
CS 153 

Design of Operating 

Systems 

 

Winter 2016 

Lecture 3: Intro and Architectural Support for 

Operating Systems 

 



Administrivia 

 Project group signup linked in the lab webpage 

 

 Office hours posted on my homepage as well 

 

 Project 1 out! 

 

2 



Categorizing Events 

 Two kinds of events: synchronous and asynchronous 

 Sync events are caused by executing instructions 

 Example? 

 Async events are caused by an external event 

 Example? 

 

CPU 

ticks 

Synchronous 

events 

Asynchronous 

events 

3 



4 

Categorizing Events 

 Two kinds of events: synchronous and asynchronous 

 Sync events are caused by executing instructions 

 Async events are caused by an external event 

 

 Two reasons for events: unexpected and deliberate 

 Unexpected events are, well, unexpected 

 Example? 

 Deliberate events are scheduled by OS or application 

 Why would this be useful? 



5 

Categorizing Events 

 This gives us a convenient table: 

 

 

 

 

 

 Terms may be used slightly differently by various OSes, CPU 

architectures…  

» e.g., exceptions include fault and software interrupt 

 Will cover faults, system calls, and interrupts next 

Unexpected Deliberate 

Synchronous fault software interrupt 

(syscall trap) 

Asynchronous interrupt Asynchronous 

system trap (AST) 



6 

Faults 

 Hardware detects and reports “exceptional” 
conditions 

 Page fault, unaligned access, divide by zero 

 

 

 

 Upon exception, hardware “faults” (verb) 

 Must save state (PC, regs, mode, etc.) so that the faulting 

process can be restarted 

 



7 

Handling Faults 

 Some faults are handled by “fixing” the exceptional 

condition and returning to the faulting context 

 Page faults cause the OS to place the missing page into 

memory 

 Fault handler resets PC of faulting context to re-execute 

instruction that caused the page fault 

 Some faults are handled by notifying the process 

 Fault handler changes the saved context to transfer control to 

a user-mode handler on return from fault 

 Handler must be registered with OS 

 Unix signals or NT user-mode Async Procedure Calls (APCs) 

» SIGFPE, SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc. 



8 

Handling Faults 

 The kernel may handle unrecoverable faults by killing 

the user process (core dump) 

 Program fault with no registered handler 

 Halt process, write process state to file, destroy process 

 In Unix, the default action for many signals (e.g., SIGSEGV) 

 

 What about faults in the kernel? 

 Dereference NULL, divide by zero, undefined instruction 

 These faults considered fatal, operating system crashes 

 Unix panic, Windows “Blue screen of death” 

» Kernel is halted, state dumped to a core file, machine locked up 

 Improvement from Windows 95 to Windows 7 

» Where does the improvement come from? 



9 

Categorizing Events 

 

 

 

 

Unexpected Deliberate 

Synchronous fault software interrupt 

(syscall trap) 

Asynchronous interrupt Asynchronous 

system trap (AST) 



10 

System Calls 

 For a user program to do something “privileged” (e.g., 
I/O) it must call an OS procedure 
 Known as crossing the protection boundary, or a protected 

procedure call 

 

 Hardware provides a system call instruction that: 
 Causes an exception, which invokes a kernel handler 

 Passes a parameter determining the system routine to call 

 Saves caller state (PC, regs, mode) so it can be restored 

» Why save mode? 

 Returning from system call restores this state 



11 

System Call 

Kernel mode 

emacs: read() 

User mode 

read() kernel routine 

Trap to kernel mode 

int 0x80 / sysenter 

Trap handler: 

Find read 

handler 

Restore state, 

return to user 

level             

(iret / sysret), 

resume 

execution 

save state 

Who saves PC? 

  



CPU Modes/Privileges 

 System call 

 Ring 3  Ring 0 

12 



Another view 

13 

Kernel Stack 

0x00000000 

0xFFFFFFFF 

Kernel Code 

Address 

Space 

SP2 

PC1 

User Stack 

User Code 

PC2 

SP1 

0xC0000000 

1G 

3G 



14 

System Call Questions 

 There are hundreds of syscalls. How do we let the 

kernel know which one we intend to invoke? 

 Before issuing int $0x80 or sysenter, set %eax with the 

syscall number 

 System calls are like function calls, but how to pass 

parameters? 

 Just like calling convention in syscalls, typically passed 

through %ebx, %ecx, %edx, %esi, %edi, %ebp 

 How to reference kernel objects (e.g., files, sockets)? 

 Naming problem – an integer mapped to a unique object 

» int fd = open(“file”);  read(fd, buffer); 

 Why can’t we reference the kernel objects by memory 

address? 

 

 

 



Interface to user programs 

(PintOS hint) 

 For project 2 of pintos, 

there’s no real glibc. 

Instead, stubs such as 

write() and open() are 

provided in 

/lib/user/syscall.c 

 Your job is to implement 

the kernel portion, the 

actual functionality 

15 



How to handle data from user 

space? (PintOS hint) 

 System calls run in Ring 0 (highest privilege) 

and can read/write the entirety of the 

memory space, while a user-space program 

in Ring 3 can read/write only its user-space 

portion 

 What can possibly go wrong in this syscall? 

 size_t read(int fd, void *buf, size_t nbytes) 

 What if the user-mode program specifies an 

address in the kernel’s address space? 

 Guards it by checking the address range 

16 



18 

Categorizing Events 

 

 

 

 

Unexpected Deliberate 

Synchronous fault software interrupt 

(syscall trap) 

Asynchronous interrupt Asynchronous 

system trap (AST) 



19 

Interrupts 

 Interrupts signal asynchronous events 

 I/O hardware interrupts 

 Software and hardware timers 



21 

Timer – special interrupt 

 The timer is critical for an operating system 

 It is the fallback mechanism by which the OS reclaims 

control over the machine 

 Timer is set to generate an interrupt after a period of time 

» Setting timer is a privileged instruction 

 Basis for scheduling multiple tasks (more later…) 

 When timer expires, generates an interrupt 

 Prevents infinite loops 

 OS can always regain control from erroneous or malicious 

programs that try to hog CPU 

 Also used for time-based functions (e.g., sleep()) 



22 

Timer (PintOS Hint) 

 How does it work? 

 Mechanical resonance of a vibrating crystal that is integrated 

into an electronic oscillator circuit 

 Programmable Interrupt Timer (PIT) configured in 

devices/timer.c:timer_init(), and devices/pit.c 



24 

I/O using Interrupts 

 Interrupts are the basis for asynchronous I/O 

 OS initiates I/O 

 Device operates independently of rest of machine 

 Device sends an interrupt signal to CPU when done 

 OS maintains a vector table containing a list of addresses of 

kernel routines to handle various events 

 CPU looks up kernel address indexed by interrupt number, 

context switches to routine 

CPU 

read() begins 

Disk 

read() ends 

interrupt I/O initiation 



User Mode 

Ring 3 

Interrupt Illustrated 

25 

Device 

Save user 

process’s 

state  

Execute 

device driver 

Restore  

state 

User  

process 

Resume 

process 

Raise  

Interrupt 

Suspend user process 

Execute OS’s interrupt handler 

Clear  

interrupt 

Return to 

Ring 3 
Kernel Mode 

Ring 0 



26 

I/O Example 

1. Ethernet receives packet, writes packet into memory 

2. Ethernet signals an interrupt 

3. CPU stops current operation, switches to kernel mode, 

saves machine state (PC, mode, etc.) on kernel stack 

4. CPU reads address from vector table indexed by 

interrupt number, branches to address (Ethernet 

device driver) 

5. Ethernet device driver processes packet (reads device 

registers to find packet in memory) 

6. Upon completion, restores saved state from stack 



27 

Interrupt Questions 

 Interrupts halt the execution of a process and transfer 

control (execution) to the operating system 

 Can the OS be interrupted?  (Consider why there might be 

different interrupt levels) 

 Why not transfer control to user mode? 

 Interrupts are used by devices to have the OS do stuff 

 What is an alternative approach to using interrupts? 

 What are the drawbacks of that approach? 



How does it happen behind 

the scene (PintOS hint) 

 Kernel initializes the interrupt descriptor table (IDT), a 

critical data structure gets called whenever an interrupt 

occurs (threads/interrupt.c) 

 One of the entry in IDT gets invoked according to the 

interrupt number, control transferred to the pre-determined 

kernel function (threads/intr-stubs.S, threads/interrupt.c) 

 In the case of syscall software interrupts (invoked by int 

$0x30), the control transfers to the syscall handler 

registered to handle interrupt 0x30 (as seen in 

userprog/syscall.c) 

 After interrupt handling finishes, the control transfers back 

to where it was interrupted (via iret). In the case of syscall, 

it returns back to user space (Ring 3). See 

userprog/syscall.c 

 

28 



29 

Synchronization 

 Interrupts cause difficult problems 

 An interrupt can occur at any time 

 A handler can execute that interferes with code that was 

interrupted  

 Need to guarantee that short instruction sequences execute 

atomically 

 Disable interrupts – turn off interrupts before sequence, 

execute sequence, turn interrupts back on 

 void driver_setup (void) {  

   DISABLE_INTERRUPTS() 

   global_variable += 100; 

   global_variable += 100; 

   assert( global_variable == 200); 

   ENABLE_INTERRUPTS() 

           } 



30 

Synchronization 

 OS must be able to synchronize concurrent execution 

 Need to guarantee that short instruction sequences 

execute atomically 

 Special atomic instructions – read/modify/write a memory 

address, test and conditionally set a bit based upon previous 

value 

» XCHG on x86 

 



31 

Summary 

 Faults 

 Handled by the OS immediately 

 System calls 

 Used by user-level processes to access OS functions 

 Access what is “in” the OS 

 Exceptions 

 Unexpected event during execution (e.g., divide by zero) 

 Interrupts 

 Timer, I/O 



32 

Next Time… 

 Processes 

 Read Chapter 3 


