
CS 153

Design of Operating

Systems

Winter 2016

Lecture 5: Processes and Threads

2

Announcements

 Homework 1 out (to be posted on ilearn)

 Project 1
 Make sure to go over it so that you can ask the TAs in lab if

anything is unclear

 Both design document and code due before class on Feb. 3rd

 Read scheduling and synchronization in textbook
 Don’t wait for these topics to be covered in class

 You especially need to understand priority donation in project

 Piazza enrollment
 Some of you haven’t enrolled

 You will miss announcements – especially about projects

 All set with project groups?
 Email your TA today if you have not notified group or if you

are looking for a partner

3

Process Creation: Unix

 In Unix, processes are created using fork()
int fork()

Usually combined with exec()

fork() + exec() ~= CreateProcess()

 fork()
 Creates and initializes a new PCB

 Creates a new address space

 Initializes the address space with a copy of the entire
contents of the address space of the parent

 Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

 Places the PCB on the ready queue

 Fork returns twice
 Returns the child’s PID to the parent, “0” to the child

4

fork()

int main(int argc, char *argv[])

{

 char *name = argv[0];

 int child_pid = fork();

 if (child_pid == 0) {

 printf(“Child of %s is %d\n”, name, getpid());

 return 0;

 } else {

 printf(“My child is %d\n”, child_pid);

 return 0;

 }

}

What does this program print?

5

Example Output

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

6

Duplicating Address Spaces

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

PC

child_pid = 486 child_pid = 0

PC

7

Divergence

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

Parent Child

child_pid = fork();

if (child_pid == 0) {

 printf(“child”);

} else {

 printf(“parent”);

}

PC

PC

child_pid = 486 child_pid = 0

8

Example Continued

[well ~]$ gcc t.c

[well ~]$./a.out

My child is 486

Child of a.out is 486

[well ~]$./a.out

Child of a.out is 498

My child is 498

Why is the output in a different order?

9

Why fork()?

 Very useful when the child…

 Is cooperating with the parent

 Relies upon the parent’s data to accomplish its task

 Example: Web server
while (1) {

 int sock = accept();

 if ((child_pid = fork()) == 0) {

 Handle client request

 } else {

 Close socket

 }

}

10

Process Creation: Unix (2)

 Wait a second. How do we actually start a new

program?
int exec(char *prog, char *argv[])

 exec()

 Stops the current process

 Loads the program “prog” into the process’ address space

 Initializes hardware context and args for the new program

 Places the PCB onto the ready queue

 Note: It does not create a new process

 What does it mean for exec to return?

 What does it mean for exec to return with an error?

11

Process Creation: Unix (3)

 fork() is used to create a new process, exec is used to

load a program into the address space

 What happens if you run “exec sh” in your shell?

 What happens if you run “exec ls” in your shell? Try it.

 fork() can return an error. Why might this happen?

12

Process Termination

 All good processes must come to an end. But how?

 Unix: exit(int status), NT: ExitProcess(int status)

 Essentially, free resources and terminate

 Terminate all threads (coming up)

 Close open files, network connections

 Allocated memory (and VM pages out on disk)

 Remove PCB from kernel data structures, delete

 Note that a process does not need to clean up itself

 OS will handle this on its behalf

13

wait() a second…

 Often it is convenient to pause until a child process

has finished

 Think of executing commands in a shell

 Use wait() (WaitForSingleObject)

 Suspends the current process until a child process ends

 waitpid() suspends until the specified child process ends

 Wait has a return value…what is it?

 Unix: Every process must be reaped by a parent

 What happens if a parent process exits before a child?

 What do you think is a “zombie” process?

14

Unix Shells

while (1) {

 char *cmd = read_command();

 int child_pid = fork();

 if (child_pid == 0) {

 Manipulate STDIN/OUT/ERR file descriptors for pipes,

 redirection, etc.

 exec(cmd);

 panic(“exec failed”);

 } else {

 if (!(run_in_background))

 waitpid(child_pid);

 }

}

15

Processes

 Recall that …

 A process includes many things:

» An address space (all code and data pages)

» OS resources (e.g., open files) and accounting info

» Execution state (PC, SP, regs, etc.)

 Processes are completely isolated from each other

 Creating a new process is costly because of all of the
data structures that must be allocated and initialized
 Recall struct proc in Solaris

 Expensive even with OS tricks

 Communicating between processes is costly because
most communication goes through the OS
 Overhead of system calls and copying data

P1 P2

OS

16

Parallel Programs

 Also recall our Web server example that forks off copies

of itself to handle multiple simultaneous requests

 Or any parallel program that executes on a multiprocessor

 To execute these programs we need to

 Create several processes that execute in parallel

 Cause each to map to the same address space to share data

»They are all part of the same computation

 Have the OS schedule these processes in parallel

 This situation is very inefficient

 Space: PCB, page tables, etc.

 Time: create data structures, fork and copy addr space, etc.

17

Rethinking Processes

 What is similar in these cooperating processes?

 They all share the same code and data (address space)

 They all share the same privileges

 They all share the same resources (files, sockets, etc.)

 What don’t they share?

 Each has its own execution state: PC, SP, and registers

 Key idea: Separate resources from execution state

 Exec state also called thread of control, or thread

18

Recap: Process Components

 A process is named using its process ID (PID)

 A process contains all of the state for a program in

execution

 An address space

 The code for the executing program

 The data for the executing program

 A set of operating system resources

»Open files, network connections, etc.

 An execution stack encapsulating the state of procedure calls

 The program counter (PC) indicating the next instruction

 A set of general-purpose registers with current values

 Current execution state (Ready/Running/Waiting)

Per-

Process

State

Per-

Thread

State

19

Threads

 Modern OSes (Mac OS, Windows, Linux) separate the

concepts of processes and threads

 The thread defines a sequential execution stream within a

process (PC, SP, registers)

 The process defines the address space and general process

attributes (everything but threads of execution)

 A thread is bound to a single process

 Processes, however, can have multiple threads

 Threads become the unit of scheduling

 Processes are now the containers in which threads execute

 Processes become static, threads are the dynamic entities

20

Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

21

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

22

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces

(Mac OS, Unix, Windows)

Many Threads/Process
One Address Space

(Pilot, Java)

Address Space

Thread

23

