
CS 153

Design of Operating

Systems

Winter 2016

Lecture 1: Course Introduction
Instructor: Zhiyun Qian

Slides modified from

Harsha Madhyvasta and Nael Abu-Ghazaleh

2

Class Overview

 Monitor class webpage for information

 http://www.cs.ucr.edu/~zhiyunq/cs153/

 Will send out link to webpage

 Lecture slides, homeworks, and projects will be posted

on class webpage

 Assignment turn-in through iLearn

 Digital only, no paper copy (experiment)

 Announcements through iLearn and posted on class

webpage

 Piazza for discussion forums; emails to be sent out

soon

http://www.cs.ucr.edu/~zhiyunq/cs153/

3

Textbooks

 Anderson and Dahlin, Operating Systems:

Principles and Practice (required)

 Andrew S. Tanenbaum, Modern Operating Systems

(recommended)

 Silberschatz, Galvin, and Gagne, Operating System

Concepts, John Wiley and Sons, 8th Edition

(recommended)

4

Class Overview

 Grading breakdown

 3 projects (15% each)

 3 homeworks (5% each)

 Mid-term (15%)

 Final (25%)

 Extra credit (4%)

 Collaboration policy

 Feel free to discuss with other students in class

 But, every student should write solutions to homeworks

independently and every project group should write code

independently

5

Projects

 Project framework this time: Pintos

 Projects are in C

 Very good debugging support

 Test cases come with the default code base

 Used in OS class at several other universities

 You have first two weeks of the quarter to get familiar

 Make sure to attend the first lab

 Go over the Pintos documentation (on the course web page)

Projects are HARD!

 Probably the hardest class you will take at UCR in

terms of development effort

 Working on the projects will take most of your time in

this class

 Biggest reason the projects are hard: legacy code

 You have to understand existing code before you can add more

code

 Preparation for main challenge you will face at any real job

6

Project recommendations

 Do not start working on projects at last minute!

 You are graded for how well your code works, not for how many

hours you have put in or how many lines of code you wrote

 Debugging is integral process of development

 Make good use of help available

 Post questions on piazza

 Take advantage of TA office hours

 Labs

7

Project logistics

 Three projects to be done in groups of two

 When you have chosen groups, send your group info to the TA

for your lab

» Joshua Frear

 Send email if unable to find partner and we’ll form groups

 Option to switch partners after project one

 For every project, design document due a week before

the project is due (5 points out of 15 points for project)

 Walkthrough questions

 Incentive to think through early what you need to do

8

9

Homeworks and Exams

 Three homeworks
 Can expect similar questions in the exams

 Midterm (early May.)
 In class

 Final
 Covers second half of class + selected material from first part

» I will be explicit about the material covered

 No makeup exams
 Unless dire circumstances

10

Submission Policies

 Homeworks due on ilearn by the end of the day (will be

specified on ilearn)

 Code and design documents for projects due by the

end of the day (similarly will be specified on ilearn)

 Late policy (also on course webpage):

 4 slack days across all three projects

» Will use the ilearn submission timestamp to determine the days

» 2% bonus point if you dot not use any of the slack days

 10% penalty for every late day beyond that

11

Recipe for success in CS153

 Start early on projects

 Attend labs and office hours

 Take advantage of available help

 Make sure to attend lectures

 Going over slides is not the same

 Read textbook material before class

 Ask questions when something is unclear

 4% participation and extra credit – may bump up your grade if

on borderline. Face recognition 

12

13

Objectives of this class

 In this course, we will study problems and solutions that go

into design of an OS to address these issues

 Focus on concepts rather than particular OS

 Specific OS for examples

 Develop an understanding of how OS and hardware

impacts application performance and reliability

 Examples:

 What causes your code to crash when you access NULL?

 What happens behind a printf()?

 Why can multi-threaded code be slower than single-threaded code?

Questions for today

 Why do we need operating systems course?

 Why do we need operating systems?

 What does an operating system need to do?

14

15

Why an OS class?

 Why are we making you sit here today, having to

suffer through a course in operating systems?

 After all, most of you will not become OS developers

 Understand what you use

 Understanding how an OS works helps you develop apps

 System functionality, debugging, performance, security, etc.

 Pervasive abstractions

 Concurrency: Threads and synchronization are common

modern programming abstractions (Java, .NET, etc.)

 Complex software systems

 Many of you will go on to work on large software projects

 OSes serve as examples of an evolution of complex systems

Questions for today

 Why do we need operating systems course?

 Why do we need operating systems?

 What does an operating system need to do?

16

 What if applications ran directly on hardware?

 Problems:

 Portability

 Resource sharing

Why have an OS?

17

Applications

Hardware

 The operating system is the software layer between

user applications and the hardware

 The OS is “all the code that you didn’t have to write”
to implement your application

18

What is an OS?

Operating System

Hardware

Applications

Questions for today

 Why do we need operating systems course?

 Why do we need operating systems?

 What does an operating system need to do?

19

Roles an OS plays

 Wizard that makes it appear to each program that it

owns the machine and shares resources while making

them seem better than they are

 Beautician that hides all the ugly low level details so

that anyone can use a machine (e.g., smartphone!)

 Referee that arbitrates the available resources

between the running programs efficiently, safely, fairly,

and securely (e.g., think about smartphone malware)

 Managing a million crazy things happening at the same time is

part of that --

20

21

More technically : OS and

Hardware

 The OS virtualizes/controls/mediates access to

hardware resources

 Computation (CPUs)

 Volatile storage (memory) and persistent storage (disk, etc.)

 Communication (network, modem, etc.)

 Input/output devices (keyboard, display, printer, camera, etc.)

 The OS defines a set of logical resources (objects)

and a set of well-defined operations on those objects

(interfaces)

 Physical resources (CPU and memory)

 Logical resources (files, programs, names)

 Sounds like OO…

22

The OS and Applications

 The OS defines a logical, well-defined environment…

 Virtual machine (each program thinks it owns the computer)

 …for users and programs to safely coexist, cooperate,

share resources

 Benefits to applications

 Simpler (no tweaking device registers)

 Device independent (all network cards look the same)

 Portable (across Windows95/98/ME/NT/2000/XP/Vista/…)

23

Fundamental OS Issues

 The fundamental issues/questions in this course are:

 Structure: how is an operating system organized?

 Sharing: how are resources shared among users?

 Naming: how are resources named (by users and programs)?

 Protection: how are users/programs protected from each other?

 Security: how can information access/flow be restricted?

 Communication: how to exchange data?

 Reliability and fault tolerance: how to mask failures?

 Extensibility: how to add new features?

Other Questions to Ponder

 What is part of an OS? What is not?

 Is the windowing system part of an OS? Java?

 Popular OSes today are Windows, Linux, and OS X

 How different/similar do you think these OSes are?

 Somewhat surprisingly, OSes change all of the time

 Consider the series of releases of Windows, Linux, OS X…

 What are the drivers of OS change?

 What are the most compelling issues facing OSes today?

24

Pondering Cont’d

 How many lines of code in an OS?

 Vista (2006): 50M (XP + 10M)

» What is largest kernel component?

 OS X (2006): 86M

 Debian 3.1 (2006): 213M

 What does this mean (for you)?

 OSes are useful for learning about software complexity

 OS kernel is only one component, however

» Linux 3.6: 15M

» KDE (X11): 4M

» Browser : 2M+

 OS is just one example of many complex software systems

» If you become a developer, you will face complexity

 25

26

How Not To Pass CS 153

 Do not come to lecture

 It’s nice out, the slides are online, and the material is in the

book anyway

 Lecture material is the basis for exams and directly relates to

the projects

 Do not ask questions in lecture, office hours, or email

 It’s scary, I don’t want to embarrass myself

 Asking questions is the best way to clarify lecture material at

the time it is being presented

 Office hours and email will help with projects

27

How Not To Pass (2)

 Wait until the last couple of days to start a project

 We’ll have to do the crunch anyways, why do it early?

 The projects cannot be done in the last few days

 Repeat: The projects cannot be done in the last few days

 Each quarter groups learn that starting early meant finishing

all of the projects on time…and some do not

28

Wrap-up Preliminaries

 Surefire steps to do poorly in CS 153

 DON’T come to lecture

 DON’T ask questions in class when unclear

 DON’T start projects well in advance

 DON’T come to office hours

 Any questions about the class structure, contents,

etc.?

For next class…

 Browse the course web (especially Pintos docs)

http://www.cs.ucr.edu/~zhiyunq/cs153

 Read chapters 1 and 2 in textbook

 Start …

 … tinkering with Pintos

 … finding a partner for project group

29

http://www.cs.ucr.edu/~zhiyunq/cs153

30

Blank

