CS 153
Design of Operating
Systems

Winter 2016

Lecture 2: Intro and Architectural Support for
Operating Systems

Administrivia

o Course website is up

L 2
» Check the website for slides

+ Piazzalink:
» Also posted on course webpage
» Enroll yourself (let me know if you have issues)

o Project group formation
+ Preferably pick a partner in the same lab (coordination)
+ You need to signed up before class next Friday

o Reminder: 4% for extra credit and class participation
+ 2% extra for not using the slack days (at all)

http://www.cs.ucr.edu/~zhiyunq/teaching/cs153/
https://piazza.com/ucr/winter2016/cs153/home

Brief History of OS design

In the beginning...

e OSes were runtime libraries

+ The OS was just code you linked with your program and
loaded into the computer

+ First computer interface was switches and lights, then
punched tape and cards
o Batch systems were next
OS was permanently stored in primary memory
It loaded a single job (card reader, mag tape) into memory
Executed job, created output (line printer)
Loaded the next job, repeat...

Card readers, line printers were slow, and CPU was idle while
they were being used

+ MS-DOS: single job at a time

* & 6 o o

Spooling

o The bottleneck of slow I/O and idling CPU motivated
development of spooling (Simultaneous Peripheral
Operation On-Line)

+ Use faster 1/O to hide the latency of slower I/O

» Copy documents to printer buffer so printer can work at its own
rate and free the CPU

+ But, CPU still idle when job reads/writes to disk

Multiprogramming

o Multiprogramming increased system utilization

*

*

*

*

Keeps multiple runnable jobs loaded in memory

Overlaps I/O processing of a job with computation of another
Benefits from 1/O devices that can operate asynchronously
Requires the use of interrupts (from 1/0) and DMA

Requires memory protection and sharing

Optimizes system throughput (number of jobs finished in a
given amount of time) at the cost of response time (time until
a particular job finishes)

Timesharing

o Timesharing supports interactive use of computer by
multiple users

*

*

*

*

*

Terminals give the illusion that each user has own machine

Optimizes response time (time to respond to an event like a
keystroke) at the cost of throughput

Based on timeslicing — dividing CPU time among the users
Enabled new class of applications — interactive!
Users now interact with viewers, editors, debuggers

o The MIT Multics system (mid-late 60s) was an early,
aggressive timesharing system

o Unix and Windows are also timesharing systems...

Distributed Operating Systems

o Distributed systems facilitate use of geographically
distributed resources
+ Machine connected by wires

e Supports communication between parts of a job or
different jobs on different machines
+ Interprocess communication
« Sharing of distributed resources, hardware, and
software
+ Exploit remote resources
o Enables parallelism, but speedup is not the goal
+ Goal is communication

Parallel Operating Systems

o Support parallel applications trying to get speedup of
computationally complex tasks across multiple CPUs

o Requires basic primitives for dividing single task into
multiple parallel activities

o Supports efficient communication among activities

o Supports synchronization of activities to coordinate
data sharing

o Early parallel systems used dedicated networks and
custom CPUs, now common to use networks of high-
performance PC/workstations

Embedded Operating Systems

o Decreased cost of processing makes computers
ubiquitous
+ Your car has dozens of computers in it
+ Think of everything that has electric motor in it, and now
Imagine that it also has a computer
o Each embedded application needs its own OS
+ Smart phones
+ Smart home, smart grid
e Very soon
+ Your house will have 100s of embedded computers in it

+ Your electrical lines and airwaves will serve as the network
+ All devices will interact as a distributed system

What is an operating system?

« OSis “all the code that you didn’t have to write” to
Implement your application

« OSis “code for all features not offered by hardware”

Applications

Operating System

10

Architectural support of OS

o As OS evolves, complex tasks are pushed down to the
hardware (e.g., CPU, MMU) — hence the architectural
support

Operating System Operating System

11

Why Start With Architecture?

o Recall: Key goals of an OS are 1) to enable
virtualization/abstraction; 2) to enforce protection and
resource sharing; and 3) manage concurrency

+ If done well, applications can be oblivious to HW details
» e.g., fread() assumes nothing about underlying storage

« Architectural support can greatly simplify — or
complicate — OS tasks
+ Easier for OS to implement a feature if supported by hardware
+ OS needs to implement everything hardware doesn’t

12

Review: Computer Organization

opcode

Branch Address
Select | New PC | Program CPQ
PC ST Instructions
Fetch
Exec

14

Types of Arch Support for OS

« Manipulating privileged machine state
+ Protected instructions
+ Manipulate device registers, TLB entries, etc.

« Generating and handling “events”
+ Interrupts, exceptions, system calls, etc.
+ Respond to external events
+ CPU requires software intervention to handle fault or trap

o Mechanisms to handle concurrency
+ Interrupts, atomic instructions

15

Types of Arch Support for OS

« Manipulating privileged machine state
+ Protected instructions
+ Manipulate device registers, TLB entries, etc.

16

Protected Instructions

o A subset of instructions of every CPU is restricted to
use only by the OS

+ Known as protected (privileged) instructions

o Only the operating system can
+ Directly access I/O devices (disks, printers, etc.)
» Security, fairness (why?)
+ Manipulate memory management state
» Page table pointers, page protection, TLB management, etc.
+ Manipulate protected control registers
» Kernel mode, interrupt level
+ Halt instruction (why?)

17

OS Protection

 How does HW know if protected instr. can be executed?

+ Architecture must support (at least) two modes of operation: kernel
mode and user mode (See next slide)

» VAX, x86 support four modes; earlier archs (Multics) even more
» Why?

+ Mode is indicated by a status bit in a protected control register
+ User programs execute in user mode
+ OS executes in kernel mode (OS == “kernel”)

o Protected instructions only execute in kernel mode

+ CPU checks mode bit when protected instruction executes

+ Attempts to execute in user mode are detected and prevented

+ Need for new protected instruction?
» Setting mode bit

18

CPU Modes/Privileges

 Ring 0 - Kernel Mode
« Ring 3 - User Mode

Least privileged

Most privileged

19

Memory Protection

o« OS must be able to protect programs from each other
o OS must protect itself from user programs
« May or may not protect user programs from OS

« Memory management hardware provides memory
protection mechanisms
+ Base and limit registers
+ Page table pointers, page protection, TLB
+ Virtual memory
+ Segmentation

o Manipulating memory management hardware uses
protected (privileged) operations

20

Base and Bound Example

Physical Memory

INSTR DATA HEAP STACK

N —

Base| Bounds

| i Memory ves

— OK? >, Continue
Reference /

No

Exception

21

Types of Arch Support

*

*

« Generating and handling “events”

*

*

*

Interrupts, exceptions, system calls, etc.
Respond to external events
CPU requires software intervention to handle fault or trap

22

Events

« An eventis an “unnatural” change in control flow
+ Events immediately stop current execution
+ Changes mode, context (machine state), or both

o The kernel defines a handler for each event type
+ Event handlers always execute in kernel mode
+ The specific types of events are defined by the machine

o Once the system is booted, all entry to the kernel
occurs as the result of an event
+ In effect, the operating system is one big event handler

23

Categorizing Events

o Two kinds of events: synchronous and asynchronous

o Sync events are caused by executing instructions
+ Example?

« Async events are caused by an external event
+ Example?

Asynchronous

l events l

o N | |
ticks

A A
Synchronous

events

24

Interrupt Handler lllustration

Processor
Register Interrupt
Vector
>‘ handleTimerinterrupt() {
}

handleDivideByZero() {

>

}

handleSystemCall() {

}

In PintOS, they are done in “threads/intr-stubs.S, threads/interrupt.c”

Summary

o Protection
+ User/kernel modes
+ Protected instructions

o EVvents

26

Next Time...

o Processes
+ Read Chapter 3

27

