
CS 153 

Design of Operating 

Systems 

 

Winter 2016 

Lecture 6: Threads 

 



2 

Recap: Process Components 

 A process is named using its process ID (PID) 

 A process contains all of the state for a program in 

execution 

 An address space 

 The code for the executing program 

 The data for the executing program 

 A set of operating system resources 

» Open files, network connections, etc. 

 An execution stack encapsulating the state of procedure calls 

 The program counter (PC) indicating the next instruction 

 A set of general-purpose registers with current values 

 Current execution state (Ready/Running/Waiting) 
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Process/Thread Separation 

 Separating threads and processes makes it easier to 

support multithreaded applications 

 Concurrency does not require creating new processes 

  Concurrency (multithreading) can be very useful 

 Improving program structure  

 Handling concurrent events (e.g., Web requests) 

 Writing parallel programs 

 So multithreading is even useful on a uniprocessor 
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Threads: Concurrent Servers 

 Using fork() to create new processes to handle 

requests in parallel is overkill for such a simple task 

 Recall our forking Web server: 
 

while (1) { 

 int sock = accept(); 

 if ((child_pid = fork()) == 0) { 

  Handle client request 

  Close socket and exit 

 } else { 

  Close socket 

 } 

} 
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Threads: Concurrent Servers 

 Instead, we can create a new thread for each request 
 

 web_server() { 

 while (1) { 

  int sock = accept(); 

    thread_fork(handle_request, sock); 

 } 

 } 

  

 handle_request(int sock) { 

  Process request 

  close(sock); 

 } 



Input thread 

Backup thread 

Display thread 

A Word Process w/3 Threads 
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Kernel-Level Threads 

 We have taken the execution aspect of a process and 

separated it out into threads 

 To make concurrency cheaper 

 As such, the OS now manages threads and processes 

 All thread operations are implemented in the kernel 

 The OS schedules all of the threads in the system 

 OS-managed threads are called kernel-level threads 

or lightweight processes 

 Windows: threads 

 Solaris: lightweight processes (LWP) 

 POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM  
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Kernel Thread Limitations 

 Kernel-level threads make concurrency much cheaper 

than processes 

 Much less state to allocate and initialize 

 However, for fine-grained concurrency, kernel-level 

threads still suffer from too much overhead 

 Thread operations still require system calls 

» Ideally, want thread operations to be as fast as a procedure call 

 Kernel-level threads have to be general to support the needs 

of all programmers, languages, runtimes, etc. 

 For such fine-grained concurrency, need even 

“cheaper” threads 
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User-Level Threads 

 To make threads cheap and fast, they need to be 

implemented at user level 

 Kernel-level threads are managed by the OS 

 User-level threads are managed entirely by the run-time 

system (user-level library) 

 User-level threads are small and fast 

 A thread is simply represented by a PC, registers, stack, and 

small thread control block (TCB) 

 Creating a new thread, switching between threads, and 

synchronizing threads are done via procedure call  

» No kernel involvement 

 User-level thread operations 100x faster than kernel threads 

 pthreads: PTHREAD_SCOPE_PROCESS  
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User and Kernel Threads 
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U/L Thread Limitations 

 But, user-level threads are not a perfect solution 

 As with everything else, they are a tradeoff 

 User-level threads are invisible to the OS 

 They are not well integrated with the OS 

 As a result, the OS can make poor decisions 

 Scheduling a process with idle threads 

 Blocking a process whose thread initiated an I/O, even though 

the process has other threads that can execute 

 Unscheduling a process with a thread holding a lock 

 Solving this requires communication between the 

kernel and the user-level thread manager 
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Kernel vs. User Threads 

 Kernel-level threads 

 Integrated with OS (informed scheduling) 

 Slow to create, manipulate, synchronize 

 User-level threads 

 Fast to create, manipulate, synchronize 

 Not integrated with OS (uninformed scheduling) 

 Understanding the differences between kernel and 

user-level threads is important 

 For programming (correctness, performance) 

 For test-taking  



15 

Implementing Threads 

 Implementing threads has a number of issues 

 Interface 

 Context switch 

 Preemptive vs. non-preemptive 

 Scheduling 

 Synchronization (next lecture) 

 Focus on kernel-level threads 

 What you will be dealing with in Pintos 

 Not only will you be using threads in Pintos, you will be 

implementing more thread functionality (e.g., sleep) 
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Sample Thread Interface 

 thread_fork(procedure_t) 

 Create a new thread of control 

 Also thread_create(), thread_setstate() 

 thread_stop() 

 Stop the calling thread; also thread_block 

 thread_start(thread_t) 

 Start the given thread 

 thread_yield() 

 Voluntarily give up the processor 

 thread_exit() 

 Terminate the calling thread; also thread_destroy 

 Where are they called? User-space or kernel-space? 
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Thread Scheduling 

 The thread scheduler determines when a thread runs 

 It uses queues to keep track of what threads are doing 

 Just like the OS and processes 

 Implemented at user-level in a library for user-level threads 

 Run queue: Threads currently running (usually one) 

 Ready queue: Threads ready to run 

 Are there wait queues? 

 How would you implement thread_sleep(time)? 
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Non-Preemptive Scheduling 

 Threads voluntarily give up the CPU with thread_yield 

 

 

 

 

 

 

 

 

 What is the output of running these two threads? 

while (1) { 

    printf(“ping\n”); 

    thread_yield(); 

} 

while (1) { 

    printf(“pong\n”); 

    thread_yield(); 

} 

Ping Thread Pong Thread 
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thread_yield() 

 The semantics of thread_yield are that it gives up the 

CPU to another thread 

 In other words, it context switches to another thread 

 

 So what does it mean for thread_yield to return? 

 

 Execution trace of ping/pong 
 printf(“ping\n”); 

 thread_yield(); 

 printf(“pong\n”); 

 thread_yield(); 

 … 
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Implementing thread_yield() 

(PintOS hint) 

 

thread_yield() { 

 thread_t old_thread = current_thread; 

 current_thread = get_next_thread(); 

 append_to_queue(ready_queue, old_thread); 

 context_switch(old_thread, current_thread); 

 return; 

} 

 

 The magic step is invoking context_switch() 

 Why do we need to call append_to_queue()? 
 

As old thread 

As new thread 
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Thread Context Switch 

 The context switch routine does all of the magic 

 Saves context of the currently running thread (old_thread) 

 Restores context of the next thread 

 The next thread becomes the current thread 

 Return to caller as new thread 

 In Pintos, it is the switch_threads() in switch.S 

 This is all done in assembly language 

 It works at the level of the procedure calling convention, so it 

cannot be implemented using procedure calls 
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Preemptive Scheduling 

 Non-preemptive threads have to voluntarily give up CPU  

 A long-running thread will take over the machine 

 Only voluntary calls to thread_yield(), thread_stop(), or thread_exit() 

causes a context switch 

 

 Preemptive scheduling causes an involuntary context switch 

 Need to regain control of processor asynchronously 

 Use timer interrupt (How do you do this?) 

 Timer interrupt handler forces current thread to “call” thread_yield 
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Threads Summary 

 Processes are too heavyweight for multiprocessing 

 Time and space overhead 

 Solution is to separate threads from processes 

 Kernel-level threads much better, but still significant overhead 

 User-level threads even better, but not well integrated with OS 

 Scheduling of threads can be either preemptive or non-

preemptive 

 

 Now, how do we get our threads to correctly cooperate 

with each other? 

 Synchronization… 
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Next time… 

 Read 

 Chapter 5.1—5.3 in book 

 

 


