CS 153
Design of Operating
Systems

Winter 2016

Lecture 5: Processes and Threads



Announcements

« Homework 1 out (to be posted on ilearn)

o Project1
+ Make sure to go over it so that you can ask the TAs in lab if
anything is unclear
+ Both design document and code due before class on Feb. 3

Read scheduling and synchronization in textbook

+ Don'’t wait for these topics to be covered in class

+ You especially need to understand priority donation in project
o Piazza enroliment

+ Some of you haven’t enrolled

+ You will miss announcements — especially about projects
All set with project groups?

+ Emall your TA today if you have not notified group or if you

are looking for a partner



Process Creation: Unix

o In Unix, processes are created using fork()

o fork()

*

*

*

*

Creates and initializes a new PCB
Creates a new address space

Initializes the address space with a copy of the entire
contents of the address space of the parent

Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

Places the PCB on the ready queue

o Fork returns twice

*

Returns the child” s PID to the parent, “0” to the child



fork()

int main(int argc, char *argv([])
{
char *name = argv[0];
int child pid = fork();
if (child pid == 0) {
printf (“Child of %s is %d\n”, name, getpid());

return O;

} else {
printf (“My child is %d\n”, child pid);
return O;

What does this program print?



Example Output

[well ~]$ gcc t.c
[well ~]$ ./a.out
My child is 486
Child of a.out is 486



Duplicating Address Spaces

PC—>

child_pid = 486
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

Parent

=)

child_pid =0
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

~— PC

Child



Divergence

PC —

child_pid = 486
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

Parent

=)

child_pid =0
/

/

child pid = fork();

0) {
printf (“child”) ;

if (child pid

} else {

printf (“parent”) ;

~— PC

Child



Example Continued

[well ~]$ gcc t.c
[well ~]$ ./a.out
My child is 486
Child of a.out is 486
[well ~]$ ./a.out
Child of a.out is 498
My child is 498

Why is the output in a different order?



Why fork()?

o Very useful when the child...
+ IS cooperating with the parent
+ Relies upon the parent’ s data to accomplish its task
o Example: Web server
while (1) {
int sock = accept();
if ((child pid = fork()) == 0) {
Handle client request
} else {

Close socket
}



Process Creation: Unix (2)

o Wait a second. How do we actually start a new
program?

o exec()

*

*

*

*

*

Stops the current process

Loads the program “prog” into the process’ address space
Initializes hardware context and args for the new program
Places the PCB onto the ready queue

Note: It does not create a new process

o« What does it mean for exec to return?
o« What does it mean for exec to return with an error?

10



Process Creation: Unix (3)

o fork() is used to create a new process, exec Is used to
load a program into the address space

« What happens if you run “exec sh” in your shell?
« What happens if you run “exec Is” in your shell? Try it.

o fork() can return an error. Why might this happen?

11



Process Termination

o All good processes must come to an end. But how?
o Unix: exit(int status), NT: ExitProcess(int status)

o Essentially, free resources and terminate
+ Terminate all threads (coming up)
+ Close open files, network connections
+ Allocated memory (and VM pages out on disk)
+ Remove PCB from kernel data structures, delete

« Note that a process does not need to clean up itself
+ OS will handle this on its behalf

12



wait() a second...

o Oftenitis convenient to pause until a child process
has finished
+ Think of executing commands in a shell

o Use wait() (WaitForSingleObject)
+ Suspends the current process until a child process ends
+ waltpid() suspends until the specified child process ends

o Wait has a return value...what is it?

o Unix: Every process must be reaped by a parent
+ What happens if a parent process exits before a child?
+ What do you think is a “zombie” process?

13



Unix Shells

while (1) {
char *cmd = read command() ;
int child pid = fork();
if (child pid == 0) {
Manipulate STDIN/OUT/ERR file descriptors for pipes,
redirection, etc.
exec (cmd) ;

panic (“exec failed”);

} else {
if (! (run_in background))
waitpid(child pid);

14



Processes

o Recall that ...
. . P1 P2
+ A process includes many things: y
» An address space (all code and data pages) A4
» OS resources (e.g., open files) and accounting info OS

» Execution state (PC, SP, regs, etc.)
+ Processes are completely isolated from each other
o Creating a new process is costly because of all of the
data structures that must be allocated and initialized
+ Recall struct proc in Solaris
+ EXxpensive even with OS tricks
« Communicating between processes is costly because
most communication goes through the OS
+ Overhead of system calls and copying data

15



Parallel Programs

o Also recall our Web server example that forks off copies
of itself to handle multiple simultaneous requests
+ Or any parallel program that executes on a multiprocessor

o T0 execute these programs we need to
+ Create several processes that execute in parallel
+ Cause each to map to the same address space to share data

» They are all part of the same computation
+ Have the OS schedule these processes in parallel

o This situation is very inefficient
+ Space: PCB, page tables, etc.
+ Time: create data structures, fork and copy addr space, etc.

16



Rethinking Processes

o What is similar in these cooperating processes?
+ They all share the same code and data (address space)
+ They all share the same privileges
+ They all share the same resources (files, sockets, etc.)

o What don'’t they share?
+ Each has its own execution state: PC, SP, and registers

o Key idea: Separate resources from execution state
o EXec state also called thread of control, or thread

17



Recap: Process Components

o A process is named using its process ID (PID)

o A process contains all of the state for a program in
execution

Per-
Process
State

Per-
Thread
State

*

*

*

An address space

The code for the executing program
The data for the executing program
A set of operating system resources

» Open files, network connections, etc.

An execution stack encapsulating the state of procedure calls
The program counter (PC) indicating the next instruction

A set of general-purpose registers with current values
Current execution state (Ready/Running/Waiting)

18




Threads

« Modern OSes (Mac OS, Windows, Linux) separate the
concepts of processes and threads

+ The thread defines a sequential execution stream within a
process (PC, SP, registers)

+ The process defines the address space and general process
attributes (everything but threads of execution)

o A thread is bound to a single process
+ Processes, however, can have multiple threads

o Threads become the unit of scheduling

+ Processes are now the containers in which threads execute
+ Processes become static, threads are the dynamic entities

19



Recap: Process Address Space

OXFFFFFFFF
A

Address
Space

\
0x00000000

Stack

l
!

A

SP

Heap
(Dynamic Memory Alloc)

Static Data
(Data Segment)

Code
(Text Segment)

~— PC

20



Threads in a Process

Stack (T1)

A

Thread 1

Thread 2 —

Stack (T2)

Stack (T3)

<— Thread 3

Heap

Static Data

PC (T2) —>

Code

<— PC(T3)

< PC (T1)

21



Thread Design Space

Address Space

@

Thread

@

One Thread/Process
One Address Space
(MSDOS)

CRENCAINC

One Thread/Process
Many Address Spaces
(Early Unix)

@ @
@ @

Many Threads/Process
One Address Space

(Pilot, Java)

DIA®

@
@ @

Many Threads/Process
Many Address Spaces

(Mac OS, Unix, Windows)

22



23



