Process/Thread Separation

o Separating threads and processes makes it easier to
support multithreaded applications
+ Concurrency does not require creating new processes

o Concurrency (multithreading) can be very useful
+ Improving program structure
+ Handling concurrent events (e.g., Web requests)
+ Writing parallel programs

o S0 multithreading is even useful on a uniprocessor

Threads: Concurrent Servers

o Using fork() to create new processes to handle
requests in parallel is overkill for such a simple task

o Recall our forking Web server:

while (1) {
int sock = accept();
if ((child pid = fork()) == 0) {
Handle client request

Close socket and exit
} else {
Close socket

}

Threads: Concurrent Servers

o Instead, we can create a new thread for each request

web server() {
while (1) {
int sock = accept();
thread fork(handle request, sock);

}

handle request(int sock) ({
Process request
close (sock) ;

A Word Process w/3 Threads

Four scare and seven
years ago, omr fathers
bromght ferth npan this
continent a new nation:

° comceived in liberty,
isbla rea e e
propesition that all

men are created equal

Now we are engaged
in a grear civil war
testing whether that

nation, ar any nation
so conceived and s
dedicated, can long
endure. We ae met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for thoss
who here gave their

lives that this nation
might live. It is
altogether fitting and
proper that we should
da this,

But, in a larger sense,
we cannot dedicate, we
camnot comsecrate we
canmot hallow this
gound. The buve
men, living and dead,

who stmggled hers
have consecrated it, far
abeve our poer power
to add or detract. The
warld will little note,
mor long remember,
what we say here, but
it can never farget
‘what they did here

1t is for vs the living,
mther, o be dedicated

her to the nnfinished
work which they wha
fought hew have this
far 50 nobly advanced
1t is mther for ws to be
here dedicated to the
great task remaining
befor s, that fom
these honored dead we
take increassd devotion
to that cause for which

they gave the last full
measure of devotion,
that we here highly
resalve that these dead
shall ot have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

L

"

Input thread

Keyboard

Kernel

Backup thread

Disk

Kernel-Level Threads

o We have taken the execution aspect of a process and
separated it out into threads
+ To make concurrency cheaper

o As such, the OS now manages threads and processes
+ All thread operations are implemented in the kernel
o+ The OS schedules all of the threads in the system

« OS-managed threads are called kernel-level threads
or lightweight processes
+ Windows: threads
+ Solaris: lightweight processes (LWP)
+ POSIX Threads (pthreads): PTHREAD SCOPE_SYSTEM

Kernel Thread Limitations

o Kernel-level threads make concurrency much cheaper
than processes
+ Much less state to allocate and initialize

o However, for fine-grained concurrency, kernel-level
threads still suffer from too much overhead

+ Thread operations still require system calls
» |deally, want thread operations to be as fast as a procedure call

+ Kernel-level threads have to be general to support the needs
of all programmers, languages, runtimes, etc.
o For such fine-grained concurrency, need even
“cheaper” threads

User-Level Threads

o T0 make threads cheap and fast, they need to be
Implemented at user level
+ Kernel-level threads are managed by the OS
+ User-level threads are managed entirely by the run-time
system (user-level library)
o User-level threads are small and fast

+ Athread is simply represented by a PC, registers, stack, and
small thread control block (TCB)

+ Creating a new thread, switching between threads, and
synchronizing threads are done via procedure call

» No kernel involvement
+ User-level thread operations 100x faster than kernel threads
+ pthreads: PTHREAD SCOPE_PROCESS

10

User and Kernel Threads

P2 P1 P2

220 @ 200 @
\ |/ X

(3 2 00 @
OS

OS

Multiplexing user-level threads Multiplexing user-level threads
on a single kernel thread for on multiple kernel threads for
each process each process

11

U/L Thread Limitations

o But, user-level threads are not a perfect solution
+ As with everything else, they are a tradeoff

o User-level threads are invisible to the OS
+ They are not well integrated with the OS

o As aresult, the OS can make poor decisions
+ Scheduling a process with idle threads

+ Blocking a process whose thread initiated an 1/0O, even though
the process has other threads that can execute

+ Unscheduling a process with a thread holding a lock

o Solving this requires communication between the
kernel and the user-level thread manager

12

Kernel vs. User Threads

o Kernel-level threads
+ Integrated with OS (informed scheduling)
+ Slow to create, manipulate, synchronize

o User-level threads
+ Fast to create, manipulate, synchronize
+ Not integrated with OS (uninformed scheduling)

o Understanding the differences between kernel and
user-level threads is important

+ For programming (correctness, performance)
+ For test-taking

13

Implementing Threads

o Implementing threads has a number of issues
+ Interface
+ Context switch
+ Preemptive vs. non-preemptive
+ Scheduling
+ Synchronization (next lecture)

o« Focus on kernel-level threads

+ What you will be dealing with in Pintos

+ Not only will you be using threads in Pintos, you will be
Implementing more thread functionality (e.g., sleep)

Sample Thread Interface

o thread fork(procedure t)
+ Create a new thread of control
» Also thread_create(), thread_setstate()

o thread stop()
+ Stop the calling thread; also thread block

o thread_start(thread t)
+ Start the given thread

o thread yield()

+ Voluntarily give up the processor

o thread exit()
+ Terminate the calling thread; also thread_destroy

« Where are they called? User-space or kernel-space?

16

Thread Scheduling

The thread scheduler determines when a thread runs

It uses queues to keep track of what threads are doing

+ Just like the OS and processes
+ Implemented at user-level in a library for user-level threads

Run queue: Threads currently running (usually one)
Ready queue: Threads ready to run

Are there wait queues?
+ How would you implement thread_sleep(time)?

17

Non-Preemptive Scheduling

o Threads voluntarily give up the CPU with thread_yield

Ping Thread Pong Thread
while (1) { while (1) {
printf(“ping\n”™); printf(“pong\n”);
thread_yield(); thread_yield();
} }

o What is the output of running these two threads?

thread_yield()

o The semantics of thread_yield are that it gives up the
CPU to another thread

+ In other words, it context switches to another thread
o S0 what does it mean for thread_yield to return?

o EXxecution trace of ping/pong

printf(“pong\n”);
thread_yield();

* & o o o

19

Implementing thread_yield()
(PintOS hint)

thread yield() {)
thread t old thread = current thread;

current thread = get next thread(); ~ Asold thread

append to queue (ready queue, old thread);

context switch(old thread, current thread); =

return; >~ As new thread

« The magic step is invoking context_switch()
« Why do we need to call append to _gqueue()?

20

Thread Context Switch

o The context switch routine does all of the magic
+ Saves context of the currently running thread (old_thread)
+ Restores context of the next thread
+ The next thread becomes the current thread
+ Return to caller as new thread
+ In Pintos, it is the switch_threads() in switch.S

o This is all done in assembly language

+ It works at the level of the procedure calling convention, so it
cannot be implemented using procedure calls

Preemptive Scheduling

o Non-preemptive threads have to voluntarily give up CPU
+ Along-running thread will take over the machine

+ Only voluntary calls to thread_yield(), thread_stop(), or thread_exit()
causes a context switch

o Preemptive scheduling causes an involuntary context switch
+ Need to regain control of processor asynchronously
+ Use timer interrupt (How do you do this?)
« Timer interrupt handler forces current thread to “call” thread_yield

22

Threads Summary

o Processes are too heavyweight for multiprocessing
+ Time and space overhead

o Solution is to separate threads from processes
+ Kernel-level threads much better, but still significant overhead
+ User-level threads even better, but not well integrated with OS

« Scheduling of threads can be either preemptive or non-
preemptive

o Now, how do we get our threads to correctly cooperate
with each other?
+ Synchronization...

23

Next time...

« Read
+ Chapter 5.1—5.3 in book

24

