
CS 153

Design of Operating

Systems

Winter 2016

Lecture 3: Intro and Architectural Support for

Operating Systems

Administrivia

 Project group signup linked in the lab webpage

 Office hours posted on my homepage as well

 Project 1 out!

2

Categorizing Events

 Two kinds of events: synchronous and asynchronous

 Sync events are caused by executing instructions

 Example?

 Async events are caused by an external event

 Example?

CPU

ticks

Synchronous

events

Asynchronous

events

3

4

Categorizing Events

 Two kinds of events: synchronous and asynchronous

 Sync events are caused by executing instructions

 Async events are caused by an external event

 Two reasons for events: unexpected and deliberate

 Unexpected events are, well, unexpected

 Example?

 Deliberate events are scheduled by OS or application

 Why would this be useful?

5

Categorizing Events

 This gives us a convenient table:

 Terms may be used slightly differently by various OSes, CPU

architectures…

» e.g., exceptions include fault and software interrupt

 Will cover faults, system calls, and interrupts next

Unexpected Deliberate

Synchronous fault software interrupt

(syscall trap)

Asynchronous interrupt Asynchronous

system trap (AST)

6

Faults

 Hardware detects and reports “exceptional”
conditions

 Page fault, unaligned access, divide by zero

 Upon exception, hardware “faults” (verb)

 Must save state (PC, regs, mode, etc.) so that the faulting

process can be restarted

7

Handling Faults

 Some faults are handled by “fixing” the exceptional

condition and returning to the faulting context

 Page faults cause the OS to place the missing page into

memory

 Fault handler resets PC of faulting context to re-execute

instruction that caused the page fault

 Some faults are handled by notifying the process

 Fault handler changes the saved context to transfer control to

a user-mode handler on return from fault

 Handler must be registered with OS

 Unix signals or NT user-mode Async Procedure Calls (APCs)

» SIGFPE, SIGALRM, SIGHUP, SIGTERM, SIGSEGV, etc.

8

Handling Faults

 The kernel may handle unrecoverable faults by killing

the user process (core dump)

 Program fault with no registered handler

 Halt process, write process state to file, destroy process

 In Unix, the default action for many signals (e.g., SIGSEGV)

 What about faults in the kernel?

 Dereference NULL, divide by zero, undefined instruction

 These faults considered fatal, operating system crashes

 Unix panic, Windows “Blue screen of death”

» Kernel is halted, state dumped to a core file, machine locked up

 Improvement from Windows 95 to Windows 7

» Where does the improvement come from?

9

Categorizing Events

Unexpected Deliberate

Synchronous fault software interrupt

(syscall trap)

Asynchronous interrupt Asynchronous

system trap (AST)

10

System Calls

 For a user program to do something “privileged” (e.g.,
I/O) it must call an OS procedure
 Known as crossing the protection boundary, or a protected

procedure call

 Hardware provides a system call instruction that:
 Causes an exception, which invokes a kernel handler

 Passes a parameter determining the system routine to call

 Saves caller state (PC, regs, mode) so it can be restored

» Why save mode?

 Returning from system call restores this state

11

System Call

Kernel mode

emacs: read()

User mode

read() kernel routine

Trap to kernel mode

int 0x80 / sysenter

Trap handler:

Find read

handler

Restore state,

return to user

level

(iret / sysret),

resume

execution

save state

Who saves PC?

CPU Modes/Privileges

 System call

 Ring 3 Ring 0

12

Another view

13

Kernel Stack

0x00000000

0xFFFFFFFF

Kernel Code

Address

Space

SP2

PC1

User Stack

User Code

PC2

SP1

0xC0000000

1G

3G

14

System Call Questions

 There are hundreds of syscalls. How do we let the

kernel know which one we intend to invoke?

 Before issuing int $0x80 or sysenter, set %eax with the

syscall number

 System calls are like function calls, but how to pass

parameters?

 Just like calling convention in syscalls, typically passed

through %ebx, %ecx, %edx, %esi, %edi, %ebp

 How to reference kernel objects (e.g., files, sockets)?

 Naming problem – an integer mapped to a unique object

» int fd = open(“file”); read(fd, buffer);

 Why can’t we reference the kernel objects by memory

address?

Interface to user programs

(PintOS hint)

 For project 2 of pintos,

there’s no real glibc.

Instead, stubs such as

write() and open() are

provided in

/lib/user/syscall.c

 Your job is to implement

the kernel portion, the

actual functionality

15

How to handle data from user

space? (PintOS hint)

 System calls run in Ring 0 (highest privilege)

and can read/write the entirety of the

memory space, while a user-space program

in Ring 3 can read/write only its user-space

portion

 What can possibly go wrong in this syscall?

 size_t read(int fd, void *buf, size_t nbytes)

 What if the user-mode program specifies an

address in the kernel’s address space?

 Guards it by checking the address range

16

18

Categorizing Events

Unexpected Deliberate

Synchronous fault software interrupt

(syscall trap)

Asynchronous interrupt Asynchronous

system trap (AST)

19

Interrupts

 Interrupts signal asynchronous events

 I/O hardware interrupts

 Software and hardware timers

21

Timer – special interrupt

 The timer is critical for an operating system

 It is the fallback mechanism by which the OS reclaims

control over the machine

 Timer is set to generate an interrupt after a period of time

» Setting timer is a privileged instruction

 Basis for scheduling multiple tasks (more later…)

 When timer expires, generates an interrupt

 Prevents infinite loops

 OS can always regain control from erroneous or malicious

programs that try to hog CPU

 Also used for time-based functions (e.g., sleep())

22

Timer (PintOS Hint)

 How does it work?

 Mechanical resonance of a vibrating crystal that is integrated

into an electronic oscillator circuit

 Programmable Interrupt Timer (PIT) configured in

devices/timer.c:timer_init(), and devices/pit.c

24

I/O using Interrupts

 Interrupts are the basis for asynchronous I/O

 OS initiates I/O

 Device operates independently of rest of machine

 Device sends an interrupt signal to CPU when done

 OS maintains a vector table containing a list of addresses of

kernel routines to handle various events

 CPU looks up kernel address indexed by interrupt number,

context switches to routine

CPU

read() begins

Disk

read() ends

interrupt I/O initiation

User Mode

Ring 3

Interrupt Illustrated

25

Device

Save user

process’s

state

Execute

device driver

Restore

state

User

process

Resume

process

Raise

Interrupt

Suspend user process

Execute OS’s interrupt handler

Clear

interrupt

Return to

Ring 3
Kernel Mode

Ring 0

26

I/O Example

1. Ethernet receives packet, writes packet into memory

2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode,

saves machine state (PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by

interrupt number, branches to address (Ethernet

device driver)

5. Ethernet device driver processes packet (reads device

registers to find packet in memory)

6. Upon completion, restores saved state from stack

27

Interrupt Questions

 Interrupts halt the execution of a process and transfer

control (execution) to the operating system

 Can the OS be interrupted? (Consider why there might be

different interrupt levels)

 Why not transfer control to user mode?

 Interrupts are used by devices to have the OS do stuff

 What is an alternative approach to using interrupts?

 What are the drawbacks of that approach?

How does it happen behind

the scene (PintOS hint)

 Kernel initializes the interrupt descriptor table (IDT), a

critical data structure gets called whenever an interrupt

occurs (threads/interrupt.c)

 One of the entry in IDT gets invoked according to the

interrupt number, control transferred to the pre-determined

kernel function (threads/intr-stubs.S, threads/interrupt.c)

 In the case of syscall software interrupts (invoked by int

$0x30), the control transfers to the syscall handler

registered to handle interrupt 0x30 (as seen in

userprog/syscall.c)

 After interrupt handling finishes, the control transfers back

to where it was interrupted (via iret). In the case of syscall,

it returns back to user space (Ring 3). See

userprog/syscall.c

28

29

Synchronization

 Interrupts cause difficult problems

 An interrupt can occur at any time

 A handler can execute that interferes with code that was

interrupted

 Need to guarantee that short instruction sequences execute

atomically

 Disable interrupts – turn off interrupts before sequence,

execute sequence, turn interrupts back on

 void driver_setup (void) {

 DISABLE_INTERRUPTS()

 global_variable += 100;

 global_variable += 100;

 assert(global_variable == 200);

 ENABLE_INTERRUPTS()

 }

30

Synchronization

 OS must be able to synchronize concurrent execution

 Need to guarantee that short instruction sequences

execute atomically

 Special atomic instructions – read/modify/write a memory

address, test and conditionally set a bit based upon previous

value

» XCHG on x86

31

Summary

 Faults

 Handled by the OS immediately

 System calls

 Used by user-level processes to access OS functions

 Access what is “in” the OS

 Exceptions

 Unexpected event during execution (e.g., divide by zero)

 Interrupts

 Timer, I/O

32

Next Time…

 Processes

 Read Chapter 3

