
CS 153

Design of Operating

Systems

Winter 2016

Lecture 2: Intro and Architectural Support for

Operating Systems

Administrivia

 Course website is up

 http://www.cs.ucr.edu/~zhiyunq/teaching/cs153/

» Check the website for slides

 Piazza link: https://piazza.com/ucr/winter2016/cs153/home

» Also posted on course webpage

» Enroll yourself (let me know if you have issues)

 Project group formation

 Preferably pick a partner in the same lab (coordination)

 You need to signed up before class next Friday

 Reminder: 4% for extra credit and class participation

 2% extra for not using the slack days (at all) 2

http://www.cs.ucr.edu/~zhiyunq/teaching/cs153/
https://piazza.com/ucr/winter2016/cs153/home

Brief History of OS design

In the beginning…

 OSes were runtime libraries
 The OS was just code you linked with your program and

loaded into the computer

 First computer interface was switches and lights, then
punched tape and cards

 Batch systems were next
 OS was permanently stored in primary memory

 It loaded a single job (card reader, mag tape) into memory

 Executed job, created output (line printer)

 Loaded the next job, repeat…

 Card readers, line printers were slow, and CPU was idle while
they were being used

 MS-DOS: single job at a time
3

Spooling

 The bottleneck of slow I/O and idling CPU motivated

development of spooling (Simultaneous Peripheral

Operation On-Line)

 Use faster I/O to hide the latency of slower I/O

» Copy documents to printer buffer so printer can work at its own

rate and free the CPU

 But, CPU still idle when job reads/writes to disk

4

Multiprogramming

 Multiprogramming increased system utilization

 Keeps multiple runnable jobs loaded in memory

 Overlaps I/O processing of a job with computation of another

 Benefits from I/O devices that can operate asynchronously

 Requires the use of interrupts (from I/O) and DMA

 Requires memory protection and sharing

 Optimizes system throughput (number of jobs finished in a

given amount of time) at the cost of response time (time until

a particular job finishes)

5

Timesharing

 Timesharing supports interactive use of computer by

multiple users

 Terminals give the illusion that each user has own machine

 Optimizes response time (time to respond to an event like a

keystroke) at the cost of throughput

 Based on timeslicing – dividing CPU time among the users

 Enabled new class of applications – interactive!

 Users now interact with viewers, editors, debuggers

 The MIT Multics system (mid-late 60s) was an early,

aggressive timesharing system

 Unix and Windows are also timesharing systems…

6

Distributed Operating Systems

 Distributed systems facilitate use of geographically

distributed resources

 Machine connected by wires

 Supports communication between parts of a job or

different jobs on different machines

 Interprocess communication

 Sharing of distributed resources, hardware, and

software

 Exploit remote resources

 Enables parallelism, but speedup is not the goal

 Goal is communication

7

Parallel Operating Systems

 Support parallel applications trying to get speedup of

computationally complex tasks across multiple CPUs

 Requires basic primitives for dividing single task into

multiple parallel activities

 Supports efficient communication among activities

 Supports synchronization of activities to coordinate

data sharing

 Early parallel systems used dedicated networks and

custom CPUs, now common to use networks of high-

performance PC/workstations

8

Embedded Operating Systems

 Decreased cost of processing makes computers
ubiquitous
 Your car has dozens of computers in it

 Think of everything that has electric motor in it, and now
imagine that it also has a computer

 Each embedded application needs its own OS
 Smart phones

 Smart home, smart grid

 Very soon
 Your house will have 100s of embedded computers in it

 Your electrical lines and airwaves will serve as the network

 All devices will interact as a distributed system

9

What is an operating system?

 OS is “all the code that you didn’t have to write” to

implement your application

 OS is “code for all features not offered by hardware”

Operating System

Hardware

Applications

10

Architectural support of OS

 As OS evolves, complex tasks are pushed down to the

hardware (e.g., CPU, MMU) – hence the architectural

support

Operating System

Hardware

Operating System

Hardware

11

Why Start With Architecture?

 Recall: Key goals of an OS are 1) to enable
virtualization/abstraction; 2) to enforce protection and
resource sharing; and 3) manage concurrency
 If done well, applications can be oblivious to HW details

» e.g., fread() assumes nothing about underlying storage

 Architectural support can greatly simplify – or

complicate – OS tasks

 Easier for OS to implement a feature if supported by hardware

 OS needs to implement everything hardware doesn’t

12

Review: Computer Organization

14

Types of Arch Support for OS

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”
 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

15

Types of Arch Support for OS

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”
 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

16

Protected Instructions

 A subset of instructions of every CPU is restricted to

use only by the OS

 Known as protected (privileged) instructions

 Only the operating system can

 Directly access I/O devices (disks, printers, etc.)

» Security, fairness (why?)

 Manipulate memory management state

» Page table pointers, page protection, TLB management, etc.

 Manipulate protected control registers

» Kernel mode, interrupt level

 Halt instruction (why?)

17

OS Protection

 How does HW know if protected instr. can be executed?

 Architecture must support (at least) two modes of operation: kernel

mode and user mode (See next slide)

» VAX, x86 support four modes; earlier archs (Multics) even more

» Why?

 Mode is indicated by a status bit in a protected control register

 User programs execute in user mode

 OS executes in kernel mode (OS == “kernel”)

 Protected instructions only execute in kernel mode

 CPU checks mode bit when protected instruction executes

 Attempts to execute in user mode are detected and prevented

 Need for new protected instruction?

» Setting mode bit

 18

CPU Modes/Privileges

 Ring 0 Kernel Mode

 Ring 3 User Mode

19

Memory Protection

 OS must be able to protect programs from each other

 OS must protect itself from user programs

 May or may not protect user programs from OS

 Memory management hardware provides memory

protection mechanisms

 Base and limit registers

 Page table pointers, page protection, TLB

 Virtual memory

 Segmentation

 Manipulating memory management hardware uses

protected (privileged) operations

20

Base and Bound Example

21

Types of Arch Support

 Manipulating privileged machine state

 Protected instructions

 Manipulate device registers, TLB entries, etc.

 Generating and handling “events”
 Interrupts, exceptions, system calls, etc.

 Respond to external events

 CPU requires software intervention to handle fault or trap

 Mechanisms to handle concurrency

 Interrupts, atomic instructions

22

Events

 An event is an “unnatural” change in control flow

 Events immediately stop current execution

 Changes mode, context (machine state), or both

 The kernel defines a handler for each event type

 Event handlers always execute in kernel mode

 The specific types of events are defined by the machine

 Once the system is booted, all entry to the kernel

occurs as the result of an event

 In effect, the operating system is one big event handler

23

Categorizing Events

 Two kinds of events: synchronous and asynchronous

 Sync events are caused by executing instructions

 Example?

 Async events are caused by an external event

 Example?

CPU

ticks

Synchronous

events

Asynchronous

events

24

Interrupt Handler Illustration

25

In PintOS, they are done in “threads/intr-stubs.S, threads/interrupt.c”

Summary

 Protection

 User/kernel modes

 Protected instructions

 Events

26

Next Time…

 Processes

 Read Chapter 3

27

