
CS 153

Design of Operating

Systems

Winter 2016

Lecture 6: Threads

2

Recap: Process Components

 A process is named using its process ID (PID)

 A process contains all of the state for a program in

execution

 An address space

 The code for the executing program

 The data for the executing program

 A set of operating system resources

» Open files, network connections, etc.

 An execution stack encapsulating the state of procedure calls

 The program counter (PC) indicating the next instruction

 A set of general-purpose registers with current values

 Current execution state (Ready/Running/Waiting)

Per-

Process

State

Per-

Thread

State

3

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

4

Process/Thread Separation

 Separating threads and processes makes it easier to

support multithreaded applications

 Concurrency does not require creating new processes

 Concurrency (multithreading) can be very useful

 Improving program structure

 Handling concurrent events (e.g., Web requests)

 Writing parallel programs

 So multithreading is even useful on a uniprocessor

5

Threads: Concurrent Servers

 Using fork() to create new processes to handle

requests in parallel is overkill for such a simple task

 Recall our forking Web server:

while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 Close socket and exit

 } else {

 Close socket

 }

}

6

Threads: Concurrent Servers

 Instead, we can create a new thread for each request

 web_server() {

 while (1) {

 int sock = accept();

 thread_fork(handle_request, sock);

 }

 }

 handle_request(int sock) {

 Process request

 close(sock);

 }

Input thread

Backup thread

Display thread

A Word Process w/3 Threads

8

Kernel-Level Threads

 We have taken the execution aspect of a process and

separated it out into threads

 To make concurrency cheaper

 As such, the OS now manages threads and processes

 All thread operations are implemented in the kernel

 The OS schedules all of the threads in the system

 OS-managed threads are called kernel-level threads

or lightweight processes

 Windows: threads

 Solaris: lightweight processes (LWP)

 POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

9

Kernel Thread Limitations

 Kernel-level threads make concurrency much cheaper

than processes

 Much less state to allocate and initialize

 However, for fine-grained concurrency, kernel-level

threads still suffer from too much overhead

 Thread operations still require system calls

» Ideally, want thread operations to be as fast as a procedure call

 Kernel-level threads have to be general to support the needs

of all programmers, languages, runtimes, etc.

 For such fine-grained concurrency, need even

“cheaper” threads

10

User-Level Threads

 To make threads cheap and fast, they need to be

implemented at user level

 Kernel-level threads are managed by the OS

 User-level threads are managed entirely by the run-time

system (user-level library)

 User-level threads are small and fast

 A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)

 Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call

» No kernel involvement

 User-level thread operations 100x faster than kernel threads

 pthreads: PTHREAD_SCOPE_PROCESS

11

User and Kernel Threads

Multiplexing user-level threads

on a single kernel thread for

each process

OS OS

Multiplexing user-level threads

on multiple kernel threads for

each process

P1 P2 P1 P2

12

U/L Thread Limitations

 But, user-level threads are not a perfect solution

 As with everything else, they are a tradeoff

 User-level threads are invisible to the OS

 They are not well integrated with the OS

 As a result, the OS can make poor decisions

 Scheduling a process with idle threads

 Blocking a process whose thread initiated an I/O, even though

the process has other threads that can execute

 Unscheduling a process with a thread holding a lock

 Solving this requires communication between the

kernel and the user-level thread manager

13

Kernel vs. User Threads

 Kernel-level threads

 Integrated with OS (informed scheduling)

 Slow to create, manipulate, synchronize

 User-level threads

 Fast to create, manipulate, synchronize

 Not integrated with OS (uninformed scheduling)

 Understanding the differences between kernel and

user-level threads is important

 For programming (correctness, performance)

 For test-taking

15

Implementing Threads

 Implementing threads has a number of issues

 Interface

 Context switch

 Preemptive vs. non-preemptive

 Scheduling

 Synchronization (next lecture)

 Focus on kernel-level threads

 What you will be dealing with in Pintos

 Not only will you be using threads in Pintos, you will be

implementing more thread functionality (e.g., sleep)

16

Sample Thread Interface

 thread_fork(procedure_t)

 Create a new thread of control

 Also thread_create(), thread_setstate()

 thread_stop()

 Stop the calling thread; also thread_block

 thread_start(thread_t)

 Start the given thread

 thread_yield()

 Voluntarily give up the processor

 thread_exit()

 Terminate the calling thread; also thread_destroy

 Where are they called? User-space or kernel-space?

17

Thread Scheduling

 The thread scheduler determines when a thread runs

 It uses queues to keep track of what threads are doing

 Just like the OS and processes

 Implemented at user-level in a library for user-level threads

 Run queue: Threads currently running (usually one)

 Ready queue: Threads ready to run

 Are there wait queues?

 How would you implement thread_sleep(time)?

18

Non-Preemptive Scheduling

 Threads voluntarily give up the CPU with thread_yield

 What is the output of running these two threads?

while (1) {

 printf(“ping\n”);

 thread_yield();

}

while (1) {

 printf(“pong\n”);

 thread_yield();

}

Ping Thread Pong Thread

19

thread_yield()

 The semantics of thread_yield are that it gives up the

CPU to another thread

 In other words, it context switches to another thread

 So what does it mean for thread_yield to return?

 Execution trace of ping/pong
 printf(“ping\n”);

 thread_yield();

 printf(“pong\n”);

 thread_yield();

 …

20

Implementing thread_yield()

(PintOS hint)

thread_yield() {

 thread_t old_thread = current_thread;

 current_thread = get_next_thread();

 append_to_queue(ready_queue, old_thread);

 context_switch(old_thread, current_thread);

 return;

}

 The magic step is invoking context_switch()

 Why do we need to call append_to_queue()?

As old thread

As new thread

21

Thread Context Switch

 The context switch routine does all of the magic

 Saves context of the currently running thread (old_thread)

 Restores context of the next thread

 The next thread becomes the current thread

 Return to caller as new thread

 In Pintos, it is the switch_threads() in switch.S

 This is all done in assembly language

 It works at the level of the procedure calling convention, so it

cannot be implemented using procedure calls

22

Preemptive Scheduling

 Non-preemptive threads have to voluntarily give up CPU

 A long-running thread will take over the machine

 Only voluntary calls to thread_yield(), thread_stop(), or thread_exit()

causes a context switch

 Preemptive scheduling causes an involuntary context switch

 Need to regain control of processor asynchronously

 Use timer interrupt (How do you do this?)

 Timer interrupt handler forces current thread to “call” thread_yield

23

Threads Summary

 Processes are too heavyweight for multiprocessing

 Time and space overhead

 Solution is to separate threads from processes

 Kernel-level threads much better, but still significant overhead

 User-level threads even better, but not well integrated with OS

 Scheduling of threads can be either preemptive or non-

preemptive

 Now, how do we get our threads to correctly cooperate

with each other?

 Synchronization…

24

Next time…

 Read

 Chapter 5.1—5.3 in book

