
CS 153

Design of Operating

Systems

Winter 2016

Lecture 4: Processes

Announcements

 Project group signup!

 Slides typically updated somewhat right before or after

class

2

OS Abstractions

3

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

4

Processes

 This lecture starts a class segment that covers

processes, threads, and synchronization

 These topics are perhaps the most important in this class

 Will surely be covered in the exams

 Basis for Project 1

 Today’s topics are processes and process management

 How are applications represented in the OS?

 How is work scheduled in the CPU?

 What are the possible execution states of a process?

 How does a process move from one state to another?

5

The Need of Process

 Why do we invent the concept of processes?

 Creating illusions that multiple tasks can run at the same

time, even if there is only a single CPU

» Also called multiprogramming

» MS-DOS vs. Windows 95 (and onwards)

» Analogy to human beings?

6

The Process

 The process is the OS abstraction for execution

 It is the unit of execution

 It is the unit of scheduling

 It is the dynamic execution context of a program

 A process is sometimes called a job or a task or a

sequential process

 A sequential process is a program in execution

 It defines the sequential, instruction-at-a-time execution of a

program

 Programs are static entities with the potential for execution

7

Process Components

 A process contains all the state for a program in execution

 An address space

 Static:

» The code and input data for the executing program

 Dynamic:

» The memory allocated by the executing program

» An execution stack encapsulating the state of procedure calls

» The program counter (PC) indicating the next instruction

» A set of general-purpose registers with current values

 MOV EAX, 45H

» A set of operating system resources

 Open files, network connections, etc.

 A process is named using its process ID (PID)

8

Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code

(Text Segment)

Static Data

(Data Segment)

Heap

(Dynamic Memory Alloc)
Address

Space

SP

PC

Static

Dynamic

9

Process State

 A process has an execution state that indicates what it

is currently doing

 Running: Executing instructions on the CPU

» It is the process that has control of the CPU

» How many processes can be in the running state simultaneously?

 Ready: Waiting to be assigned to the CPU

» Ready to execute, but another process is executing on the CPU

 Waiting: Waiting for an event, e.g., I/O completion

» It cannot make progress until event is signaled (disk completes)

 As a process executes, it moves from state to state

 Unix “ps”: STAT column indicates execution state

 What state do you think a process is in most of the time?

 How many processes can a system support?

10

Process State Graph

New Ready

Running

Waiting

Terminated

Create

Process

Process

Exit

I/O, Page

Fault, etc.

I/O Done

Schedule

Process

Unschedule

Process

11

Process Data Structures

How does the OS represent a process in the kernel?

 At any time, there are many processes in the system,

each in its particular state

 The OS data structure representing each process is

called the Process Control Block (PCB)

 PCB contains all of the info about a process

12

PCB Data Structure

 PCB also is where OS keeps all of a process’ hardware

execution state when the process is not running
» Process ID (PID)

» Execution state

» Hardware state: PC, SP, regs

» Memory management

» Scheduling

» Accounting

» Pointers for state queues

» Etc.

 This state is everything that is needed to restore the

hardware to the same configuration it was in when the

process was switched out of the hardware

13

struct proc (Solaris)

/*

 * One structure allocated per active process. It contains all

 * data needed about the process while the process may be swapped

 * out. Other per-process data (user.h) is also inside the proc structure.

 * Lightweight-process data (lwp.h) and the kernel stack may be swapped out.

 */

typedef struct proc {

 /*

 * Fields requiring no explicit locking

 */

 struct vnode *p_exec; /* pointer to a.out vnode */

 struct as *p_as; /* process address space pointer */

 struct plock *p_lockp; /* ptr to proc struct's mutex lock */

 kmutex_t p_crlock; /* lock for p_cred */

 struct cred *p_cred; /* process credentials */

 /*

 * Fields protected by pidlock

 */

 int p_swapcnt; /* number of swapped out lwps */

 char p_stat; /* status of process */

 char p_wcode; /* current wait code */

 ushort_t p_pidflag; /* flags protected only by pidlock */

 int p_wdata; /* current wait return value */

 pid_t p_ppid; /* process id of parent */

 struct proc *p_link; /* forward link */

 struct proc *p_parent; /* ptr to parent process */

 struct proc *p_child; /* ptr to first child process */

 struct proc *p_sibling; /* ptr to next sibling proc on chain */

 struct proc *p_psibling; /* ptr to prev sibling proc on chain */

 struct proc *p_sibling_ns; /* prt to siblings with new state */

 struct proc *p_child_ns; /* prt to children with new state */

 struct proc *p_next; /* active chain link next */

 struct proc *p_prev; /* active chain link prev */

 struct proc *p_nextofkin; /* gets accounting info at exit */

 struct proc *p_orphan;

 struct proc *p_nextorph;

 p_pglink; / process group hash chain link next */

 struct proc *p_ppglink; /* process group hash chain link prev */

 struct sess *p_sessp; /* session information */

 struct pid *p_pidp; /* process ID info */

 struct pid *p_pgidp; /* process group ID info */

 /*

 * Fields protected by p_lock

 */

 kcondvar_t p_cv; /* proc struct's condition variable */

 kcondvar_t p_flag_cv;

 kcondvar_t p_lwpexit; /* waiting for some lwp to exit */

 kcondvar_t p_holdlwps; /* process is waiting for its lwps */

 /* to to be held. */

 ushort_t p_pad1; /* unused */

 uint_t p_flag; /* protected while set. */

 /* flags defined below */

 clock_t p_utime; /* user time, this process */

 clock_t p_stime; /* system time, this process */

 clock_t p_cutime; /* sum of children's user time */

 clock_t p_cstime; /* sum of children's system time */

 caddr_t *p_segacct; /* segment accounting info */

 caddr_t p_brkbase; /* base address of heap */

 size_t p_brksize; /* heap size in bytes */

 /*

 * Per process signal stuff.

 */

 k_sigset_t p_sig; /* signals pending to this process */

 k_sigset_t p_ignore; /* ignore when generated */

 k_sigset_t p_siginfo; /* gets signal info with signal */

 struct sigqueue *p_sigqueue; /* queued siginfo structures */

 struct sigqhdr *p_sigqhdr; /* hdr to sigqueue structure pool */

 struct sigqhdr *p_signhdr; /* hdr to signotify structure pool */

 uchar_t p_stopsig; /* jobcontrol stop signal */

14

struct proc (Solaris) (2)

 /*

 * Special per-process flag when set will fix misaligned memory

 * references.

 */

 char p_fixalignment;

 /*

 * Per process lwp and kernel thread stuff

 */

 id_t p_lwpid; /* most recently allocated lwpid */

 int p_lwpcnt; /* number of lwps in this process */

 int p_lwprcnt; /* number of not stopped lwps */

 int p_lwpwait; /* number of lwps in lwp_wait() */

 int p_zombcnt; /* number of zombie lwps */

 int p_zomb_max; /* number of entries in p_zomb_tid */

 id_t *p_zomb_tid; /* array of zombie lwpids */

 kthread_t *p_tlist; /* circular list of threads */

 /*

 * /proc (process filesystem) debugger interface stuff.

 */

 k_sigset_t p_sigmask; /* mask of traced signals (/proc) */

 k_fltset_t p_fltmask; /* mask of traced faults (/proc) */

 struct vnode *p_trace; /* pointer to primary /proc vnode */

 struct vnode *p_plist; /* list of /proc vnodes for process */

 kthread_t *p_agenttp; /* thread ptr for /proc agent lwp */

 struct watched_area *p_warea; /* list of watched areas */

 ulong_t p_nwarea; /* number of watched areas */

 struct watched_page *p_wpage; /* remembered watched pages (vfork) */

 int p_nwpage; /* number of watched pages (vfork) */

 int p_mapcnt; /* number of active pr_mappage()s */

 struct proc *p_rlink; /* linked list for server */

 kcondvar_t p_srwchan_cv;

 size_t p_stksize; /* process stack size in bytes */

 /*

 * Microstate accounting, resource usage, and real-time profiling

 */

 hrtime_t p_mstart; /* hi-res process start time */

 hrtime_t p_mterm; /* hi-res process termination time */

 hrtime_t p_mlreal; /* elapsed time sum over defunct lwps */

 hrtime_t p_acct[NMSTATES]; /* microstate sum over defunct lwps */

 struct lrusage p_ru; /* lrusage sum over defunct lwps */

 struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */

 uintptr_t p_rprof_cyclic; /* ITIMER_REALPROF cyclic */

 uint_t p_defunct; /* number of defunct lwps */

 /*

 * profiling. A lock is used in the event of multiple lwp's

 * using the same profiling base/size.

 */

 kmutex_t p_pflock; /* protects user profile arguments */

 struct prof p_prof; /* profile arguments */

 /*

 * The user structure

 */

 struct user p_user; /* (see sys/user.h) */

 /*

 * Doors.

 */

 kthread_t *p_server_threads;

 struct door_node *p_door_list; /* active doors */

 struct door_node *p_unref_list;

 kcondvar_t p_server_cv;

 char p_unref_thread; /* unref thread created */

 /*

 * Kernel probes

 */

 uchar_t p_tnf_flags;

15

struct proc (Solaris) (3)

 /*

 * C2 Security (C2_AUDIT)

 */

 caddr_t p_audit_data; /* per process audit structure */

 kthread_t *p_aslwptp; /* thread ptr representing "aslwp" */

#if defined(i386) || defined(__i386) || defined(__ia64)

 /*

 * LDT support.

 */

 kmutex_t p_ldtlock; /* protects the following fields */

 struct seg_desc *p_ldt; /* Pointer to private LDT */

 struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */

 int p_ldtlimit; /* highest selector used */

#endif

 size_t p_swrss; /* resident set size before last swap */

 struct aio *p_aio; /* pointer to async I/O struct */

 struct itimer **p_itimer; /* interval timers */

 k_sigset_t p_notifsigs; /* signals in notification set */

 kcondvar_t p_notifcv; /* notif cv to synchronize with aslwp */

 timeout_id_t p_alarmid; /* alarm's timeout id */

 uint_t p_sc_unblocked; /* number of unblocked threads */

 struct vnode *p_sc_door; /* scheduler activations door */

 caddr_t p_usrstack; /* top of the process stack */

 uint_t p_stkprot; /* stack memory protection */

 model_t p_model; /* data model determined at exec time */

 struct lwpchan_data *p_lcp; /* lwpchan cache */

 /*

 * protects unmapping and initilization of robust locks.

 */

 kmutex_t p_lcp_mutexinitlock;

 utrap_handler_t *p_utraps; /* pointer to user trap handlers */

 refstr_t *p_corefile; /* pattern for core file */

#if defined(__ia64)

 caddr_t p_upstack; /* base of the upward-growing stack */

 size_t p_upstksize; /* size of that stack, in bytes */

 uchar_t p_isa; /* which instruction set is utilized */

#endif

 void *p_rce; /* resource control extension data */

 struct task *p_task; /* our containing task */

 struct proc *p_taskprev; /* ptr to previous process in task */

 struct proc *p_tasknext; /* ptr to next process in task */

 int p_lwpdaemon; /* number of TP_DAEMON lwps */

 int p_lwpdwait; /* number of daemons in lwp_wait() */

 kthread_t **p_tidhash; /* tid (lwpid) lookup hash table */

 struct sc_data *p_schedctl; /* available schedctl structures */

} proc_t;

16

PCBs and Hardware State

 When a process is running, its hardware state (PC,

SP, regs, etc.) is in the CPU

 The hardware registers contain the current values

 When the OS stops running a process, it saves the

current values of the registers into the process’ PCB

 When the OS is ready to start executing a new

process, it loads the hardware registers from the

values stored in that process’ PCB

 What happens to the code that is executing?

 The process of changing the CPU hardware state from

one process to another is called a context switch

 This can happen 100 or 1000 times a second!

Context Switch Illustrated

17

18

State Queues

How does the OS keep track of processes?

 The OS maintains a collection of queues that

represent the state of all processes in the system

 Typically, the OS has one queue for each state

 Ready, waiting, etc.

 Each PCB is queued on a state queue according to its

current state

 As a process changes state, its PCB is unlinked from

one queue and linked into another

19

State Queues

Firefox PCB X Server PCB Outlook PCB

Emacs PCB

Ready Queue

Disk I/O Queue

Console Queue

Sleep Queue

.

.

.

ls PCB

There may be many wait queues,

one for each type of wait (disk,

console, timer, network, etc.)

21

Process Creation

 A process is created by another process

 Why is this the case?

 Parent is creator, child is created (Unix: ps “PPID” field)

 What creates the first process (Unix: init (PID 0 or 1))?

 In some systems, the parent defines (or donates)

resources and privileges for its children

 Unix: Process User ID is inherited – children of your shell

(e.g., vim) execute with your privileges

 After creating a child, the parent may either wait for it

to finish its task or continue in parallel (or both)

22

Process Creation: Windows

 The system call on Windows for creating a process is

called, surprisingly enough, CreateProcess:
BOOL CreateProcess(char *prog, char *args) (simplified)

 CreateProcess

 Creates and initializes a new PCB

 Creates and initializes a new address space

 Loads the program specified by “prog” into the address space

 Copies “args” into memory allocated in address space

 Initializes the saved hardware context to start execution at

main (or wherever specified in the file)

 Places the PCB on the ready queue

 Most of the time we are calling wrappers of syscalls (e.g., through

ntdll.dll or libc)

23

Process Creation: Unix

 In Unix, processes are created using fork()
int fork()

Usually combined with exec()

fork() + exec() ~= CreateProcess()

 fork()
 Creates and initializes a new PCB

 Creates a new address space

 Initializes the address space with a copy of the entire
contents of the address space of the parent

 Initializes the kernel resources to point to the resources used
by parent (e.g., open files)

 Places the PCB on the ready queue

 Fork returns twice
 Returns the child’s PID to the parent, “0” to the child

24

Process Summary

 What are the units of execution?
 Processes

 How are those units of execution represented?
 Process Control Blocks (PCBs)

 How is work scheduled in the CPU?
 Process states, process queues, context switches

 What are the possible execution states of a process?
 Running, ready, waiting

 How does a process move from one state to another?
 Scheduling, I/O, creation, termination

 How are processes created?
 CreateProcess (NT), fork/exec (Unix)

25

Next time…

 Read Chapter 4

26

