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Lecture 6: Threads



Recap: Process Components

o A process is named using its process ID (PID)

o A process contains all of the state for a program in
execution
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An address space
The code for the executing program
The data for the executing program

A set of operating system resources
» Open files, network connections, etc.

An execution stack encapsulating the state of procedure calls
The program counter (PC) indicating the next instruction

A set of general-purpose registers with current values
Current execution state (Ready/Running/Waiting)




Threads in a Process
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Process/Thread Separation

o Separating threads and processes makes it easier to
support multithreaded applications
+ Concurrency does not require creating new processes

o Concurrency (multithreading) can be very useful
+ Improving program structure
+ Handling concurrent events (e.g., Web requests)
+ Writing parallel programs

o S0 multithreading is even useful on a uniprocessor



Threads: Concurrent Servers

o Using fork() to create new processes to handle
requests in parallel is overkill for such a simple task

o Recall our forking Web server:

while (1) {
int sock = accept();
if ((child pid = fork()) == 0) {
Handle client request

Close socket and exit
} else {
Close socket

}



Threads: Concurrent Servers

o Instead, we can create a new thread for each request

web server() {
while (1) {
int sock = accept();
thread fork(handle request, sock);

}

handle request(int sock) ({
Process request
close (sock) ;



A Word Process w/3 Threads
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Kernel-Level Threads

o We have taken the execution aspect of a process and
separated it out into threads
+ To make concurrency cheaper

o As such, the OS now manages threads and processes
+ All thread operations are implemented in the kernel
o+ The OS schedules all of the threads in the system

« OS-managed threads are called kernel-level threads
or lightweight processes
+ Windows: threads
+ Solaris: lightweight processes (LWP)
+ POSIX Threads (pthreads): PTHREAD SCOPE_SYSTEM



Kernel Thread Limitations

o Kernel-level threads make concurrency much cheaper
than processes
+ Much less state to allocate and initialize

o However, for fine-grained concurrency, kernel-level
threads still suffer from too much overhead

+ Thread operations still require system calls
» |deally, want thread operations to be as fast as a procedure call

+ Kernel-level threads have to be general to support the needs
of all programmers, languages, runtimes, etc.
o For such fine-grained concurrency, need even
“cheaper” threads



User-Level Threads

o T0 make threads cheap and fast, they need to be
Implemented at user level
+ Kernel-level threads are managed by the OS
+ User-level threads are managed entirely by the run-time
system (user-level library)
o User-level threads are small and fast

+ Athread is simply represented by a PC, registers, stack, and
small thread control block (TCB)

+ Creating a new thread, switching between threads, and
synchronizing threads are done via procedure call

» No kernel involvement
+ User-level thread operations 100x faster than kernel threads
+ pthreads: PTHREAD SCOPE_PROCESS
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User and Kernel Threads
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U/L Thread Limitations

o But, user-level threads are not a perfect solution
+ As with everything else, they are a tradeoff

o User-level threads are invisible to the OS
+ They are not well integrated with the OS

o As aresult, the OS can make poor decisions
+ Scheduling a process with idle threads

+ Blocking a process whose thread initiated an 1/0O, even though
the process has other threads that can execute

+ Unscheduling a process with a thread holding a lock

o Solving this requires communication between the
kernel and the user-level thread manager
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Kernel vs. User Threads

o Kernel-level threads
+ Integrated with OS (informed scheduling)
+ Slow to create, manipulate, synchronize

o User-level threads
+ Fast to create, manipulate, synchronize
+ Not integrated with OS (uninformed scheduling)

o Understanding the differences between kernel and
user-level threads is important

+ For programming (correctness, performance)
+ For test-taking
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Implementing Threads

o Implementing threads has a number of issues
+ Interface
+ Context switch
+ Preemptive vs. non-preemptive
+ Scheduling
+ Synchronization (next lecture)

o« Focus on kernel-level threads

+ What you will be dealing with in Pintos

+ Not only will you be using threads in Pintos, you will be
Implementing more thread functionality (e.g., sleep)



Sample Thread Interface

o thread fork(procedure t)
+ Create a new thread of control
» Also thread_create(), thread_setstate()

o thread stop()
+ Stop the calling thread; also thread block

o thread_start(thread t)
+ Start the given thread

o thread yield()

+ Voluntarily give up the processor

o thread exit()
+ Terminate the calling thread; also thread_destroy

« Where are they called? User-space or kernel-space?
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Thread Scheduling

The thread scheduler determines when a thread runs

It uses queues to keep track of what threads are doing

+ Just like the OS and processes
+ Implemented at user-level in a library for user-level threads

Run queue: Threads currently running (usually one)
Ready queue: Threads ready to run

Are there wait queues?
+ How would you implement thread_sleep(time)?
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Non-Preemptive Scheduling

o Threads voluntarily give up the CPU with thread_yield

Ping Thread Pong Thread
while (1) { while (1) {
printf(“ping\n”™); printf(“pong\n”);
thread_yield(); thread_yield();
} }

o What is the output of running these two threads?



thread_yield()

o The semantics of thread_yield are that it gives up the
CPU to another thread

+ In other words, it context switches to another thread
o S0 what does it mean for thread_yield to return?

o EXxecution trace of ping/pong

printf(“pong\n”);
thread_yield();

* & o o o
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Implementing thread_yield()
(PintOS hint)

thread yield() { )
thread t old thread = current thread;

current thread = get next thread(); ~ Asold thread

append to queue (ready queue, old thread);

context switch(old thread, current thread); =

return; >~ As new thread

« The magic step is invoking context_switch()
« Why do we need to call append to _gqueue()?
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Thread Context Switch

o The context switch routine does all of the magic
+ Saves context of the currently running thread (old_thread)
+ Restores context of the next thread
+ The next thread becomes the current thread
+ Return to caller as new thread
+ In Pintos, it is the switch_threads() in switch.S

o This is all done in assembly language

+ It works at the level of the procedure calling convention, so it
cannot be implemented using procedure calls



Preemptive Scheduling

o Non-preemptive threads have to voluntarily give up CPU
+ Along-running thread will take over the machine

+ Only voluntary calls to thread_yield(), thread_stop(), or thread_exit()
causes a context switch

o Preemptive scheduling causes an involuntary context switch
+ Need to regain control of processor asynchronously
+ Use timer interrupt (How do you do this?)
« Timer interrupt handler forces current thread to “call” thread_yield
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Threads Summary

o Processes are too heavyweight for multiprocessing
+ Time and space overhead

o Solution is to separate threads from processes
+ Kernel-level threads much better, but still significant overhead
+ User-level threads even better, but not well integrated with OS

« Scheduling of threads can be either preemptive or non-
preemptive

o Now, how do we get our threads to correctly cooperate
with each other?
+ Synchronization...
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Next time...

« Read
+ Chapter 5.1—5.3 in book
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