
CS 153

Design of Operating

Systems

Winter 2016

Lecture 2: Intro and Architectural Support for

Operating Systems

Administrivia

 Course website is up

 http://www.cs.ucr.edu/~zhiyunq/teaching/cs153/

» Check the website for slides

 Piazza link: https://piazza.com/ucr/winter2016/cs153/home

» Also posted on course webpage

» Enroll yourself (let me know if you have issues)

 Project group formation

 Preferably pick a partner in the same lab (coordination)

 You need to signed up before class next Friday

 Reminder: 4% for extra credit and class participation

 2% extra for not using the slack days (at all) 2

http://www.cs.ucr.edu/~zhiyunq/teaching/cs153/
https://piazza.com/ucr/winter2016/cs153/home

Brief History of OS design

In the beginning…

 OSes were runtime libraries
 The OS was just code you linked with your program and

loaded into the computer

 First computer interface was switches and lights, then
punched tape and cards

 Batch systems were next
 OS was permanently stored in primary memory

 It loaded a single job (card reader, mag tape) into memory

 Executed job, created output (line printer)

 Loaded the next job, repeat…

 Card readers, line printers were slow, and CPU was idle while
they were being used

 MS-DOS: single job at a time
3

Spooling

 The bottleneck of slow I/O and idling CPU motivated

development of spooling (Simultaneous Peripheral

Operation On-Line)

 Use faster I/O to hide the latency of slower I/O

» Copy documents to printer buffer so printer can work at its own

rate and free the CPU

 But, CPU still idle when job reads/writes to disk

4

Multiprogramming

 Multiprogramming increased system utilization

 Keeps multiple runnable jobs loaded in memory

 Overlaps I/O processing of a job with computation of another

 Benefits from I/O devices that can operate asynchronously

 Requires the use of interrupts (from I/O) and DMA

 Requires memory protection and sharing

 Optimizes system throughput (number of jobs finished in a

given amount of time) at the cost of response time (time until

a particular job finishes)

5

Timesharing

 Timesharing supports interactive use of computer by

multiple users

 Terminals give the illusion that each user has own machine

 Optimizes response time (time to respond to an event like a

keystroke) at the cost of throughput

 Based on timeslicing – dividing CPU time among the users

 Enabled new class of applications – interactive!

 Users now interact with viewers, editors, debuggers

 The MIT Multics system (mid-late 60s) was an early,

aggressive timesharing system

 Unix and Windows are also timesharing systems…

6

Distributed Operating Systems

 Distributed systems facilitate use of geographically

distributed resources

 Machine connected by wires

 Supports communication between parts of a job or

different jobs on different machines

 Interprocess communication

 Sharing of distributed resources, hardware, and

software

 Exploit remote resources

 Enables parallelism, but speedup is not the goal

 Goal is communication

7

Parallel Operating Systems

 Support parallel applications trying to get speedup of

computationally complex tasks across multiple CPUs

 Requires basic primitives for dividing single task into

multiple parallel activities

 Supports efficient communication among activities

 Supports synchronization of activities to coordinate

data sharing

 Early parallel systems used dedicated networks and

custom CPUs, now common to use networks of high-

performance PC/workstations

8

Embedded Operating Systems

 Decreased cost of processing makes computers
ubiquitous
 Your car has dozens of computers in it

 Think of everything that has electric motor in it, and now
imagine that it also has a computer

 Each embedded application needs its own OS
 Smart phones

 Smart home, smart grid

 Very soon
 Your house will have 100s of embedded computers in it

 Your electrical lines and airwaves will serve as the network

 All devices will interact as a distributed system

9

What is an operating system?

 OS is “all the code that you didn’t have to write” to

implement your application

 OS is “code for all features not offered by hardware”

Operating System

Hardware

Applications

10

Architectural support of OS

 As OS evolves, complex tasks are pushed down to the

hardware (e.g., CPU, MMU) – hence the architectural

support

Operating System

Hardware

Operating System

Hardware

11

Why Start With Architecture?

 Recall: Key goals of an OS are 1) to enable
virtualization/abstraction; 2) to enforce protection and
resource sharing; and 3) manage concurrency
 If done well, applications can be oblivious to HW details

» e.g., fread() assumes nothing about underlying storage

 Architectural support can greatly simplify – or

complicate – OS tasks

 Easier for OS to implement a feature if supported by hardware

 OS needs to implement everything hardware doesn’t

12

Review: Computer Organization

14

Types of Arch Support for OS

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”
 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

15

Types of Arch Support for OS

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”
 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

16

Protected Instructions

 A subset of instructions of every CPU is restricted to

use only by the OS

 Known as protected (privileged) instructions

 Only the operating system can

 Directly access I/O devices (disks, printers, etc.)

» Security, fairness (why?)

 Manipulate memory management state

» Page table pointers, page protection, TLB management, etc.

 Manipulate protected control registers

» Kernel mode, interrupt level

 Halt instruction (why?)

17

OS Protection

 How does HW know if protected instr. can be executed?

 Architecture must support (at least) two modes of operation: kernel

mode and user mode (See next slide)

» VAX, x86 support four modes; earlier archs (Multics) even more

» Why?

 Mode is indicated by a status bit in a protected control register

 User programs execute in user mode

 OS executes in kernel mode (OS == “kernel”)

 Protected instructions only execute in kernel mode

 CPU checks mode bit when protected instruction executes

 Attempts to execute in user mode are detected and prevented

 Need for new protected instruction?

» Setting mode bit

 18

CPU Modes/Privileges

 Ring 0  Kernel Mode

 Ring 3  User Mode

19

Memory Protection

 OS must be able to protect programs from each other

 OS must protect itself from user programs

 May or may not protect user programs from OS

 Memory management hardware provides memory

protection mechanisms

 Base and limit registers

 Page table pointers, page protection, TLB

 Virtual memory

 Segmentation

 Manipulating memory management hardware uses

protected (privileged) operations

20

Base and Bound Example

21

Types of Arch Support

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”
 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

22

Events

 An event is an “unnatural” change in control flow

 Events immediately stop current execution

 Changes mode, context (machine state), or both

 The kernel defines a handler for each event type

 Event handlers always execute in kernel mode

 The specific types of events are defined by the machine

 Once the system is booted, all entry to the kernel

occurs as the result of an event

 In effect, the operating system is one big event handler

23

Categorizing Events

 Two kinds of events: synchronous and asynchronous

 Sync events are caused by executing instructions

 Example?

 Async events are caused by an external event

 Example?

CPU

ticks

Synchronous

events

Asynchronous

events

24

Interrupt Handler Illustration

25

In PintOS, they are done in “threads/intr-stubs.S, threads/interrupt.c”

Summary

 Protection

 User/kernel modes

 Protected instructions

 Events

26

Next Time…

 Processes

 Read Chapter 3

27

