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class 
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Processes 

 This lecture starts a class segment that covers 

processes, threads, and synchronization 

 These topics are perhaps the most important in this class 

 Will surely be covered in the exams 

 Basis for Project 1 

 

 Today’s topics are processes and process management 

 How are applications represented in the OS? 

 How is work scheduled in the CPU? 

 What are the possible execution states of a process? 

 How does a process move from one state to another? 
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The Need of Process 

 Why do we invent the concept of processes? 

 Creating illusions that multiple tasks can run at the same 

time, even if there is only a single CPU 

» Also called multiprogramming 

» MS-DOS vs. Windows 95 (and onwards) 

» Analogy to human beings? 
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The Process 

 The process is the OS abstraction for execution 

 It is the unit of execution 

 It is the unit of scheduling 

 It is the dynamic execution context of a program 

 A process is sometimes called a job or a task or a 

sequential process 

 A sequential process is a program in execution 

 It defines the sequential, instruction-at-a-time execution of a 

program 

 Programs are static entities with the potential for execution 
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Process Components 

 A process contains all the state for a program in execution 

 An address space 

 Static: 

» The code and input data for the executing program 

 Dynamic: 

» The memory allocated by the executing program 

» An execution stack encapsulating the state of procedure calls 

» The program counter (PC) indicating the next instruction 

» A set of general-purpose registers with current values 

 MOV      EAX, 45H 

» A set of operating system resources 

 Open files, network connections, etc. 

 A process is named using its process ID (PID) 
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Process State 

 A process has an execution state that indicates what it 

is currently doing 

 Running: Executing instructions on the CPU 

» It is the process that has control of the CPU 

» How many processes can be in the running state simultaneously? 

 Ready: Waiting to be assigned to the CPU 

» Ready to execute, but another process is executing on the CPU 

 Waiting: Waiting for an event, e.g., I/O completion 

» It cannot make progress until event is signaled (disk completes) 

 As a process executes, it moves from state to state 

 Unix “ps”: STAT column indicates execution state 

 What state do you think a process is in most of the time? 

 How many processes can a system support? 
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Process State Graph 
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Process Data Structures 

How does the OS represent a process in the kernel? 

 At any time, there are many processes in the system, 

each in its particular state 

 The OS data structure representing each process is 

called the Process Control Block (PCB) 

 PCB contains all of the info about a process 
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PCB Data Structure 

 PCB also is where OS keeps all of a process’ hardware 

execution state when the process is not running 
» Process ID (PID) 

» Execution state 

» Hardware state: PC, SP, regs 

» Memory management 

» Scheduling 

» Accounting 

» Pointers for state queues 

» Etc. 

 This state is everything that is needed to restore the 

hardware to the same configuration it was in when the 

process was switched out of the hardware 
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struct proc (Solaris) 

/* 

 * One structure allocated per active process.  It contains all 

 * data needed about the process while the process may be swapped 

 * out.  Other per-process data (user.h) is also inside the proc structure. 

 * Lightweight-process data (lwp.h) and the kernel stack may be swapped out. 

 */ 

typedef struct  proc { 

        /* 

         * Fields requiring no explicit locking 

         */ 

        struct  vnode *p_exec;          /* pointer to a.out vnode */ 

        struct  as *p_as;               /* process address space pointer */ 

        struct  plock *p_lockp;         /* ptr to proc struct's mutex lock */ 

        kmutex_t p_crlock;              /* lock for p_cred */ 

        struct  cred    *p_cred;        /* process credentials */ 

        /* 

         * Fields protected by pidlock 

         */ 

        int     p_swapcnt;              /* number of swapped out lwps */ 

        char    p_stat;                 /* status of process */ 

        char    p_wcode;                /* current wait code */ 

        ushort_t p_pidflag;             /* flags protected only by pidlock */ 

        int     p_wdata;                /* current wait return value */ 

        pid_t   p_ppid;                 /* process id of parent */ 

        struct  proc    *p_link;        /* forward link */ 

        struct  proc    *p_parent;      /* ptr to parent process */ 

        struct  proc    *p_child;       /* ptr to first child process */ 

        struct  proc    *p_sibling;     /* ptr to next sibling proc on chain */ 

        struct  proc    *p_psibling;    /* ptr to prev sibling proc on chain */ 

        struct  proc    *p_sibling_ns;  /* prt to siblings with new state */ 

        struct  proc    *p_child_ns;    /* prt to children with new state */ 

        struct  proc    *p_next;        /* active chain link next */ 

        struct  proc    *p_prev;        /* active chain link prev */ 

        struct  proc    *p_nextofkin;   /* gets accounting info at exit */ 

        struct  proc    *p_orphan; 

        struct  proc    *p_nextorph; 

         

        *p_pglink;      /* process group hash chain link next */ 

        struct  proc    *p_ppglink;     /* process group hash chain link prev */ 

        struct  sess    *p_sessp;       /* session information */ 

        struct  pid     *p_pidp;        /* process ID info */ 

        struct  pid     *p_pgidp;       /* process group ID info */ 

        /* 

         * Fields protected by p_lock 

         */ 

        kcondvar_t p_cv;                /* proc struct's condition variable */ 

        kcondvar_t p_flag_cv; 

        kcondvar_t p_lwpexit;           /* waiting for some lwp to exit */ 

        kcondvar_t p_holdlwps;          /* process is waiting for its lwps */ 

                                        /* to to be held.  */ 

        ushort_t p_pad1;                /* unused */ 

        uint_t  p_flag;                 /* protected while set. */ 

 

        /* flags defined below */ 

        clock_t p_utime;                /* user time, this process */ 

        clock_t p_stime;                /* system time, this process */ 

        clock_t p_cutime;               /* sum of children's user time */ 

        clock_t p_cstime;               /* sum of children's system time */ 

        caddr_t *p_segacct;             /* segment accounting info */ 

        caddr_t p_brkbase;              /* base address of heap */ 

        size_t  p_brksize;              /* heap size in bytes */ 

        /* 

         * Per process signal stuff. 

         */ 

        k_sigset_t p_sig;               /* signals pending to this process */ 

        k_sigset_t p_ignore;            /* ignore when generated */ 

        k_sigset_t p_siginfo;           /* gets signal info with signal */ 

        struct sigqueue *p_sigqueue;    /* queued siginfo structures */ 

        struct sigqhdr *p_sigqhdr;      /* hdr to sigqueue structure pool */ 

        struct sigqhdr *p_signhdr;      /* hdr to signotify structure pool */ 

        uchar_t p_stopsig;              /* jobcontrol stop signal */ 

 



14 

struct proc (Solaris) (2) 

         /* 

         * Special per-process flag when set will fix misaligned memory 

         * references. 

         */ 

        char    p_fixalignment; 

 

        /* 

         * Per process lwp and kernel thread stuff 

         */ 

        id_t    p_lwpid;                /* most recently allocated lwpid */ 

        int     p_lwpcnt;               /* number of lwps in this process */ 

        int     p_lwprcnt;              /* number of not stopped lwps */ 

        int     p_lwpwait;              /* number of lwps in lwp_wait() */ 

        int     p_zombcnt;              /* number of zombie lwps */ 

        int     p_zomb_max;             /* number of entries in p_zomb_tid */ 

        id_t    *p_zomb_tid;            /* array of zombie lwpids */ 

        kthread_t *p_tlist;             /* circular list of threads */ 

        /* 

         * /proc (process filesystem) debugger interface stuff. 

         */ 

        k_sigset_t p_sigmask;           /* mask of traced signals (/proc) */ 

        k_fltset_t p_fltmask;           /* mask of traced faults (/proc) */ 

        struct  vnode *p_trace;         /* pointer to primary /proc vnode */ 

        struct  vnode *p_plist;         /* list of /proc vnodes for process */ 

        kthread_t *p_agenttp;           /* thread ptr for /proc agent lwp */ 

        struct watched_area *p_warea;   /* list of watched areas */ 

        ulong_t p_nwarea;               /* number of watched areas */ 

        struct watched_page *p_wpage;   /* remembered watched pages (vfork) */ 

        int     p_nwpage;               /* number of watched pages (vfork) */ 

        int     p_mapcnt;               /* number of active pr_mappage()s */ 

        struct  proc  *p_rlink;         /* linked list for server */ 

        kcondvar_t p_srwchan_cv; 

        size_t  p_stksize;              /* process stack size in bytes */ 

        /* 

         * Microstate accounting, resource usage, and real-time profiling 

         */ 

        hrtime_t p_mstart;              /* hi-res process start time */ 

        hrtime_t p_mterm;               /* hi-res process termination time */ 

        hrtime_t p_mlreal;              /* elapsed time sum over defunct lwps */ 

        hrtime_t p_acct[NMSTATES];      /* microstate sum over defunct lwps */ 

        struct lrusage p_ru;            /* lrusage sum over defunct lwps */ 

        struct itimerval p_rprof_timer; /* ITIMER_REALPROF interval timer */ 

        uintptr_t p_rprof_cyclic;       /* ITIMER_REALPROF cyclic */ 

        uint_t  p_defunct;              /* number of defunct lwps */ 

        /* 

         * profiling. A lock is used in the event of multiple lwp's 

         * using the same profiling base/size. 

         */ 

        kmutex_t p_pflock;              /* protects user profile arguments */ 

        struct prof p_prof;             /* profile arguments */ 

 

        /* 

         * The user structure 

         */ 

        struct user p_user;             /* (see sys/user.h) */ 

 

        /* 

         * Doors. 

         */ 

        kthread_t               *p_server_threads; 

        struct door_node        *p_door_list;   /* active doors */ 

        struct door_node        *p_unref_list; 

        kcondvar_t              p_server_cv; 

        char                    p_unref_thread; /* unref thread created */ 

 

        /* 

         * Kernel probes 

         */ 

        uchar_t                 p_tnf_flags; 



15 

struct proc (Solaris) (3) 

        /* 

         * C2 Security  (C2_AUDIT) 

         */ 

        caddr_t p_audit_data;           /* per process audit structure */ 

        kthread_t       *p_aslwptp;     /* thread ptr representing "aslwp" */ 

#if defined(i386) || defined(__i386) || defined(__ia64) 

        /* 

         * LDT support. 

         */ 

        kmutex_t p_ldtlock;             /* protects the following fields */ 

        struct seg_desc *p_ldt;         /* Pointer to private LDT */ 

        struct seg_desc p_ldt_desc;     /* segment descriptor for private LDT */ 

        int p_ldtlimit;                 /* highest selector used */ 

#endif 

        size_t p_swrss;                 /* resident set size before last swap */ 

        struct aio      *p_aio;         /* pointer to async I/O struct */ 

        struct itimer   **p_itimer;     /* interval timers */ 

        k_sigset_t      p_notifsigs;    /* signals in notification set */ 

        kcondvar_t      p_notifcv;      /* notif cv to synchronize with aslwp */ 

        timeout_id_t    p_alarmid;      /* alarm's timeout id */ 

        uint_t          p_sc_unblocked; /* number of unblocked threads */ 

        struct vnode    *p_sc_door;     /* scheduler activations door */ 

        caddr_t         p_usrstack;     /* top of the process stack */ 

        uint_t          p_stkprot;      /* stack memory protection */ 

        model_t         p_model;        /* data model determined at exec time */ 

        struct lwpchan_data     *p_lcp; /* lwpchan cache */ 

        /* 

         * protects unmapping and initilization of robust locks. 

         */ 

        kmutex_t        p_lcp_mutexinitlock; 

        utrap_handler_t *p_utraps;      /* pointer to user trap handlers */ 

        refstr_t        *p_corefile;    /* pattern for core file */ 

 

#if defined(__ia64) 

        caddr_t         p_upstack;      /* base of the upward-growing stack */ 

        size_t          p_upstksize;    /* size of that stack, in bytes */ 

        uchar_t         p_isa;          /* which instruction set is utilized */ 

#endif 

        void            *p_rce;         /* resource control extension data */ 

        struct task     *p_task;        /* our containing task */ 

        struct proc     *p_taskprev;    /* ptr to previous process in task */ 

        struct proc     *p_tasknext;    /* ptr to next process in task */ 

        int             p_lwpdaemon;    /* number of TP_DAEMON lwps */ 

        int             p_lwpdwait;     /* number of daemons in lwp_wait() */ 

        kthread_t       **p_tidhash;    /* tid (lwpid) lookup hash table */ 

        struct sc_data  *p_schedctl;    /* available schedctl structures */ 

} proc_t; 
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PCBs and Hardware State 

 When a process is running, its hardware state (PC, 

SP, regs, etc.) is in the CPU 

 The hardware registers contain the current values 

 When the OS stops running a process, it saves the 

current values of the registers into the process’ PCB 

 When the OS is ready to start executing a new 

process, it loads the hardware registers from the 

values stored in that process’ PCB 

 What happens to the code that is executing? 

 The process of changing the CPU hardware state from 

one process to another is called a context switch 

 This can happen 100 or 1000 times a second! 



Context Switch Illustrated 
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State Queues 

How does the OS keep track of processes? 

 The OS maintains a collection of queues that 

represent the state of all processes in the system 

 Typically, the OS has one queue for each state 

 Ready, waiting, etc. 

 Each PCB is queued on a state queue according to its 

current state 

 As a process changes state, its PCB is unlinked from 

one queue and linked into another 
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State Queues 
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Process Creation 

 A process is created by another process 

 Why is this the case? 

 Parent is creator, child is created (Unix: ps “PPID” field) 

 What creates the first process (Unix: init (PID 0 or 1))? 

 In some systems, the parent defines (or donates) 

resources and privileges for its children 

 Unix: Process User ID is inherited – children of your shell 

(e.g., vim) execute with your privileges 

 After creating a child, the parent may either wait for it 

to finish its task or continue in parallel (or both) 
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Process Creation: Windows 

 The system call on Windows for creating a process is 

called, surprisingly enough, CreateProcess: 
BOOL CreateProcess(char *prog, char *args) (simplified) 

 CreateProcess 

 Creates and initializes a new PCB 

 Creates and initializes a new address space 

 Loads the program specified by “prog” into the address space 

 Copies “args” into memory allocated in address space 

 Initializes the saved hardware context to start execution at 

main (or wherever specified in the file) 

 Places the PCB on the ready queue 

 Most of the time we are calling wrappers of syscalls (e.g., through 

ntdll.dll or libc) 
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Process Creation: Unix 

 In Unix, processes are created using fork() 
int fork() 

Usually combined with exec() 

fork() + exec() ~= CreateProcess() 

 fork() 
 Creates and initializes a new PCB 

 Creates a new address space 

 Initializes the address space with a copy of the entire 
contents of the address space of the parent 

 Initializes the kernel resources to point to the resources used 
by parent (e.g., open files) 

 Places the PCB on the ready queue 

 Fork returns twice 
 Returns the child’s PID to the parent, “0” to the child 
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Process Summary 

 What are the units of execution? 
 Processes 

 How are those units of execution represented? 
 Process Control Blocks (PCBs) 

 How is work scheduled in the CPU? 
 Process states, process queues, context switches 

 What are the possible execution states of a process? 
 Running, ready, waiting 

 How does a process move from one state to another? 
 Scheduling, I/O, creation, termination 

 How are processes created? 
 CreateProcess (NT), fork/exec (Unix) 
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Next time… 

 Read Chapter 4 
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