
CS 153

Design of Operating

Systems

Winter 2016

Lecture 5: Processes and Threads

2

Announcements

 Homework 1 out (to be posted on ilearn)

 Project 1
 Make sure to go over it so that you can ask the TAs in lab if

anything is unclear

 Both design document and code due before class on Feb. 3rd

 Read scheduling and synchronization in textbook
 Don’t wait for these topics to be covered in class

 You especially need to understand priority donation in project

 Piazza enrollment
 Some of you haven’t enrolled

 You will miss announcements – especially about projects

 All set with project groups?
 Email your TA today if you have not notified group or if you

are looking for a partner

3

Process Creation: Unix

 In Unix, processes are created using fork()
int fork()

Usually combined with exec()

fork() + exec() ~= CreateProcess()

 fork()
 Creates and initializes a new PCB

 Creates a new address space

 Initializes the address space with a copy of the entire
contents of the address space of the parent

 Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

 Places the PCB on the ready queue

 Fork returns twice
 Returns the child’s PID to the parent, “0” to the child

4

fork()

int main(int argc, char *argv[])

{

 char *name = argv[0];

 int child_pid = fork();

 if (child_pid == 0) {

 printf(“Child of %s is %d\n”, name, getpid());

 return 0;

 } else {

 printf(“My child is %d\n”, child_pid);

 return 0;

 }

}

What does this program print?

5

Example Output

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

6

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

7

Divergence

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0

8

Example Continued

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

[well ~]$./a.out

Child of a.out is 498

My child is 498

Why is the output in a different order?

9

Why fork()?

 Very useful when the child…

 Is cooperating with the parent

 Relies upon the parent’s data to accomplish its task

 Example: Web server
while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 } else {

 Close socket

 }

}

10

Process Creation: Unix (2)

 Wait a second. How do we actually start a new

program?
int exec(char *prog, char *argv[])

 exec()

 Stops the current process

 Loads the program “prog” into the process’ address space

 Initializes hardware context and args for the new program

 Places the PCB onto the ready queue

 Note: It does not create a new process

 What does it mean for exec to return?

 What does it mean for exec to return with an error?

11

Process Creation: Unix (3)

 fork() is used to create a new process, exec is used to

load a program into the address space

 What happens if you run “exec sh” in your shell?

 What happens if you run “exec ls” in your shell? Try it.

 fork() can return an error. Why might this happen?

12

Process Termination

 All good processes must come to an end. But how?

 Unix: exit(int status), NT: ExitProcess(int status)

 Essentially, free resources and terminate

 Terminate all threads (coming up)

 Close open files, network connections

 Allocated memory (and VM pages out on disk)

 Remove PCB from kernel data structures, delete

 Note that a process does not need to clean up itself

 OS will handle this on its behalf

13

wait() a second…

 Often it is convenient to pause until a child process

has finished

 Think of executing commands in a shell

 Use wait() (WaitForSingleObject)

 Suspends the current process until a child process ends

 waitpid() suspends until the specified child process ends

 Wait has a return value…what is it?

 Unix: Every process must be reaped by a parent

 What happens if a parent process exits before a child?

 What do you think is a “zombie” process?

14

Unix Shells

while (1) {

 char *cmd = read_command();

 int child_pid = fork();

 if (child_pid == 0) {

 Manipulate STDIN/OUT/ERR file descriptors for pipes,

 redirection, etc.

 exec(cmd);

 panic(“exec failed”);

 } else {

 if (!(run_in_background))

 waitpid(child_pid);

 }

}

15

Processes

 Recall that …

 A process includes many things:

» An address space (all code and data pages)

» OS resources (e.g., open files) and accounting info

» Execution state (PC, SP, regs, etc.)

 Processes are completely isolated from each other

 Creating a new process is costly because of all of the
data structures that must be allocated and initialized
 Recall struct proc in Solaris

 Expensive even with OS tricks

 Communicating between processes is costly because
most communication goes through the OS
 Overhead of system calls and copying data

P1 P2

OS

16

Parallel Programs

 Also recall our Web server example that forks off copies

of itself to handle multiple simultaneous requests

 Or any parallel program that executes on a multiprocessor

 To execute these programs we need to

 Create several processes that execute in parallel

 Cause each to map to the same address space to share data

»They are all part of the same computation

 Have the OS schedule these processes in parallel

 This situation is very inefficient

 Space: PCB, page tables, etc.

 Time: create data structures, fork and copy addr space, etc.

17

Rethinking Processes

 What is similar in these cooperating processes?

 They all share the same code and data (address space)

 They all share the same privileges

 They all share the same resources (files, sockets, etc.)

 What don’t they share?

 Each has its own execution state: PC, SP, and registers

 Key idea: Separate resources from execution state

 Exec state also called thread of control, or thread

18

Recap: Process Components

 A process is named using its process ID (PID)

 A process contains all of the state for a program in

execution

 An address space

 The code for the executing program

 The data for the executing program

 A set of operating system resources

»Open files, network connections, etc.

 An execution stack encapsulating the state of procedure calls

 The program counter (PC) indicating the next instruction

 A set of general-purpose registers with current values

 Current execution state (Ready/Running/Waiting)

Per-

Process

State

Per-

Thread

State

19

Threads

 Modern OSes (Mac OS, Windows, Linux) separate the

concepts of processes and threads

 The thread defines a sequential execution stream within a

process (PC, SP, registers)

 The process defines the address space and general process

attributes (everything but threads of execution)

 A thread is bound to a single process

 Processes, however, can have multiple threads

 Threads become the unit of scheduling

 Processes are now the containers in which threads execute

 Processes become static, threads are the dynamic entities

20

Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

21

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

22

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces

(Mac OS, Unix, Windows)

Many Threads/Process
One Address Space

(Pilot, Java)

Address Space

Thread

23

