
CS 153

Design of Operating

Systems

Winter 2016

Lecture 6: Threads

2

Recap: Process Components

 A process is named using its process ID (PID)

 A process contains all of the state for a program in

execution

 An address space

 The code for the executing program

 The data for the executing program

 A set of operating system resources

» Open files, network connections, etc.

 An execution stack encapsulating the state of procedure calls

 The program counter (PC) indicating the next instruction

 A set of general-purpose registers with current values

 Current execution state (Ready/Running/Waiting)

Per-

Process

State

Per-

Thread

State

3

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

4

Process/Thread Separation

 Separating threads and processes makes it easier to

support multithreaded applications

 Concurrency does not require creating new processes

 Concurrency (multithreading) can be very useful

 Improving program structure

 Handling concurrent events (e.g., Web requests)

 Writing parallel programs

 So multithreading is even useful on a uniprocessor

5

Threads: Concurrent Servers

 Using fork() to create new processes to handle

requests in parallel is overkill for such a simple task

 Recall our forking Web server:

while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 Close socket and exit

 } else {

 Close socket

 }

}

6

Threads: Concurrent Servers

 Instead, we can create a new thread for each request

 web_server() {

 while (1) {

 int sock = accept();

 thread_fork(handle_request, sock);

 }

 }

 handle_request(int sock) {

 Process request

 close(sock);

 }

Input thread

Backup thread

Display thread

A Word Process w/3 Threads

8

Kernel-Level Threads

 We have taken the execution aspect of a process and

separated it out into threads

 To make concurrency cheaper

 As such, the OS now manages threads and processes

 All thread operations are implemented in the kernel

 The OS schedules all of the threads in the system

 OS-managed threads are called kernel-level threads

or lightweight processes

 Windows: threads

 Solaris: lightweight processes (LWP)

 POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

9

Kernel Thread Limitations

 Kernel-level threads make concurrency much cheaper

than processes

 Much less state to allocate and initialize

 However, for fine-grained concurrency, kernel-level

threads still suffer from too much overhead

 Thread operations still require system calls

» Ideally, want thread operations to be as fast as a procedure call

 Kernel-level threads have to be general to support the needs

of all programmers, languages, runtimes, etc.

 For such fine-grained concurrency, need even

“cheaper” threads

10

User-Level Threads

 To make threads cheap and fast, they need to be

implemented at user level

 Kernel-level threads are managed by the OS

 User-level threads are managed entirely by the run-time

system (user-level library)

 User-level threads are small and fast

 A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)

 Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

» No kernel involvement

 User-level thread operations 100x faster than kernel threads

 pthreads: PTHREAD_SCOPE_PROCESS

11

User and Kernel Threads

Multiplexing user-level threads

on a single kernel thread for

each process

OS OS

Multiplexing user-level threads

on multiple kernel threads for

each process

P1 P2 P1 P2

12

U/L Thread Limitations

 But, user-level threads are not a perfect solution

 As with everything else, they are a tradeoff

 User-level threads are invisible to the OS

 They are not well integrated with the OS

 As a result, the OS can make poor decisions

 Scheduling a process with idle threads

 Blocking a process whose thread initiated an I/O, even though

the process has other threads that can execute

 Unscheduling a process with a thread holding a lock

 Solving this requires communication between the

kernel and the user-level thread manager

13

Kernel vs. User Threads

 Kernel-level threads

 Integrated with OS (informed scheduling)

 Slow to create, manipulate, synchronize

 User-level threads

 Fast to create, manipulate, synchronize

 Not integrated with OS (uninformed scheduling)

 Understanding the differences between kernel and

user-level threads is important

 For programming (correctness, performance)

 For test-taking

15

Implementing Threads

 Implementing threads has a number of issues

 Interface

 Context switch

 Preemptive vs. non-preemptive

 Scheduling

 Synchronization (next lecture)

 Focus on kernel-level threads

 What you will be dealing with in Pintos

 Not only will you be using threads in Pintos, you will be

implementing more thread functionality (e.g., sleep)

16

Sample Thread Interface

 thread_fork(procedure_t)

 Create a new thread of control

 Also thread_create(), thread_setstate()

 thread_stop()

 Stop the calling thread; also thread_block

 thread_start(thread_t)

 Start the given thread

 thread_yield()

 Voluntarily give up the processor

 thread_exit()

 Terminate the calling thread; also thread_destroy

 Where are they called? User-space or kernel-space?

17

Thread Scheduling

 The thread scheduler determines when a thread runs

 It uses queues to keep track of what threads are doing

 Just like the OS and processes

 Implemented at user-level in a library for user-level threads

 Run queue: Threads currently running (usually one)

 Ready queue: Threads ready to run

 Are there wait queues?

 How would you implement thread_sleep(time)?

18

Non-Preemptive Scheduling

 Threads voluntarily give up the CPU with thread_yield

 What is the output of running these two threads?

while (1) {

 printf(“ping\n”);

 thread_yield();

}

while (1) {

 printf(“pong\n”);

 thread_yield();

}

Ping Thread Pong Thread

19

thread_yield()

 The semantics of thread_yield are that it gives up the

CPU to another thread

 In other words, it context switches to another thread

 So what does it mean for thread_yield to return?

 Execution trace of ping/pong
 printf(“ping\n”);

 thread_yield();

 printf(“pong\n”);

 thread_yield();

 …

20

Implementing thread_yield()

(PintOS hint)

thread_yield() {

 thread_t old_thread = current_thread;

 current_thread = get_next_thread();

 append_to_queue(ready_queue, old_thread);

 context_switch(old_thread, current_thread);

 return;

}

 The magic step is invoking context_switch()

 Why do we need to call append_to_queue()?

As old thread

As new thread

21

Thread Context Switch

 The context switch routine does all of the magic

 Saves context of the currently running thread (old_thread)

 Restores context of the next thread

 The next thread becomes the current thread

 Return to caller as new thread

 In Pintos, it is the switch_threads() in switch.S

 This is all done in assembly language

 It works at the level of the procedure calling convention, so it

cannot be implemented using procedure calls

22

Preemptive Scheduling

 Non-preemptive threads have to voluntarily give up CPU

 A long-running thread will take over the machine

 Only voluntary calls to thread_yield(), thread_stop(), or thread_exit()

causes a context switch

 Preemptive scheduling causes an involuntary context switch

 Need to regain control of processor asynchronously

 Use timer interrupt (How do you do this?)

 Timer interrupt handler forces current thread to “call” thread_yield

23

Threads Summary

 Processes are too heavyweight for multiprocessing

 Time and space overhead

 Solution is to separate threads from processes

 Kernel-level threads much better, but still significant overhead

 User-level threads even better, but not well integrated with OS

 Scheduling of threads can be either preemptive or non-

preemptive

 Now, how do we get our threads to correctly cooperate

with each other?

 Synchronization…

24

Next time…

 Read

 Chapter 5.1—5.3 in book

