
CS 153

Design of Operating

Systems

Winter 2016

Lecture 1: Course Introduction
Instructor: Zhiyun Qian

Slides modified from

Harsha Madhyvasta and Nael Abu-Ghazaleh

2

Class Overview

 Monitor class webpage for information

 http://www.cs.ucr.edu/~zhiyunq/cs153/

 Will send out link to webpage

 Lecture slides, homeworks, and projects will be posted

on class webpage

 Assignment turn-in through iLearn

 Digital only, no paper copy (experiment)

 Announcements through iLearn and posted on class

webpage

 Piazza for discussion forums; emails to be sent out

soon

http://www.cs.ucr.edu/~zhiyunq/cs153/

3

Textbooks

 Anderson and Dahlin, Operating Systems:

Principles and Practice (required)

 Andrew S. Tanenbaum, Modern Operating Systems

(recommended)

 Silberschatz, Galvin, and Gagne, Operating System

Concepts, John Wiley and Sons, 8th Edition

(recommended)

4

Class Overview

 Grading breakdown

 3 projects (15% each)

 3 homeworks (5% each)

 Mid-term (15%)

 Final (25%)

 Extra credit (4%)

 Collaboration policy

 Feel free to discuss with other students in class

 But, every student should write solutions to homeworks

independently and every project group should write code

independently

5

Projects

 Project framework this time: Pintos

 Projects are in C

 Very good debugging support

 Test cases come with the default code base

 Used in OS class at several other universities

 You have first two weeks of the quarter to get familiar

 Make sure to attend the first lab

 Go over the Pintos documentation (on the course web page)

Projects are HARD!

 Probably the hardest class you will take at UCR in

terms of development effort

 Working on the projects will take most of your time in

this class

 Biggest reason the projects are hard: legacy code

 You have to understand existing code before you can add more

code

 Preparation for main challenge you will face at any real job

6

Project recommendations

 Do not start working on projects at last minute!

 You are graded for how well your code works, not for how many

hours you have put in or how many lines of code you wrote

 Debugging is integral process of development

 Make good use of help available

 Post questions on piazza

 Take advantage of TA office hours

 Labs

7

Project logistics

 Three projects to be done in groups of two

 When you have chosen groups, send your group info to the TA

for your lab

» Joshua Frear

 Send email if unable to find partner and we’ll form groups

 Option to switch partners after project one

 For every project, design document due a week before

the project is due (5 points out of 15 points for project)

 Walkthrough questions

 Incentive to think through early what you need to do

8

9

Homeworks and Exams

 Three homeworks
 Can expect similar questions in the exams

 Midterm (early May.)
 In class

 Final
 Covers second half of class + selected material from first part

» I will be explicit about the material covered

 No makeup exams
 Unless dire circumstances

10

Submission Policies

 Homeworks due on ilearn by the end of the day (will be

specified on ilearn)

 Code and design documents for projects due by the

end of the day (similarly will be specified on ilearn)

 Late policy (also on course webpage):

 4 slack days across all three projects

» Will use the ilearn submission timestamp to determine the days

» 2% bonus point if you dot not use any of the slack days

 10% penalty for every late day beyond that

11

Recipe for success in CS153

 Start early on projects

 Attend labs and office hours

 Take advantage of available help

 Make sure to attend lectures

 Going over slides is not the same

 Read textbook material before class

 Ask questions when something is unclear

 4% participation and extra credit – may bump up your grade if

on borderline. Face recognition

12

13

Objectives of this class

 In this course, we will study problems and solutions that go

into design of an OS to address these issues

 Focus on concepts rather than particular OS

 Specific OS for examples

 Develop an understanding of how OS and hardware

impacts application performance and reliability

 Examples:

 What causes your code to crash when you access NULL?

 What happens behind a printf()?

 Why can multi-threaded code be slower than single-threaded code?

Questions for today

 Why do we need operating systems course?

 Why do we need operating systems?

 What does an operating system need to do?

14

15

Why an OS class?

 Why are we making you sit here today, having to

suffer through a course in operating systems?

 After all, most of you will not become OS developers

 Understand what you use

 Understanding how an OS works helps you develop apps

 System functionality, debugging, performance, security, etc.

 Pervasive abstractions

 Concurrency: Threads and synchronization are common

modern programming abstractions (Java, .NET, etc.)

 Complex software systems

 Many of you will go on to work on large software projects

 OSes serve as examples of an evolution of complex systems

Questions for today

 Why do we need operating systems course?

 Why do we need operating systems?

 What does an operating system need to do?

16

 What if applications ran directly on hardware?

 Problems:

 Portability

 Resource sharing

Why have an OS?

17

Applications

Hardware

 The operating system is the software layer between

user applications and the hardware

 The OS is “all the code that you didn’t have to write”
to implement your application

18

What is an OS?

Operating System

Hardware

Applications

Questions for today

 Why do we need operating systems course?

 Why do we need operating systems?

 What does an operating system need to do?

19

Roles an OS plays

 Wizard that makes it appear to each program that it

owns the machine and shares resources while making

them seem better than they are

 Beautician that hides all the ugly low level details so

that anyone can use a machine (e.g., smartphone!)

 Referee that arbitrates the available resources

between the running programs efficiently, safely, fairly,

and securely (e.g., think about smartphone malware)

 Managing a million crazy things happening at the same time is

part of that --

20

21

More technically : OS and

Hardware

 The OS virtualizes/controls/mediates access to

hardware resources

 Computation (CPUs)

 Volatile storage (memory) and persistent storage (disk, etc.)

 Communication (network, modem, etc.)

 Input/output devices (keyboard, display, printer, camera, etc.)

 The OS defines a set of logical resources (objects)

and a set of well-defined operations on those objects

(interfaces)

 Physical resources (CPU and memory)

 Logical resources (files, programs, names)

 Sounds like OO…

22

The OS and Applications

 The OS defines a logical, well-defined environment…

 Virtual machine (each program thinks it owns the computer)

 …for users and programs to safely coexist, cooperate,

share resources

 Benefits to applications

 Simpler (no tweaking device registers)

 Device independent (all network cards look the same)

 Portable (across Windows95/98/ME/NT/2000/XP/Vista/…)

23

Fundamental OS Issues

 The fundamental issues/questions in this course are:

 Structure: how is an operating system organized?

 Sharing: how are resources shared among users?

 Naming: how are resources named (by users and programs)?

 Protection: how are users/programs protected from each other?

 Security: how can information access/flow be restricted?

 Communication: how to exchange data?

 Reliability and fault tolerance: how to mask failures?

 Extensibility: how to add new features?

Other Questions to Ponder

 What is part of an OS? What is not?

 Is the windowing system part of an OS? Java?

 Popular OSes today are Windows, Linux, and OS X

 How different/similar do you think these OSes are?

 Somewhat surprisingly, OSes change all of the time

 Consider the series of releases of Windows, Linux, OS X…

 What are the drivers of OS change?

 What are the most compelling issues facing OSes today?

24

Pondering Cont’d

 How many lines of code in an OS?

 Vista (2006): 50M (XP + 10M)

» What is largest kernel component?

 OS X (2006): 86M

 Debian 3.1 (2006): 213M

 What does this mean (for you)?

 OSes are useful for learning about software complexity

 OS kernel is only one component, however

» Linux 3.6: 15M

» KDE (X11): 4M

» Browser : 2M+

 OS is just one example of many complex software systems

» If you become a developer, you will face complexity

 25

26

How Not To Pass CS 153

 Do not come to lecture

 It’s nice out, the slides are online, and the material is in the

book anyway

 Lecture material is the basis for exams and directly relates to

the projects

 Do not ask questions in lecture, office hours, or email

 It’s scary, I don’t want to embarrass myself

 Asking questions is the best way to clarify lecture material at

the time it is being presented

 Office hours and email will help with projects

27

How Not To Pass (2)

 Wait until the last couple of days to start a project

 We’ll have to do the crunch anyways, why do it early?

 The projects cannot be done in the last few days

 Repeat: The projects cannot be done in the last few days

 Each quarter groups learn that starting early meant finishing

all of the projects on time…and some do not

28

Wrap-up Preliminaries

 Surefire steps to do poorly in CS 153

 DON’T come to lecture

 DON’T ask questions in class when unclear

 DON’T start projects well in advance

 DON’T come to office hours

 Any questions about the class structure, contents,

etc.?

For next class…

 Browse the course web (especially Pintos docs)

http://www.cs.ucr.edu/~zhiyunq/cs153

 Read chapters 1 and 2 in textbook

 Start …

 … tinkering with Pintos

 … finding a partner for project group

29

http://www.cs.ucr.edu/~zhiyunq/cs153

30

Blank

