
SYZVEGAS: Beating Kernel Fuzzing Odds with Reinforcement Learning

Daimeng Wang, Zheng Zhang, Hang Zhang
Zhiyun Qian, Srikanth V. Krishnamurthy, Nael Abu-Ghazaleh

University of California, Riverside
{dwang030, zzhan173, hang, zhiyunq, krish, nael}@cs.ucr.edu

Abstract
Fuzzing embeds a large number of decisions requiring fine-
tuned and hard-coded parameters to maximize its efficiency.
This is especially true for kernel fuzzing due to (1) OS ker-
nels’ sheer size and complexity, (2) a unique syscall interface
that requires special handling (e.g., encoding explicit depen-
dencies among syscalls), and (3) behaviors of inputs (i.e., test
cases) are often not reproducible due to the stateful nature of
OS kernels. Hence, Syzkaller [14], the state-of-art gray-box
kernel fuzzer, incorporates numerous procedures, decision
points, and hard-coded parameters master-crafted by domain
experts. Unfortunately, hard-coded strategies cannot adjust
to factors such as different fuzzing environments/targets and
the dynamically changing potency of tasks and/or seeds, lim-
iting the overall effectiveness of the fuzzer. In this paper,
we propose SYZVEGAS, a fuzzer that dynamically and au-
tomatically adapts two of the most critical decision points
in Syzkaller, task selection and seed selection, to remarkably
improve coverage reached per unit-time. SYZVEGAS’s adap-
tation leverages multi-armed-bandit (MAB) algorithms along
with a novel reward assessment model. Our extensive evalua-
tions of SYZVEGAS on the latest Linux Kernel and its subsys-
tems demonstrate that it (i) finds up to 38.7% more coverage
than the default Syzkaller, (ii) better discovers bugs/crashes
(8 more unique crashes) and (iii) has very low 2.1% per-
formance overhead. We reported our findings to Google’s
Syzkaller team and are actively working on pushing our
changes upstream.

1 Introduction

Gray-box fuzzing or coverage-guided fuzzing has recently
gained traction. Fuzzing is often perceived as an art, as fuzzers
embed various heuristics, often with many decision points
and parameters (e.g., which seed to mutate) that collectively
determine their overall effectiveness. Fuzzer design choices
often involve not only strong intuitions and domain expertise,
but also much empirical testing and tuning. Often, the choices

can cause an over-specialization for a particular set of target
codebases used during the tuning process.

Although there are attempts to auto-tune various fuzzing
decisions, including seed selection [26, 33, 35] and mutation
operators [8,9,17,22], prior efforts are mostly point solutions
and none are specifically tailored for Operating System (OS)
kernel fuzzing. Kernel fuzzing is uniquely challenging for the
following reasons: (1) modern OS kernel often has a huge
code base and many dependencies across components; (2)
the input to an OS kernel is via the system call interface that
needs special handling; and (3) an OS kernel maintains a
massive state space that a single input (i.e., test case) may
not be able reproducible. To illustrate, note that the state-of-
the-art kernel fuzzer, Syzkaller [14] has over 62,000 lines of
code and numerous parameters that are tunable to improve its
efficiency. Given this large, complex space, and the ad-hoc
strategies used to tune parameters, we believe that there are
marked opportunities to improve kernel fuzzing.

To address the above challenges, Syzkaller uses a combi-
nation of generation [13] and mutation [5] based input craft-
ing strategies. Specifically, to generate inputs (sequence of
syscalls) from scratch, Syzkaller needs hand-crafted input
models called “templates”. It also takes known good inputs
(aka. corpus seeds) that previously unearthed new code cov-
erage, and mutates (i.e., modify) them to generate new ones.
Finally, Syzkaller triages an input to ensure that a minimal
input can reproduce the achieved coverage, before turning it
into a seed. Syzkaller uses a fixed strategy to schedule these
different types of fuzzing tasks, and a hard-coded strategy to
select which seeds to mutate.

In this paper, we propose SYZVEGAS, a Syzkaller-based
fuzzer, capable of dynamically and automatically adapting
its strategies to improve coverage. Specifically, we focus
on addressing the two aforementioned first-order decision-
making processes: 1) selecting (scheduling) the most reward-
ing fuzzing tasks (e.g., generation, mutation, and triage) and
2) selecting the most potent seeds for mutation. Both of these
are done dynamically in SYZVEGAS via a unified reward
assessment model to significantly improve the odds of ex-

cavating new code coverage and finding new vulnerabilities.
Our main contributions are:1

• Identifying optimization opportunities. We perform a
systematic analysis of Syzkaller’s default (fixed) task and
seed selection policies. We identify several opportunities
for improving Syzkaller’s fuzzing efficiency.

• Realizing dynamic fuzzing. SYZVEGAS employs a
lightweight Adversarial MAB algorithm to adjust the task
and seed selection policies dynamically. It consists of a
novel approach for fuzzing tasks reward modeling by con-
solidating the discovery of new coverage and the time cost
incurred. The approach also accounts for the associations
between different types of tasks, can quickly adapt during
the different stages of fuzzing, and has very low overhead.
To the best of our knowledge, SYZVEGAS is the first to 1)
use the Adversarial MAB formulation and design reward
functions that are applicable for task selection, and 2) in-
corporate the notion of time associated in unearthing new
coverage in the reward function.

• Improved coverage growth. We perform extensive evalu-
ations of SYZVEGAS on the latest Linux kernel and show
that it consistently attains 38.7% more coverage than the
default Syzkaller and finds more unique crashes. In total,
we found 13 more crashes (8 unique) than Syzkaller in the
same period. For OS kernels such as Linux, such an im-
provement makes a big difference as every kernel version is
being constantly fuzzed and tested. (e.g., by Google [15]).

• Applicability in user space. We also demonstrate that the
seed-selection module of SYZVEGAS can be applied to
user-space as well and compares favorably to a state-of-art
reinforcement-learning-based fuzzer, viz., EcoFuzz [34]

2 Background and Motivation

2.1 Syzkaller
Syzkaller explores the OS kernel by executing a series of
test programs, i.e. a sequence of system calls. To craft such
programs, Syzkaller has two options: generate a new pro-
gram from scratch or mutate an existing program. It invokes
three types of tasks during the fuzzing process: Generation,
Mutation and Triage (more details in Section 8.1).

• Generation. Syzkaller creates a brand new test program
using templates, which are manually curated by domain
experts (e.g., kernel developers), and contain information
on the argument type of each system call, and the depen-
dencies between system calls (e.g., the return value of open
is usable later in read). This allows Syzkaller to generate
meaningful syscall sequences and arguments, improving
the likelihood of exploring deeper kernel code.

1Our system is completely open sourced at [20] to facilitate the reproduc-
tion of the results and future research.

• Mutation. Syzkaller randomly picks a program (also called
a seed) from a corpus (i.e., programs that previously found
new coverage), and performs a series of random mutations
(e.g., inserting/removing a new syscall, or changing the
argument of an existing syscall, using built-in templates)
and executes the mutated program.

• Triage. Syzkaller fetches a newly Generated or Mutated
program that has produced new coverage. It first performs
“Verification” to ensure that the new coverage can be reli-
ably reproduced, i.e., is unaffected by 1) the stateful nature
of OS kernels (e.g., control flow affected by a global vari-
able), 2) non-determinism in execution (e.g., mutex slow
path, kmalloc cache replenish path) and 3) concurrency
and interaction between several processes. If successful,
Syzkaller then performs a “Minimization” of the program
(remove of some system calls and/or shorten the arguments,
while retaining the stable coverage) and adds the program
to the seed corpus (where future mutations can be per-
formed). During minimization, Syzkaller may discover that
a partially minimized program can achieve new coverage;
these programs are marked for later triage.

By default, Syzkaller selects the aforementioned three types
of fuzzing tasks as per the following hard-coded priorities:
1. Triage is prioritized over generation and mutation.
2. When no triage task is available, the highest priority is to

mutate programs that were just added to the seed corpus.
Syzkaller mutates each new seed for a fixed number of
(100) times. These mutations receive some special treat-
ment and are called Smash in Syzkaller.

3. If no triage or smash tasks are available, Syzkaller executes
generation and regular mutation tasks with a fixed 1:99
ratio (one generation task for every 99 mutation tasks).

In practice, upon starting from scratch, Syzkaller performs
a generation task and some part of the kernel codebase is cov-
ered as a result. This very first program will then go through
triage, producing the initial seed and potentially creating more
programs for triage during minimization. Syzkaller will then
focus on triaging these additional programs (if any from min-
imization) and smashing the new seeds, which in turn creates
more seeds for smashing and programs for triaging. Proceed-
ing in this manner typically leads to a huge chain reaction. As
a result, the actual number of generations Syzkaller performs
is much lower than the policy description may suggest.

When it comes to mutation, Syzkaller chooses which seed
to mutate as per the following principles. First, as discussed,
a newly created seed enjoys a high-priority invocation of 100
mutations, i.e., smash. Second, each seed is assigned a weight
equal to the number of new and stable edge coverage it brings.
This number is static and remains unchanged over time. When
Syzkaller needs to pick a seed from the corpus, it does so on
the basis of this weight, from among all the seeds.

Scheduling between different tasks is unique to Syzkaller as
user-space fuzzers often 1) do not have well-defined templates

0 1 2 3 4 5 6

Ti m e el a p s e d (h r)

0

2 0

4 0

6 0

8 0

C
o
v

er
a

g
e

(
1

0
0

0
e

d
g

es
)

C o r e G e n e r a t e O nl y

F ull G e n e r a t e O nl y

C o r e D ef a ul t

F ull D ef a ul t

(a) Coverage growth comparison

0 5 0 1 0 0 1 5 0 2 0 0

M u t a ti o n s

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

C
D
F

Eff M u t a ti o n

L a s t Eff M u t a ti o n

T o t al M u t a ti o n s

(b) Mutation effectiveness

Figure 1: Evaluating default Syzkaller strategies.

to perform Generation and 2) do not need to Triage as they are
not affected by statefulness, non-determinism, or concurrency
in OS kernels. Therefore, optimizations for user-space fuzzers
often cannot be applied directly to Syzkaller.

2.2 Observations and Intuition
In this section, we motivate the use of a learning-based ap-
proach to improving Syzkaller’s coverage. We run the default
Syzkaller alongside a modified Syzkaller which performs only
generations, on a 2-core single process fuzzer VM, for 6 hours.
We collect metrics such as coverage growth and task effec-
tiveness to gain insights into the former’s operations. Our
experiments are on a Intel(R) Xeon(R) E5-2680 v4 2.40 GHz
CPU. Our experiment yields the following observations:
The best strategy evolves over time. Based on the task selec-
tion policy discussed earlier, Syzkaller gives a low priority to
generation. However, with a well-written template, generation
can be powerful, especially in the earlier stages of fuzzing
where most of the kernel code is yet unexplored/uncovered.

Figure 1(a) compares the coverage growth with the two
Syzkallers, when fuzzing 1) the full Linux kernel and 2)
the core kernel excluding sub-systems such as filesystem
and drivers. With the full kernel, we see that in the first 1
hour of fuzzing, the generation-only Syzkaller markedly out-
performs the default Syzkaller. After 4 hours, however, the
generation-only Syzkaller falls behind the default Syzkaller.
When fuzzing the core kernel, it takes only 1 hour for the
default Syzkaller to overtake the generation-only Syzkaller.
These results suggest that the optimal strategy is dynamic, and
must adapt over time, motivating a learning-based approach.
Ad-hoc decisions can be harmful. Syzkaller prioritizes the
mutation of newly-discovered seeds, invoking a mandatory
100 mutations, to extract large coverage quickly. Further,
Syzkaller’s “task scheduling” logic uses LIFO stacks to en-
sure that the newest seeds are explored first. Undoubtedly, the
domain experts behind Syzkaller chose this strategy carefully
with extensive testing. However, this static (ad-hoc) decision
has limitations. Figure 1(b) shows the mutation effectiveness
of Syzkaller, fuzzing the whole Linux kernel, for 6 hours.
We see that there are three opportunities for improvement:

Generate

Mutate

Triage

Ta
sk

 S
e

le
ct

io
n

Se
e

d
 S

e
le

ct
io

n

Coverage, Time

Seed 1

Seed 𝑛

. .
 .

Coverage, Time

Feedback
Feedback

Figure 2: High-level idea/design of SYZVEGAS.

1) Many seeds are not being mutated because Syzkaller is
too busy performing the mandatory number of mutations and
triaging. 2) We observe chain reactions where the 100 new
“smash” mutations of a program discover new coverage and
in turn schedule additional 100 new “smash” mutations im-
mediately for each of these, causing focused exploration on
seeds from the same roots; and, 3) Of the mandatorily mu-
tated seeds, many do not deserve to be mutated 100 times.
These behaviors seem to be unintended consequences of the
ad-hoc (but perhaps empirically acceptable) decision to apply
100 mutations on each new seed. We tried providing some
simple static adjustments (e.g. reduce the number of smash
mutations, force some generations at the beginning), none of
which produces desirable coverage improvement nor adapt-
ability across different scenarios. (e.g. kernel version, initial
seed corpus) Therefore, a learning-based technique is the best
approach to overcome these, and thus improve the fuzzing
effectiveness.

Intuition. Our observations indicate that there are many op-
portunities to tune various hard-coded parameters (e.g. muta-
tion count, generation to mutation ratio) and priorities. They
also suggest that the right strategy and the right seed dynami-
cally change over time. What is needed is an automated way
to identify the “most promising” task at the given time, and if
appropriate the “best seed” to be invoked in association with
that task. To identify these, a reinforcement-learning scheme
is a natural fit, wherein a model to maximize the coverage
rewards relative to the time cost of execution is applicable.

2.3 Multi-armed Bandit Problem
The Multi-Armed Bandit (MAB) reinforcement-learning prob-
lem is well suited to model the various decisions of Syzkaller.
In this problem, a gambler must play a number of compet-
ing slot machine arms (choices) to maximize the expected
gain. Each arm’s properties are only partially known to begin
with and may become better understood as the arm is played
more. The MAB problem is a classic example of the tradeoff
between exploration and exploitation.

One of the strongest generalizations of the MAB problem is

Table 1: Symbols we use to describe SYZVEGAS
Symbol Description
c or ci Number of edge coverage attained by executing a single task

(of type i).
t or ti Execution time of a single task (of type i).

C Total edge coverage attained throughout fuzzing.
T Total elapsed time of fuzzing.

texp Estimated expected execution time of task/tasks.
g or gi Un-normalized reward attributed to task/tasks (of type i).

cp
mut (m) Total edge coverage of mutating a seed p for m times.

t p
mut (m) Total execution time of mutating a seed p for m times.

x Normalized reward attributed to task/tasks.
Ĝi Accumulated reward estimation of MAB arm i.

Adversarial MAB, introduced in 1995 [6]. In this variant, the
reward from each arm can be arbitrarily altered during each
play. This requires its solution to react quickly to the changing
rewards of each arm, which maps well to the fuzzing process
where each decision can receive different rewards over time.

Auer et.al. proposed the Exponential-weight algorithm for
Exploration and Exploitation (Exp3) [7] for the adversar-
ial bandit problem. The idea is to introduce an exponen-
tial growth in a good arm’s weight (i.e. probability of play-
ing), thereby ensuring that good arms are quickly identified
and exploited. Notable variants of Exp3 algorithm includes
Exp3.1 [7] (resets periodically, performs better over time),
Exp4 [7] (allows for an additional advice input vector), Exp3-
M.B [36] (playing multiple arms at the same time with a
limited budget) and Exp3-IX [23] (uses implicit exploration).

Other reinforcement learning models exist [31], with dif-
ferent emphasis and strengths. We chose MAB because we
believe it is a natural fit for our problem since its decisions are
discrete, and the overhead is low. Since the reward of fuzzing
choices can change over time (e.g., generating programs from
scratch is only helpful early on, seed programs become de-
creasingly efficient as they are mutated), we argue that the
Adversarial MAB is well suited to the fuzzing problem (as
explored in previous researches such as EcoFuzz [34]). Our
contribution is proposing the use of reinforcement learning
in kernel fuzzing, rather than the specific learning algorithm.
We leave exploring other learning strategies to future work.

3 Design and Implementation

We propose SYZVEGAS, a dynamic fuzzing approach to se-
lect between the three types of tasks in Syzkaller. The main
design goals of SYZVEGAS are as follows:

• Optimal coverage. SYZVEGAS must schedule tasks or pick
mutation seed programs to maximize the coverage achieved
by Syzkaller, while minimizing the incurred time cost.2

• Adaptive adjustment. SYZVEGAS should determine which
type of task is the best, at each stage of fuzzing, and adapt its

2Syzkaller collects information relating to two types of coverage, viz.,
unstable and stable coverage. We design SYZVEGAS to optimize for max-
imum unstable coverage as both types of coverage can lead to crashes but
unstable coverage is a superset over the stable coverage. See Section 8.1 for
more details.

strategy accordingly. When performing mutations, SYZVE-
GAS must assess the quality (change) of the mutated seed
and adjust its priority in the seed corpus accordingly.

To achieve these goals, SYZVEGAS abstracts the task/seed
selection problem as an Adversarial MAB problem as shown
in Figure 2. The generation, mutation, and triage tasks are
the three arms. When invoking mutation, SYZVEGAS treats
seed selection as another layer of the MAB problem, i.e., each
seed is treated as a separate arm. After each play, SYZVE-
GAS gathers the coverage and time cost and computes the
feedback to the MAB decision process, using an algorithm
similar to solutions such as Exp3-IX [23] (see Section 8.2 for
more details) and Exp3.1 [7]. As this process repeats, SYZVE-
GAS updates which arms should be played to maximize the
coverage achieved per unit-time.

For SYZVEGAS to perform effective task and seed selec-
tion dynamically, the key challenges are: 1) assessing the
value of the selected task or the mutated seed, 2) picking the
task or seed with the maximum potential. We discuss how
SYZVEGAS overcomes these challenges next. Table 1 lists
the symbols used in subsequent sections for reference.

3.1 Reward Assessment
Whenever a generation/mutation/triage task has completed
execution, we need to assign a reward to the task to be used
with SYZVEGAS’s Adversarial MAB model. The key require-
ments/challenges in computing this reward are as follows:

• Gain and cost considerations. The goal of SYZVEGAS is
to maximize the gain (i.e. number of edges covered) while
minimizing the cost (i.e., the time taken for execution). Our
model must unify these metrics with different units into a
single measure of the effectiveness (utility) of each task.

• Dependencies between tasks. Unlike what is assumed in
a classic MAB problem the arms are not independent in
the context of Syzkaller. As shown in Figure 10, there is a
strong relationship between Triage and Mutation. SYZVE-
GAS needs to properly address this relationship when as-
signing rewards to each arm.

• Normalization. The utilities observed on different systems
can be different. For example, the time it takes to execute a
program on Android will be much longer than executing
the same program on a powerful server. In addition, the
algorithms that are used to solve an Adversarial Bandit
problem often require the reward to be normalized.

To address these challenges, we build our reward assess-
ment model as follows, considering each task of interest.

Generation. Generation is not directly intertwined with either
mutation or triage. Thus, its reward is assessed independently.
Let c be the new coverage (measured by the number of edges)
obtained by generating a program. Let t be the cost in time
of executing this program. Let C and T be the total achieved
coverage (regardless of attribution to generation), and the total

elapsed time from when the fuzzer began, respectively. Given
these, the expected time for finding the new coverage c (given
our average performance up to T), can be “estimated” by:

texp = c · T
C

(1)

The reward for the generation task can be modeled as the
expected time cost minus the actual time cost t:

g = texp− t = c · T
C
− t (2)

Note that g essentially compares the coverage discovery rate
of the current generation task (c/t) and the historical coverage
discovery rate (C/T). If the task has a better-than-historic
coverage discovery rate, it will always have a positive reward,
while a worse-than-historic coverage discovery rate will cause
a negative reward. This representation also ensures that if
two tasks A and B both produce the same coverage c, but
consume different times, say tA > tB, we always have gA < gB;
intuitively a task that discovers coverage faster should be
rewarded more. Note also that we use time instead of rate as
the reward unit to ensure that if tasks A and B both produce no
new coverage (happens often in later stages of fuzzing), we
always have gA < gB < 0. In other words, a task that wastes
more time is punished harder than one that wastes less time.
Mutation and Triage. Mutation tasks heavily depend on
triage because: 1) the seed driving a mutation is only obtained
via triage and 2) triage tries to minimize the seed, thus reduc-
ing costs for future mutations. Thus, the reward of mutation
and triage must be modeled in conjunction. Consider a seed
program p, where the time cost of the triage task that veri-
fied and minimized p is t p

tri. As discussed in Section 2, triage
consists of two phases viz., verification and minimization,
costing t p

ver and t p
min respectively, with t p

ver + t p
min = t p

tri. In min-
imization, triage first receives a generated/mutated program
p′ (costing t p′ to execute) and “minimizes” it to p (costing t p)
by removing system calls and/or shortening arguments. Thus,
the time saved from minimization is ∆

p
t = t p′ − t p. Finally,

minimization may also discover new coverage cp
min.

The verification phase may also produce new coverage
from simply re-executing the original program. However,
since this new coverage was not observed in the prior execu-
tion of the same program, the input program in this form is
unstable (the coverage is not reproducible) by definition. As a
result, Syzkaller does not attempt to process such new cover-
age possibilities. We follow Syzkaller’s design on this matter
i.e., ignore new coverage possibilities from verification.

The seed program p, is then mutated m times. The ob-
served edge coverage with each mutation are cp

1 ,c
p
2 , ...c

p
m,

while the time costs associated with each of these mutations
are t p

1 , t
p
2 , ..., t

p
m, respectively. For simplicity, we denote:

cp
mut(m) =

m

∑
j=1

cp
j , t p

mut(m) =
m

∑
j=1

t p
j . (3)

Note here that without minimization, Syzkaller can only mu-
tate from p′ instead of p. In this case, on average, each mu-
tation should take ∆

p
t longer; thus, minimization results in

a total of m ·∆p
t time savings, over m mutation tasks. If we

treat the one triage and m mutations as a single task, the ex-
pected time to discover the new coverage of cmut(m) without
minimization can be computed by:

t p
exp =

(
cp

min + cp
mut(m)

)
· T

C
+m ·∆p

t (4)

The first part of the right hand side of the equation, esti-
mates the total expected time to discover the new coverage
cp

min+cp
mut(m) by mutating p; the second part is the estimated

time savings from minimization. Now, the total reward from
triaging and mutating seed p is the difference between the
“expected and actual time” utilities and is given by:

gp
tri+mut =

(
cp

min + cp
mut(m)

)
· T

C
+m ·∆p

t −
(
t p
tri + t p

mut(m)
)

(5)

We reiterate here that since the main contribution of mini-
mization is to save time in future mutations, the time savings
part of Equation 5 must be fully credited to minimization. In
addition, minimization is also finding new coverage cmin from
testing minimized programs. Combining them both, we can
thus estimate the reward attributed to minimization as:

gp
min = cp

min ·
T
C
+m ·∆p

t − t p
min (6)

Verification is needed for creating the seed p (without it
mutation will have no seeds to mutate). Thus, verification and
mutation should share the reward of finding new coverage,
proportional to their costs. Hence, the reward attributed to
verification and mutation are:

gp
ver = cp

mut(m) · t p
ver

t p
ver + t p

mut(m)
· T

C
− t p

ver (7)

gp
mut = cp

mut(m) · t p
mut(m)

t p
ver + t p

mut(m)
· T

C
− t p

mut(m) (8)

Adding Equations 6 and 7, we obtain the total reward at-
tributed to triage as:

gp
tri =

(
cp

mut(m) · t p
ver

t p
ver + t p

mut(m)
+ cp

min

)
· T

C
+m ·∆p

t − t p
tri (9)

Note that Equations 8 and 9 are only approximate esti-
mates of the rewards with mutation and triage, respectively.
In practice, it is difficult if not impossible to predict how
many times a seed program p will be mutated. In addition,
it is impractical to compute the reward after all mutations
are complete. Every time a seed program p is mutated, we
need to update the weight of the triage and mutation arms.
To achieve this goal, we first compute the reward for triage
and mutation when seed p is added to the corpus via triage as:
gp

tri(0) = cp
min ·

T
C − t p

tri (as the reward of performing the triage
task alone) and gp

mut(0) = 0. As p is mutated, we keep track
of the observed new coverage and time costs.

Updating rewards. For the kth mutation, we estimate the
total reward gp

tri(k) and gp
mut(k) using Equations 9 and 8. We

then compute the difference with respect to the estimated
total reward after the (k−1)th mutation step, as ∆(gp

tri,k) =
gp

tri(k)− gp
tri(k− 1) and ∆(gp

mut ,k) = gp
mut(k)− gp

mut(k− 1).

Algorithm 1 Task selection Algorithm
1: for all r = 1,2, ... do
2: Ĝgen(0), Ĝmut(0), Ĝtri(0)← 0
3: t← 0
4: γ← 2−r

5: η← 2× γ

6: Ĝthreshold ← 3 ln3
e−1 ·4

r− 1
3γ

7: while maxi(|Ĝi|)< Ĝthreshold do
8: wi(t)← eηĜi(t)

9: pri(t)← wi(t)
∑ j w j(t)

10: Draw it according to prgen(t), prmut(t), prtri(t)
11: if it = gen then
12: Receive reward xgen(t)
13: Ĝgen(t +1)← Ĝgen(t)+ xgen(t)/(prgen + γ)
14: else if it = tri then
15: Receive initial reward for triage xtri(s)
16: Ĝtri(t +1)← Ĝtri(t)+ xtri(t)/(prtri + γ)
17: else if it = mut, Seed s is selected then
18: Receive reward detlas xmut(t),xtri(t)
19: Ĝtri(t +1)← Ĝtri(t)+ xtri(t)/(prmut + γ)
20: Ĝmut(t +1)← Ĝmut(t)+ xmut(t)/(prmut + γ)
21: end if
22: t← t +1
23: end while
24: end for

We then use ∆(gp
tri,k) and ∆(gp

mut ,k) as the reward for the
triage and mutation tasks at the kth mutation, respectively;
this is used later in our task selection algorithm (Section 3.2).

Normalization. The rewards g for generation, mutation and
triage tasks can take values from (−∞,∞). However, single-
factor algorithms such as Exp3, Exp3.1 and Exp3-IX require
the reward be normalized to [0,1]. For budget-constrained
algorithms such as Exp3-M.B. [36], both the gain and cost are
normalized to [0,1], and the resulting (gain - cost) ∈ [−1,1].
The Logistic function 1/(1+ e−y) is commonly used for a
normalization from (−∞,∞) to (0,1) [32]. We rescale the lo-
gistic function from (0,1) to (−1,1) as (1− e−y)/(1+ e−y),
ensuring that a zero reward is always normalized to 0. In or-
der to account for the variations, we use z′ = g/σg, a shifted
version of standard Z-score to replace the y in the logistic
function. We shift z = (g−g)/σg, the standard Z-score with
a mean of g to a mean of 0, in order to make sure that a posi-
tive reward g is always normalized to a positive normalized
reward x. The final normalization equation is:

x =
1− e−g/σg

1+ e−g/σg
(10)

3.2 Task Selection
Now that we have our reward functions, we leverage

Exp3.1 [7] and Exp3-IX [23] to determine which task of
Syzkaller to invoke at each stage. We incorporate the expo-
nential weight growth and the implicit exploration of Exp3-IX

Algorithm 2 Seed Selection Algorithm
Require: θ ∈ (0,1)

1: for all t = 1,2, ... do
2: K← number of seeds.
3: η = 2γ = θ

√
2 lnK

K

4: wi← eηĜi

5: pri← wi
∑ j w j

6: Draw seed it randomly according to pri
7: Receive reward xi(t)
8: Ĝi(t +1)← Ĝi(t)+

xi(t)
pri+γ

9: end for

to ensure sufficient exploitation of the good arms and rapid
adaption to changing rewards with regards to the different
arms. We combine this with Exp3.1 to periodically reset the
weight of each arm and adjust the exploration and growth fac-
tors, ensuring the stability of the algorithm over an extended
(infinite) period. Finally, we combine these with our novel
reward assessment model (from Section 3.1) to address the
association of mutation and triage tasks. SYZVEGAS’s task
selection algorithm is shown as Algorithm 1.

Similar to Exp3.1, the algorithm divides the fuzzing time-
line into epochs (automatically determined by Algorithm 1),
indexed by r. Epochs dictate when to reset the weights of
the arms (required in Exp3.1). Our algorithm estimates a
target reward Ĝthreshold for each epoch, and tunes the explo-
ration/growth factors γ and η as in Exp3.1. Within each epoch,
our algorithm performs arm selection and reward updates sim-
ilar to Exp3-IX. Upon each update, it detects if the estimated
gain Ĝi exceeds the threshold. If so, a transition is made to
the next epoch resetting the observed gains Ĝis to zero and
increasing Ĝthreshold by 4 × (for the next epoch).

A major difference between a traditional MAB solution and
SYZVEGAS is the division of the reward between the triage
and mutation functions. The Exp3 algorithms assume that the
arms are independent and thus, when an arm is pulled only its
own weight is affected. However with SYZVEGAS (see Sec-
tion 3.1), when the mutation arm is pulled, the weight of both
the mutation and triage arms are updated. A second difference
with the Exp3-like algorithms is that the normalized reward
xi ∈ (−1,1) in SYZVEGAS (in Exp3-like algorithms, the re-
wards are often normalized to [0,1]). As discussed in Section
3.1, our design choice is driven by two intuitive reasons: 1)
we do not want the arms (tasks) that produce no coverage to
receive any gains in weight, and 2) when comparing tasks that
produce no coverage, we want to punish those tasks that cost
more, harder, which a [0,1] normalization cannot achieve.

3.3 Seed Selection
In addition to choosing the right task, the proper seed has

to be associated with each mutation task. Towards this, we
again use an Exp3-IX-like algorithm, shown in Algorithm 2.

While the seed selection algorithm is similar to the one for
task selection in that it includes a reward assessment model,
a normalization for the reward and a weight update process,
there are some key differences.

The reward assessment model only considers mutation
tasks. When a mutation task is finished, we reuse the gain/loss
model from Section 3.1 to compute the reward of mutating
the current seed. However, since our focus is now only on
mutation tasks, we no longer split the reward with triage (as
with task selection). Instead, we compute the reward in the
same way as Equations 1 and 2, and no longer consider the
rewards from generation and triage, in normalization.

Let Cmut and Tmut be the total achieved coverage and the
elapsed time, for all mutation tasks. Let ci and ti be the
achieved coverage and elapsed time for mutating a seed i. The
observed gain of mutating this seed can thus be computed as:

g(ss)
i = ci ·

Tmut

Cmut
− ti (11)

Let σ
(ss)
mut be the standard deviation of the observed gain across

all mutation tasks; the final reward of mutating seed i is then:

x(ss)
i =

1− e−g(ss)
i /σ

(ss)
mut

1+ e−g(ss)
i /σ

(ss)
mut

(12)

Ever-increasing number of arms. Syzkaller starts with no
seed in the corpus, which is only populated as Syzkaller cre-
ates and executes more and more programs. Thus, if we treat
the seed selection problem as a MAB problem, we may have
an ever-increasing number of arms. This is not typical in clas-
sic MAB problems, but we can make adjustments to fit our
problem. Specifically, when a new seed i is added to the seed
pool, it starts with a neutral accumulated estimated reward
G(ss)

i = 0. As a result, its initial weight w(ss)
i will be 1 (in ac-

cordance with Algorithm 2). The probability of selecting this
seed will initially depend on the accumulated rewards (e.g.,
G(ss)

j) of other seeds already in the corpus. Once seed i is later
mutated, the probability of picking seed i will be determined
by whether the benefits of attained coverage out-weigh the
time cost. In addition, as more seeds are being added, we
reduce the exploration and growth factors of our algorithm to
ensure these do not thus dominate the probability of picking
a single seed (which is decreasing with more seeds).

Reset is not necessary. Since the mutation process is ran-
dom, the more a seed program is mutated the less likely that
future mutations of that program will lead to the discovery of
new coverage. Hence, each arm in the seed selection MAB
has a diminishing reward. Consequently, there is no point
in adopting the Exp3.1-style reset mechanism for the seed
selection algorithm (since seeds die out). Our seed selection
algorithm simply follows the Exp3-IX algorithm, with the
only exception being that new arms are created once a new
seed has been added to the corpus.

3.4 Implementation
Our implementation of SYZVEGAS incorporates our reward
assessment models and the previously discussed extensions of
the Exp3.1 algorithm on top of Syzkaller. (based on commit
1128418 on 05/24/2020 [14]). Our implementation consists
of roughly 1,800 lines of code. Below, we describe some of
the subtleties we handled in our implementation.
Standard deviation computation. During normalization, we
need to compute the standard deviation of all previously ob-
served rewards as shown in Equation 10 and 12. Keeping
track of all the reward values is impractical (as Syzkaller can
execute millions of programs). In addition, these numbers
need to be synced with the host machine and restored if the
fuzzer VM/device crashes or disconnects. Fortunately, we
only need to keep track of 1) the total number of observa-
tions n, 2) ∑g and 3) ∑g2. We can then compute the standard
deviation as:

σ(g) =
√

E(g2)−E2(g) =
√

∑g2/n− (∑g/n)2. (13)

Outlier Handling. Programs on the fuzzer VM/device can
consume different execution times. In some cases, a program
can take several seconds for execution. Although this happens
rarely, a mere (insignificant in number) few extreme cases can
severely throw off the time estimation and standard deviation,
hurting our task selection and seed selection algorithms. Thus,
it is crucial that we detect these outliers and prevent them from
damaging the integrity and effectiveness of our algorithms.

Our measurements show that triage is the most costly task
and its execution time can vary greatly. If we use the “3rd
quartile + interquartile range” method to detect outliers, we
would set the threshold at 0.32 seconds. To allow some slack
without compromising experimental integrity, we set one sec-
ond as the outlier detection threshold. For any task that costs
more than one second, we treat it as being executed in one
second and proceed as normal. In practice, less than 1% of all
tasks need to have their cost adjusted.

4 Evaluation
We conduct extensive evaluations of SYZVEGAS with differ-
ent configurations, and by default comparing it with Syzkaller
as a baseline. Unless otherwise stated, each configuration is
run 10 times with one fuzzer VM that uses 2 cores and 2 GB
memory, on a server with Intel Xeon Gold 6248 2.50GHz
CPUs. For seed selection, we choose θ = 0.1 for all experi-
ments. The key experiments we perform are:
• A 24-hour experiment on a Linux kernel from scratch, with

a comprehensive analysis of the results.
• A 24-hour experiment on a Linux kernel using an initial

seed corpus to study the impact on coverage growth.
• A 24-hour experiment on multiple Linux kernel versions,

to study how SYZVEGAS auto-adapts to different kernels.
• A 7-day experiment to study long-term effects and crashes.

0 4 8 12 16 20 24
Time elapsed (hr)

0

25

50

75

100

125

150

Co
ve

ra
ge

 (1
00

0
ed

ge
s) Kernel TS+SS

Kernel TS-Only
Kernel SS-Only
Kernel Default

(a) Median

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200

Co
ve

ra
ge

 (1
00

0
ed

ge
s) TS+SS 75%

TS+SS 25%
SS-Only 75%
SS-Only 25%

TS-Only 75%
TS-Only 25%
Default 75%
Default 25%

(b) 25 and 75 percentile

0 4 8 12 16 20 24
Time elapsed (hr)

−0.5

0.0

0.5

1.0

Cl
iff

's
De

lta

TS+SS
SS-Only
TS-Only

(c) Cliff’s delta vs Default

Figure 3: Median, 25/75 percentile and Cliff’s delta of coverage reached for fuzzing Linux kernel for 24hrs. Comparison of
SYZVEGAS with/without task selectiion (TS) and seed selection (SS).

• 24-hour experiments comparing SYZVEGAS with state-of-
art fuzzers HFL [18] and EcoFuzz [34].

4.1 Fuzzing the Linux Kernel for 24 hours
First, we conduct a 24-hour fuzzing experiment on the full
Linux kernel version 5.6.13 to perform a systematic in-depth
evaluation and analysis of SYZVEGAS.

Coverage growth. Figure 3(a) shows the median coverage
growth reached after fuzzing the Linux kernel for 24 hours.
Figure 3(b) shows the 25 and 75 percentiles instead. From
these two figures, we make several interesting observations:

• MAB task selection works best in the early stages of
fuzzing. However, the initial advantage is lost as fuzzing
reaches its later stages.

• MAB seed selection has little effect in the first few hours.
However, as we run for longer, seed selection begins to
increase coverage growth, providing an improvement of
25,830 edges (23.2%) at 24 hours, in terms of the median.

• Combining MAB task and seed selection produce consider-
able improvements in the coverage growth, improving the
median coverage by ≈ 43,130 edges (38.7%) at 24 hours.
Interestingly, while MAB task selection does not provide
an advantage by itself at 24 hours, combining it with MAB
seed selection yields additional coverage improvement.

• With seed selection, the variation in coverage is much
higher. This is because SYZVEGAS’s seed selection truly
picks seed with weighted randomness, while in vanilla
Syzkaller, deterministic smash mutations dominate seed
selection (as discussed in Section 2.2).

Since luck plays a prominent role in the coverage growth
of fuzzing, researchers propose that statistical methods be
used to determine the likelihood of the observed differences
in coverage [19]. To evaluate whether the coverage advan-
tage of SYZVEGAS is consistent across all runs, we compute
Cliff’s delta [10] between runs with MAB task and/or seed
selection against the default Syzkaller. Cliff’s delta lies in
the range [−1,1] and represents the pair-wise comparison

result between runs (in our case between our setup and the
default Syzkaller). A higher Cliff’s delta means that our setup
is more likely to outperform the default Syzkaller. Figure 3(c)
demonstrates that SYZVEGAS with SS-Only and TS+SS can
reliably beat the default Syzkaller, verifying our observations
in Figure 3(a) and 3(b) with high confidence.

Another interesting observation is that the power of seed se-
lection really starts to kick in at around 12-14 hours of fuzzing.
Earlier, SYZVEGAS only has a small lead in coverage, over
the default Syzkaller. A closer look shows that at 12-14 hours,
most existing seeds are already heavily exploited and seed
selection assigns negative rewards to them (i.e., gives them
very low priorities). Seed selection immediately favors a new
seed(s) and extends its priority if it produces good coverage.
Syzkaller, in contrast, is negatively impacted by the 100-new-
seed-mutation policy. As discussed in relation to Figure 1(b),
it causes a huge workload backup on mutating new seeds,
which have more potential than older-spent ones. Even after
new seeds get their 100 mutations, they will compete with
the old seeds based solely on the coverage achieved initially,
i.e., the coverage achieved by mutating them is disregarded.
Thus, SYZVEGAS better utilizes new seeds and increases the
chance of “unlocking” new kernel code blocks.

Figure 4(a) shows the number of programs executed by dif-
ferent types of tasks. Understandably, all of our optimizations
generate more programs by giving a higher priority to gen-
eration and/or removing the mandatory smash mutation. An
interesting observation is that with MAB-based seed selection,
SYZVEGAS executes more programs in total than the default
Syzkaller. This is primarily due to favoring the mutation of
seeds with low execution times (i.e., allowing SYZVEGAS to
perform more mutations). This reflects SYZVEGAS’s design
goal of optimizing coverage-time efficiency of tasks.

Figure 4(b) breaks down the coverage by the task types.
Based on our observations, MAB task selection significantly
shifts the workload from mutation to generation, giving gen-
eration a 20 times boost in terms of the coverage found. This
comes with a sacrifice though, in the form of a 50% reduc-
tion in coverage discovered by mutations. Fortunately, seed

Generate Mutate Triage
103

104

105

106

107

Pr
og

ra
m
s

TS+SS
TS-Only
SS-Only
Default

(a) Programs executed

Generate Mutate Triage
0

20

40

60

80

100

120

140

160

Co
ve

ra
ge

 (1
00

0
ed

ge
s)

TS+SS
TS-Only
SS-Only
Default

(b) Coverage reached

0 4 8 12 16 20 24
Time elapsed (hr)

0

20

40

60

80

100

Co
ve

ra
ge

 (1
00

0
ed

ge
s) Generate

Triage
Mutate

(c) Coverage growth by task for SYZVEGAS

Figure 4: Statistics of program execution.

0 5 1 0 1 5 2 0 2 5

Ti m e el a p s e d (h r)

0
1 0 0

1 0 1

1 0 2

1 0 3

1 0 4

1 0 5

1 0 6

C
h

oi
c

e

T S + S S T ri a g e

T S + S S M u t a t e

T S + S S G e n e r a t e

T S O nl y M u t a t e

T S O nl y G e n e r a t e

T S O nl y T ri a g e

(a) Task choices made

0 4 8 1 2 1 6 2 0 2 4

Ti m e el a p s e d (h r)

2

1

0

1

2

3

4

l
o

g(
Pr

(
M

ut
at

e)
 /

Pr

(
G

e
n

er
at

e)
)

T S + S S

T S O nl y

(b) Generation vs mutation probabilities

0 4 8 1 2 1 6 2 0 2 4

Ti m e el a p s e d (h r)

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

Pr
o

b
a

bi
li

t
y

T S + S S

T S O nl y

(c) Triage probabity

Figure 5: Statistics of MAB task selection.

selection compensates for this loss, bringing the power of
mutations back to its original level.

Interestingly, we find that when MAB task selection is
present, generation produces a huge amount of coverage.
However, when we take a look at the number of programs ex-
ecuted (Figure 4(a)), SYZVEGAS still favors mutation. If we
break down the coverage achieved by the different tasks over
time, as shown in Figure 4(c), we observe that the coverage
reached by generation is almost exclusively achieved in the
first 2 hours when the kernel code space is not explored much,
and finding new coverage is simple. This, as we will show
later, is due to the fact that task selection performs plenty of
generation at the early stages of fuzzing.

MAB Task selection. Next, we take a look at the inner work-
ings of MAB task selection. In particular, we want to un-
derstand “how much is the probability assigned by the task
selection algorithm to each type of task.”

Figure 5(a) captures the choices made by the task selection
algorithm. We observe that at the beginning of fuzzing, task
selection quickly “pulled” the generation “arm” (more than
1000 times), giving generation much higher priority than the
default Syzkaller. Triage, on the other hand, is less-favored
compared with generation at the beginning, but it starts to
slowly catch up as fuzzing goes on.

Figure 5(b) illustrates how MAB task selection balances
generation and mutation over time, with or without MAB seed
selection. To begin, generation and mutation are initialized to

have the same probability. With the help of the associated seed
selection, the task selection algorithm quickly determines that
mutation is the better option, giving it around a 500 times
higher likelihood. Without seed selection, however, the task
selection algorithm favors generation much more, even giving
it a higher probability of being invoked than mutation, occa-
sionally. This is expected due to the issues from the default
seed selection algorithm, as discussed in Section 2.2. With-
out the improved seed-selection algorithm, mutations are less
effective in finding new coverage and thus fall out of favor.

Figure 5(c) shows the probability change over time for
triage. Triage is not always available (when no more interest-
ing programs are in the work queue), and thus, Figure 5(c)
only considers its probabilities when it is available. In the
beginning, task selection gives triage a few chances before
assigning it a very low priority, favoring generations and mu-
tations, much more. At this stage, generation and the initial
seeds (accumulated from the few triage tasks) are still very
powerful, causing the task selection algorithm to give gen-
eration and mutation higher probabilities. However, as these
initial seeds lose power and generation becomes less effective,
both generation and mutation accrue negative rewards (no
new coverage yet but time costs are incurred). Triage will
then be favored naturally. Its ability to generate new seeds
and maintain a diverse seed pool becomes essential to discov-
ering new coverage. This effect is especially prominent when
there is MAB seed selection to make mutation more effective

(while the initial seeds exhaust power quickly), causing triage
to be invoked earlier on. Thanks to its exponential weight
growth feature, SYZVEGAS quickly adjusts its policy giving
triage the absolute priority (when appropriate) just like the
default Syzkaller. Note that a near 100% triage probability
does not mean SYZVEGAS will only perform triages. Triage
tasks are created by generation and mutation and are not al-
ways available. When SYZVEGAS has no more triage tasks
to schedule, it will perform generations or mutations.

Surprisingly, according to the task selection algorithm, the
power of generation and initial seeds can last as long as 4
to 10 hours, and the default Syzkaller does not exploit this
as much. As Syzkaller evolves with improved templates and
mutation strategies, the power of generation and mutation
may change as well, making auto-tuning task selection the
best longer-term option (instead of hand-picking a threshold).

Overall, we find that the main effects of MAB task selection
are performing more generations and deferring triages at
the very early stages of fuzzing. After a few hours, however,
MAB task selection eventually converges to the same policy
of the default Syzkaller. Triage takes absolute priority, while
mutation tasks are heavily favored over generation tasks. This
behavior is the most prominent when combined with seed
selection, where mutations are more rewarding.

We now examine why combining MAB task selection and
seed selection significantly outperforms MAB seed selection
only, even when the latter is losing its effectiveness and con-
verging toward a policy similar to that of the default Syzkaller.
As discussed before, the main effect of task selection is per-
forming more generation tasks and fewer triage tasks at the
early stages of fuzzing, which heavily impacts the initial seeds
added into the corpus. Researchers have demonstrated the ben-
efits of choosing good initial seeds on kernel fuzzing [24].
For the same reasons, the early-stage behavior of SYZVE-
GAS which populates the corpus with good seeds, yields long-
term benefits, which we will explore further in Section 4.2.

Seed power. Mutation, the main workhorse of finding new
coverage, requires seed programs to function. Therefore, the
“power” of seeds, i.e., how much coverage a seed can produce
through mutation, has a huge influence on fuzzing efficiency.

Figure 6(a) shows the number of seeds generated by the
fuzzer through the 24 hours. We find that with MAB task
selection, Syzkaller produces much fewer seeds. Figure 6(b)
depicts the distribution of new coverage attained by mutating
these seeds, a.k.a. seed power. As expected, the MAB seed
selection improves seed power by preferring good seeds for
mutation. Interestingly, we see that adding MAB task selec-
tion improves the seed power, despite not directly affecting
seed selection. Thus, the coverage benefits induced by MAB
task selection must come from its contribution to seed quality;
this is where the initial generations invoked by MAB task
selection help (by creating some very powerful seeds).

We break down the seed power distribution (how much
new coverage a seed yields) based on the origin of the seeds

in Figures 6(c). We see that task selection improves the power
of the seeds originating from generation. This verifies our
hypothesis and validates our motivation: having more early
generations is beneficial to the Syzkaller fuzzing process.

Performance overhead. Finally, we evaluate the overheads
of the MAB task selection and seed selection algorithms. The
overheads are from two sources: 1) computing and updating
weights and probabilities for tasks and seeds and 2) synchro-
nizing the MAB status between the fuzzer VM and the man-
ager host. The latter is closely related to how often the fuzzer
crashes, as when does, it needs to fetch all information about
the seed corpus the from manager host, again. During the
24 hour experiment, updating costs around 9 minutes while
synchronizing costs 22 minutes. Overall, the overhead of
SYZVEGAS is less than 2.1%.

When it comes to memory, SYZVEGAS needs to store some
additional information such as the weights of the arms, the
total reward thus far, etc.. Copies of these records must be
maintained by each fuzzer VM and the manager host, in case
the fuzzer crashes. For task selection, we use a constant 250
bytes to store the necessary information. For seed selection,
we use 104 bytes of additional memory for each seed. With
∼5,000 seeds created by SYZVEGAS in 24 hours, we incur
∼520 KB of memory overhead per VM/manager.

4.2 Fuzzing with Various Setups
Fuzzing With Initial Seed Corpus. Kernel fuzzing is often
performed with an initial seed corpus. This lowers the number
of programs Syzkaller needs to generate at the beginning and
improves its coverage growth rate. To evaluate SYZVEGAS in
such cases, we create two seed corpora. The first is created
by running the default Syzkaller from scratch for 24 hours
and contains 7478 seeds with 17149 syscalls. The second
is from Moonshine [24], which analyzes the syscall traces
from Linux Testing Project (LTP) [12], kselftest [1] and Open
Posix Tests [2]. Specifically, we obtained traces from the
authors directly to generate the Moonshine corpus consisting
of 561 seed programs with a total of 8127 system calls. We
run SYZVEGAS and Syzkaller (10 instances each) with and
without each corpus for 24 hours, result in Figure 7(a).

We find that the initial seed corpus yields limited benefits
for the default Syzkaller. With the 24 hr seed corpus, the
coverage spikes at first when Syzkaller imports and triages
seeds, but flattens out later due to inefficient usage of these
seeds. Interestingly, Moonshine offers almost no gains.

We find that importing the 24-hour seed corpus directly re-
sults in over 109,000 branch coverage, while the Moonshine
corpus is only directly responsible for 33,700. As discussed
in Sections 2.1 and 4.1, Syzkaller leaves a large number of
seeds un-mutated due to its depth-first exploration of a small
number of seeds as roots. As a result, the majority of imported
seeds (the front ones) will never get a chance to be explored.
Moreover, the current Syzkaller seed selection strategy only

0 4 8 12 16 20 24
Time elapsed (hr)

0

2

4

6

8

10

12

Nu
m

be
r o

f S
ee

ds
 (1

00
0) TS+SS

TS-Only
SS-Only
Default

(a) Seed number growth over time.

0 1 0 0 1 0 1 1 0 2 1 0 3

C o v e r a g e

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

C
D
F

T S + S S

S S O nl y

T S O nl y

D ef a ul t

(b) Seed power comparison.

0 1 0 0 1 0 1 1 0 2 1 0 3

C o v e r a g e

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

C
D
F

T S + S S G e n e r a t e

T S + S S M u t a t e

T S + S S T ri a g e

S S O nl y G e n e r a t e

S S O nl y M u t a t e

S S O nl y T ri a g e

(c) Breakdown: TS + SS vs SS only

Figure 6: Coverage gained (seed power) by mutating seed programs.

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200

Co
ve

ra
ge

 (1
00

0
ed

ge
s)

Empty TS+SS
Moonshine TS+SS
24hr Corpus TS+SS
Empty Default
Moonshine Default
24hr Corpus Default

(a) Effect of initial seed corpus.

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200

Co
ve

ra
ge

 (1
00

0
ed

ge
s) Fedora TS+SS

5.6.13 TS+SS
5.4.8 TS+SS
Fedora Default
5.6.13 Default
5.4.8 Default

(b) Different kernel versions

0 1 2 3 4 5 6 7
Time elapsed (day)

0

50

100

150

200

250

300

Co
ve

ra
ge

 (1
00

0
ed

ge
s) TS+SS

Default

(c) 7-day experiment

Figure 7: Median coverage reached by fuzzing (a) Linux kernel 5.6.13 with/without initial seed corpus, (b) Linux kernel 5.6.13,
5.4.8 and Fedora kernel 5.8.0-rc1 for 7 days.

prioritizes seeds with higher initial coverage (without muta-
tion); many imported seeds will not get mutation chances even
when the workqueues are cleared, due to some other seeds
with disproportionately high initial coverage. Consequently,
seeds in the initial seed pools are severely under-utilized. In
our experiments with both corpora, initial seeds only get < 2
mutations on average. The only benefit of having an initial
seed pool for Syzkaller is the coverage achieved from exe-
cuting it, not mutating it, which is why the 24-hour corpus
(with more raw coverage) outperforms the Moonshine cor-
pus. We note that when Moonshine was developed and tested,
Syzkaller did not differentiate seeds, i.e., they are equally
likely to be picked for mutation. This is a major difference
that allows Moonshine seeds to bring in more benefits.

In contrast, SYZVEGAS makes better use of both initial cor-
pora. Compared to the default Syzkaller with the same corpus,
it achieves a median of 52416 (45.8%) more coverage with
Moonshine and 45752 (35.1%) with the 24 hr corpus. Com-
pared with the vanilla SYZVEGAS, Moonshine and the 24 hr
corpus yield 12230 (7.9%) and 21564 (14.0%) more cover-
age, respectively. Although SYZVEGAS still suffers from the
slow-import problem of Syzkaller, its seed selection strategy
is smarter and makes better use of the initial corpus (Moon-
shine: ~120 mutations per seed; 24-hour: ~40 mutations per
seed). The better utilization of Moonshine seeds also makes
it more cost-effective compared to the 24hr corpus – much

smaller but still yields significant coverage gains. Interest-
ingly, the variation seen with SYZVEGAS with a 24-hour
corpus is much lower. We believe that this is because this
corpus is more saturated and the choices with regards to good
seeds are much more limited.

Fuzzing Different Kernel Versions. We test the generaliz-
ability of SYZVEGAS by fuzzing various kernel variants. In
addition to the upstream kernel in Section 4.1, we run similar
experiments on 1) Linux kernel version 5.4.8, 2) Fedora kernel
version 5.8.0-rc1, All fuzzing experiments are run on the same
server mentioned in Section 4.1. Figure 7(b) demonstrates
the median coverage growth comparison between SYZVE-
GAS and the default Syzkaller on these kernels. We see the
effectiveness of SYZVEGAS consistently across all tested ker-
nels. This is expected since SYZVEGAS’s Adversarial MAB
model requires no offline training and adjusts entirely online
based on observed coverage yields and time costs.

Fuzzing Linux Kernel for 7 days. To study the long-term
performance of SYZVEGAS, we run a 7-day fuzzing exper-
iment on the full Linux 5.6.13 kernel. Figure 7(c) shows
the median coverage growth, with 10 runs for each setup
(same as before). Compared to Syzkaller, SYZVEGAS pro-
duces 35,736 (15.0%) more branch coverage, in the median
case. We observe that SYZVEGAS is most effective in the first
24-48 hours of the fuzzing. Long-term, SYZVEGAS is still

Table 2: Crashes discovered fuzzing Linux kernel for 7 days.
Crash Reason Function # runs discovered

TS+SS Default

Protection fault kmem_cache_alloc∗† 1 0
Protection fault wait_consider_task∗ 0 2
RCU stall ext4_file_write_iter∗ 0 1
RCU stall io_uring_release∗ 10 10
RCU stall io_uring_setupR 4 6
RCU stall tty_writeR 1 4
Slab out-of-bounds do_update_region× 1 0
Slab out-of-bounds vcs_scr_readw∗† 1 0
Slab out-of-bounds vgacon_scrolldelta 1 2
Slab out-of-bounds vgacon_scroll× 9 10
Use-after-free ata_scsi_mode_select_xlat× 2 0
Use-after-free clear_buffer_attributes 1 0
Use-after-free complement_pos 1 0
Use-after-free con_scroll 2 0
Use-after-free do_update_region× 7 7
Use-after-free screen_glyph× 1 0
Use-after-free screen_glyph_unicode× 1 0
Use-after-free vc_do_resize∗ 6 1
Use-after-free vcs_scr_readw† 1 0
Use-after-free vc_uniscr_check 0 1
Use-after-free vgacon_invert_region† 5 2
Use-after-free vgacon_scroll× 1 0
Use-after-free do_con_write× 3 4
Warning dev_watchdog∗ 1 1
Warning generic_make_request_checks∗ 4 3
Warning xfrm_policy_insert_list∗† 6 3
Total TS+SS: 24, Syzkaller: 16 70 57

At the time of running this experiment (June 2020): ∗: Reported by syzbot [15].
×: Reported by other sources. †: Closed. R: Reproducible new crashes.

0 4 8 12 16 20 24
Time elapsed (hr)

0

50

100

150

200 Syzkaller Old
SyzVegas
Syzkaller New
HFL

Figure 8: Comparing SYZVEGAS with HFL

effective in improving coverage growth.
Table 2 lists the unique crashes we find. SYZVEGAS dis-

covers 57 (24 unique) crashes, while the default Syzkaller
finds 70 (16 unique) crashes. 7crashes correspond to pre-
viously unknown bugs; SYZVEGAS detects 6 of these
7 crashes while the default Syzkaller detects 4. Unfortu-
nately, automated reproduction can only reproduce 2 of these
bugs; this is a known issue with real-kernel fuzzing due to
statefulness, non-determinism, and concurrency.3 For exam-
ple, clear_buffer_attributes under drivers/tty/vt
accesses a global array variable vc_cons. This array can be
modified by many other functions and thus, it is very difficult
to reproduce the exact state causing the user-after-free access.

3This experiment was performed in June 2020. At the time of May 2021,
the two reproducible RCU-stall bugs are fixed and no longer present on the
latest Linux kernel (5.13-rc2). The other five non-reproducible bugs cannot
be produced on the latest Linux kernel.

Comparing with HFL. Next, we evaluate how SYZVE-
GAS compares against a state-of-art Syzkaller-based opti-
mization, viz., HFL [18]. We choose HFL because similar to
SYZVEGAS , it is tailored towards kernel fuzzing in general,
and is not specific for fuzzing specific drivers (e.g., [29, 30])
or finding specific kind of bugs (e.g., [16]). We run HFL from
their repo [3] with the same setup as our other experiments
and show the result in Figure 4.2. We notice that HFL is built
upon an older Syzkaller from mid-2018, while SyzVegas and
the Syzkaller we use in our experiments are from May 2020.
Syzkaller has evolved significantly between the two versions,
including new supported syscalls (a larger coverage space)
and a better seed selection algorithm (better coverage growth
rate). Thus, HFL only outperforms the older Syzkaller but not
the current Syzkaller. Re-basing HFL to the new Syzkaller re-
quires a tremendous engineering effort as it makes non-trivial
modifications to Syzkaller (>8000 lines of code changes). Im-
portantly, SYZVEGAS improves coverage growth by a larger
margin over the current Syzkaller, than what HFL brought to
the Syzkaller version it was based on.

4.3 Applicability of SYZVEGAS’s seed-
selection in user-space

User-space fuzzers such as AFL also incorporate seed-
selection algorithms. Recent works such as EcoFuzz [34]
model AFL’s seed selection as an “Adversarial MAB” prob-
lem, but do not account for the time taken by a seed in finding
the associated new coverage, like with SYZVEGAS. We re-
place EcoFuzz’s seed selection algorithm with that of SYZVE-
GAS and run the same set of benchmarks for 24 hours, 10
times each. Figure 9 depicts the coverage achieved (measured
in the number of bits set). The experiment shows that SYZVE-
GAS compares favorably with vanilla Ecofuzz. Thanks to
accounting for the execution time in SYZVEGAS’s reward
model, SYZVEGAS outperforms Ecofuzz in 4 out of 12 bench-
marks and has the similar efficiency in 6 other benchmarks.
We observe, however, that the execution times with AFL-
generated inputs are often similar to each other, unlike in the
kernel setting. Thus the benefit of accounting for time in the
reward model only yields modest benefits in terms of fuzzing
coverage growth; in only two cases out of twelve applications
considered, SYZVEGAS underperforms EcoFuzz in terms of
the coverage.

5 Discussion & Future Work

Choice of Adversarial MAB algorithms. We consider the
Adversarial MAB problem to be particularly suitable for
SYZVEGAS, and demonstrated that such a stateless simple
algorithm can yield considerable benefits. Other advanced
reinforcement-learning/machine-learning techniques (e.g., Q-
learning [9], PPO [27]) are in principally applicable to task
and seed selection. However, we argue that the Adversarial

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

25

30

35
Co

ve
ra

ge
 (1

00
0

bi
ts

)
EcoFuzz+SS
EcoFuzz
AFL

(a) bsdstar

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(b) djpeg

0 4 8 12 16 20 24
Time elapsed (hr)

0

1

2

3

4

5

6

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(c) gif2png

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

25

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(d) infotocap

0 4 8 12 16 20 24
Time elapsed (hr)

0.0

0.5

1.0

1.5

2.0

2.5

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(e) jhead

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

50

60
Co

ve
ra

ge
 (1

00
0

bi
ts

)
EcoFuzz+SS
EcoFuzz
AFL

(f) magick

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(g) nm

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(h) objdump

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40

50

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(i) readelf

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(j) size

0 4 8 12 16 20 24
Time elapsed (hr)

0

10

20

30

40
Co

ve
ra

ge
 (1

00
0

bi
ts

)
EcoFuzz+SS
EcoFuzz
AFL

(k) tcpdump

0 4 8 12 16 20 24
Time elapsed (hr)

0

5

10

15

20

25

30

Co
ve

ra
ge

 (1
00

0
bi

ts
)

EcoFuzz+SS
EcoFuzz
AFL

(l) xmllint

Figure 9: Comparing SYZVEGAS with EcoFuzz.

MAB model suits our needs the best for the following reasons:

• Adversarial MAB algorithms we chose are “non-
associative” or “non-contextual” [31], i.e., they do not
need a definition of state, which is hard to formulate in the
context of kernel fuzzing. Thus, they work out-of-the-box
on different fuzzing setups (e.g., kernel variants/versions,
initial seed corpus, etc). In contrast, many alternate RL
algorithms such as Q-learning, require a definition of state.

• The adversarial MAB problem accounts for the possibility
of ever-changing rewards for each choice, unlike in stan-
dard MAB problems and their solutions (e.g., UCB). Its
solution, Exp3 algorithm, which we based SYZVEGAS on,
is shown to quickly detect and adapt to these changes. This
makes it apt for kernel fuzzing wherein there exists dimin-
ishing potency of seeds and dynamic effectiveness of tasks.

• Adversarial MAB algorithms are computationally efficient
to implement, which is critical in maintaining the through-
put in fuzzing. The concern of performance is a major rea-
son why it was also chosen in related works such as [34].

A drawback of Adversarial MAB solutions is that they only
make locally optimal choices and thus may not yield long-
term global optimal strategies (unlike other more complex

reinforcement learning algorithms that are associative [31]).
For example, SYZVEGAS may perform too many generations
in the beginning and could produce some bad seeds and hurt
long-term fuzzing. Fortunately, the seed selection component
of SYZVEGAS ensures that good seeds are utilized heavily,
and bad seeds are de-prioritized eventually.

Another concern of the MAB algorithm is that it only con-
siders the aggregated coverage and disregards relationships
between different basic blocks/edges. Thus, arguably it can-
not accurately tell which basic block/edge is the most potent
in discovering new coverage and reward the corresponding
seed. We argue (and find) however, that this effect is diluted
as the fuzzer runs for a long time. Thanks to the stochastic
nature of MAB algorithm, capable seeds are recognized and
exploited eventually. That said, our hope is that a combination
of our MAB approach with whitebox methods (considering
programs’ internal structures) can work in conjunction (left
to future work) and further improve fuzzing efficiency.

Delaying Triage. Syzkaller prioritizes triage to add programs
into the corpus ASAP; this helps maintain seed programs in
the corpus even when the fuzzer VM/device crashes. With
SYZVEGAS however, triage tasks are often delayed in fa-
vor of generation/mutation, risking heavier loss when the

fuzzer VM/device crashes. However, this is acceptable as the
triage work queue is only heavily populated at the beginning
of fuzzing when it is much easier for programs to find new
coverage. These early programs, however, often only yield
“shallow” coverage and are not difficult to reproduce. SYZVE-
GAS eventually restores triages’ absolute priority, thereby
eliminating this problem in later stages of fuzzing.

Optimizing for Execution Time. SYZVEGAS optimizes for
coverage per unit time and naturally favors seeds with less ex-
pensive syscalls initially. In practice, some kernel code might
only be reached via time-consuming syscalls (not favored by
SYZVEGAS in the beginning). However, as fuzzing goes on,
seeds with less expensive syscalls will struggle to find new
coverage and SYZVEGAS will naturally switch to seeds with
more expensive syscalls that have not been explored much.

Optimizing for Coverage. The ultimate goal of fuzzing is
to find vulnerabilities, i.e., find inputs that can crash the tar-
get program. Still, SYZVEGAS, alongside most other works
(e.g., [8, 26, 34, 35]), adopts a coverage-based reward model
instead of a crash-based reward model (e.g. , [33]). Our rea-
soning is as follows: 1) new coverage is much easier to find
than a new crash, and a coverage-based reward model will
provide feedback to the fuzzer more frequently; 2) mutating
seeds that produce crashes tend to produce the same crashes
again, which means that they not necessarily good reward
signals; and 3) crashes happen when a certain code path
is executed, which is closely related to code coverage (i.e.,
branches taken).

Other future Work. Real-world kernel-fuzzing frameworks
such as syzbot [15] are often executed on top of previous
fuzzing runs. In Section 4.2 we demonstrated how SYZVE-
GAS outperforms the vanilla Syzkaller with an existing seed
corpus. However, the status of MAB task/seed selection (i.e.,
accumulated reward of tasks/seeds) could also be stored for
future fuzzing use. We speculate that due to the fast-adapting
nature of the adversarial MAB algorithm, the benefit of con-
tinuing from an existing MAB state will be limited. We leave
the evaluation of this avenue to future work.

In theory, SYZVEGAS can work alongside other fuzzing op-
timizations using program analysis and/or ML. Since SYZVE-
GAS only performs task and seed selection, fuzzer optimiza-
tions targeting mutation operators (e.g., [9]) should work
out-of-the-box with SYZVEGAS. Such optimizations could
affect the mutation effectiveness, thus influencing SYZVE-
GAS’s decisions. As for optimizations directly targeting seed
selection (e.g., [35]), we could combine SYZVEGAS with
MAB algorithms such as Exp4 [7], which can take additional
advice vector inputs for guidance.

Reinforcement learning could apply towards tuning other
constants or static strategies that are abundant in the Syzkaller
implementation, e.g., program size, generation strategy, muta-
tion operator choices, etc. However, the reward assessment
models needed can be very different from SYZVEGAS. We be-

lieve exploring a unified model to jointly consider all tunable
“knobs” in kernel fuzzing is a promising future direction. An-
other interesting future direction to explore is the applicability
of other more advanced RL algorithms to kernel fuzzing.

6 Related Work

MAB techniques in fuzzing. There are attempts to apply
MAB techniques to enhance fuzzing performance for seed
selection. Woo et al. [33] use the number of crashes as the
reward function to select the most “effective” seeds. Patil
et al. [25] use the number of interesting test cases as the re-
ward function in a “Contextual Bandit” problem. Yue et.al.,
propose EcoFuzz [34], which uses an “Adversarial MAB” al-
gorithm to perform seed selection. Our experiments show that
SYZVEGAS ’s seed selection can be ported to user-space and
performs favorably to EcoFuzz. In addition, SYZVEGAS also
considers the unique knob of task scheduling between gener-
ation, mutation, and triage, which unique to kernel fuzzing
(and absent in EcoFuzz). We show that only when the knobs
are jointly considered, the MAB model can perform the best.

Other optimization-based fuzzing. In addition to MAB,
there are other models proposed to optimize various aspects
of fuzzing, including seed selection [8, 26, 35] and mutation
strategies [9, 17, 22]. The proposed models and techniques
include markov-chain [8], Q-learning [9], Monte Carlo sam-
pling [35], Thompson Sampling [17] and Particle Swarm
Optimization [22]. We choose MAB since its simplicity al-
lows us to unify task selection and seed selection in kernel
fuzzing. Conceivably, SYZVEGAS can work alongside any
algorithm aiming to optimize the mutation operator distribu-
tion. We consider the mutation strategy tuning to be another
optional knob that can be included in the future.

Kernel fuzzing. Much work has been done to optimize ker-
nel fuzzing. Moonshine [24] tries to improve the quality of
the initial seeds in Syzkaller by “distilling” seeds from sys-
tem call traces of real-world programs. We have shown that
SYZVEGAS can work well with Moonshine in Section 4.2.
HFL [18] combines fuzzing with symbolic execution. We
have shown that SYZVEGAS improves coverage growth by a
larger margin than HFL in Section 4.2. kAFL [28] is based
on AFL and doesn’t have syscall templates like Syzkaller.
According to their paper, “the coverage comparison (with
Syzkaller) would be highly misleading”. FastSyzkaller [21]
combines Syzkaller with an N-Gram model, to optimize the
test case generation process. Difuze [11] uses static analysis
to compose correctly structured inputs in the userspace, to
explore kernel drivers. These two works focus on the program
generation process while our work focus on scheduling gener-
ated/mutated programs. RAZZER [16] focuses on detecting
race bugs in the kernel. Agamotto [30] improves virtual ma-
chine checkpointing speed which indirectly helps fuzzing
speed. Periscope [29] focuses on fuzzing the hardware inter-
face. These goals are orthogonal to those of SYZVEGAS as

we seek to improve coverage growth rate by tuning existing
fuzzing knobs more intelligently. Modifying SYZVEGAS’s
reward functions for other utilities considered by these works
is beyond the scope and will be considered in future work.

7 Conclusions
In this paper, motivated by the observations that kernel fuzzing
strategies have numerous fixed decisions and hard-coded pa-
rameters, we propose SYZVEGAS to dynamically choose
the right fuzzing task in conjunction with the right seed, in
Syzkaller. Towards this, we choose the specific fuzzing tasks
as in a multi-armed-bandit problem, which allows the system
to learn the effective strategies and adapt over time, using
a novel, yet intuitive reward assessment model to capture
benefits and costs. We evaluate SYZVEGAS on Linux ker-
nel version 5.6.13 and several other variants. We show that
SYZVEGAS has a low 2.1% performance overhead and makes
considerably improves the coverage rate achieved and crashes
found, relative to the default Syzkaller. We reported our find-
ings to Google Syzkaller team and have been actively working
on upstreaming our changes [4]. At the time of writing, we
are testing the implementation of SYZVEGAS with multiple
VMs and fuzzer processes and are looking forward to having
SYZVEGAS integrated with syzbot soon.

References

[1] Linux kernel selftests. https://www.kernel.org/
doc/html/v4.15/dev-tools/kselftest.html.

[2] Open posix tests. http://posixtest.sourceforge.
net.

[3] Hfl bitbucket repo, 2020. https://bitbucket.org/
anonyk/hfl-release.

[4] pkg/learning, syz-fuzzer: add mab-based seed
scheduling, 2020. https://github.com/google/
syzkaller/pull/1895.

[5] American fuzzy loop, Online. http://lcamtuf.
coredump.cx/afl/.

[6] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings
of IEEE 36th Annual Foundations of Computer Science,
pages 322–331. IEEE, 1995.

[7] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM journal on computing, 32(1):48–77,
2002.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.

IEEE Transactions on Software Engineering, 45(5):489–
506, 2017.

[9] Konstantin Böttinger, Patrice Godefroid, and Rishabh
Singh. Deep reinforcement fuzzing. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 116–122.
IEEE, 2018.

[10] Norman Cliff. Dominance statistics: Ordinal analyses
to answer ordinal questions. Psychological bulletin,
114(3):494, 1993.

[11] Jake Corina, Aravind Machiry, Christopher Salls, Yan
Shoshitaishvili, Shuang Hao, Christopher Kruegel, and
Giovanni Vigna. Difuze: Interface aware fuzzing for
kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2123–2138. ACM, 2017.

[12] LTP developers. Linux testing projects, 2012. https:
//linux-test-project.github.io.

[13] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.
Grammar-based whitebox fuzzing. In Proceedings of
the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages
206–215, New York, NY, USA, 2008. ACM.

[14] Google. Syzkaller. https://github.com/google/
syzkaller.

[15] Google. Syzbot, Online. https://syzkaller.
appspot.com/upstream.

[16] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: Finding
kernel race bugs through fuzzing. In Proceedings of the
IEEE Symposium on Security and Privacy, 2019.

[17] Siddharth Karamcheti, Gideon Mann, and David Rosen-
berg. Adaptive grey-box fuzz-testing with thompson
sampling. In Proceedings of the 11th ACM Workshop on
Artificial Intelligence and Security, pages 37–47. ACM,
2018.

[18] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim,
Yeongjin Jang, Insik Shin, and Byoungyoung Lee. Hfl:
Hybrid fuzzing on the linux kernel. In Proceedings
of the 2020 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, 2020.

[19] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138. ACM,
2018.

[20] UCR Security Lab. Syzvegas git repo, 2021. https:
//github.com/seclab-ucr/SyzVegas.

https://www.kernel.org/doc/html/v4.15/dev-tools/kselftest.html
https://www.kernel.org/doc/html/v4.15/dev-tools/kselftest.html
http://posixtest.sourceforge.net
http://posixtest.sourceforge.net
https://bitbucket.org/anonyk/hfl-release
https://bitbucket.org/anonyk/hfl-release
https://github.com/google/syzkaller/pull/1895
https://github.com/google/syzkaller/pull/1895
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://linux-test-project.github.io
https://linux-test-project.github.io
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/seclab-ucr/SyzVegas
https://github.com/seclab-ucr/SyzVegas

[21] Dan Li and Hua Chen. FastSyzkaller: Improving fuzz
efficiency for linux kernel fuzzing. Journal of Physics:
Conference Series, 1176:022013, mar 2019.

[22] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-
Han Lee, Yu Song, and Raheem Beyah. MOPT: Opti-
mized mutation scheduling for fuzzers. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1949–
1966, 2019.

[23] Gergely Neu. Explore no more: Improved high-
probability regret bounds for non-stochastic bandits. In
Advances in Neural Information Processing Systems,
pages 3168–3176, 2015.

[24] Shankara Pailoor, Andrew Aday, and Suman Jana.
Moonshine: Optimizing OS fuzzer seed selection with
trace distillation. In 27th USENIX Security Symposium
(USENIX Security 18), pages 729–743, 2018.

[25] Ketan Patil and Aditya Kanade. Greybox fuzzing as
a contextual bandits problem. CoRR, abs/1806.03806,
2018.

[26] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 861–875, 2014.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017.

[28] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kafl:
Hardware-assisted feedback fuzzing for OS kernels. In
26th USENIX Security Symposium (USENIX Security
17), pages 167–182, 2017.

[29] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad
Spensky, Yeoul Na, Stijn Volckaert, Giovanni Vigna,
Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. PeriScope: An effective probing and fuzzing
framework for the hardware-OS boundary. In Network
and Distributed System Security Symposium (NDSS),
2019.

[30] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim,
Brent ByungHoon Kang, Jean-Pierre Seifert, and
Michael Franz. Agamotto: Accelerating kernel driver
fuzzing with lightweight virtual machine checkpoints.
In 29th USENIX Security Symposium (USENIX Security
20), pages 2541–2557. USENIX Association, August
2020.

[31] Richard S Sutton and Andrew G Barto. Introduction to
Reinforcement Learning. The MIT Press, 2018.

[32] Pierre Francois Verhulst. Logistic function, 1838.
https://en.wikipedia.org/wiki/Logistic_
function.

[33] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 511–522. ACM, 2013.

[34] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu,
Kai Lu, and Xu Zhou. Ecofuzz: Adaptive energy-
saving greybox fuzzing as a variant of the adversarial
multi-armed bandit. In 29th USENIX Security Sympo-
sium (USENIX Security 20), Boston, MA, August 2020.
USENIX Association.

[35] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
hardest problems my way: Probabilistic path prioritiza-
tion for hybrid fuzzing. In NDSS, 2019.

[36] Datong P. Zhou and Claire J. Tomlin. Budget-
constrained multi-armed bandits with multiple plays.
CoRR, abs/1711.05928, 2017.

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logistic_function

8 Appendix

8.1 Workflow of Syzkaller

Mutate Triage

Execute

Verify

Minimize

Work Queue

Generate

Execute

Generate Mutate

Seed Corpus

Found new coverage
Minimized program
With stable coverage

Template Program with
unstable coverage

Seed program

X

Figure 10: Workflow overview of Syzkaller.

Figure 10 depicts the detailed workflow of Syzkaller. The
scheduling of tasks Generation, Mutation and Triage are
centered around a LIFO “workqueue”. Detailed interaction
between tasks and the workqueue is as follows:
• Generation. Generation does not rely on other types of

tasks as the program is created entirely from templates.
If a generated program (i.e., the corresponding syscall se-
quence) yields new coverage, it is put into the triage work
queue.

• Mutation. Mutated programs producing new coverage are
added into the triage work queue. Mutation relies on seed
programs created by Triage task.

• Triage. Syzkaller fetches a program from the triage work
queue. The program was inserted in the queue since it
yielded new coverage, but is uncertain if this coverage is
reliably reproducible. Thus, Syzkaller re-executes the pro-
gram thrice and computing coverage that is stable through-
out the re-executions, aborting triage if there isn’t any. Next,
Syzkaller performs a “Minimization” of the program, at-
tempting to remove of some system calls and/or the shorten
the arguments, while retaining the stable coverage. Finally,
Syzkaller puts the minimized program into the seed cor-
pus (where future mutations can be performed). If external
seeds are provided by the user (e.g. from a previous run or
using Moonshine [24]), they will also need to go through
Triage as the kernel and/or Syzkaller version used to gener-
ate them might be different.

8.2 Exp3-IX Algorithm
Algorithm 3 shows the Exp3-IX algorithm. Exp3-IX main-

tains the weight of each of the K arms, each of which is used
to proportionally determine their playing probabilities. When
an arm is played the algorithm computes the estimated re-
ward based on the probability of this arm and an implicit

Algorithm 3 Exp3-IX Algorithm
1: wi← 0. for i = 1, ...,K
2: for all t = 1,1,2 do
3: pri(t)← wi(t)

∑ j w j(t)
, for i = 1, ...,K

4: Draw it randomly according to pri(t)
5: Receive reward xit (t) ∈ [0,1]
6: for all i = 1, ...,K do

7: x̂i(t) =

{
xit (t)/(pr(i)+ γ), i = it
0, otherwise

8: wi(t +1) = wi(t) · eηx̂i(t)

9: end for
10: end for

exploration factor γ. The weight of each arm is exponentially
adjusted based on the estimated reward, controlled by the
constant growth factor η. Given the number of arms K, the
total number of plays T , and an exploration/growth factor

η = 2γ =
√

2 lnK
KT , Exp3-IX guarantees a regret bound of:

Gmax−E(GExp3−IX) =
√

2KT lnK +

(√
2KT
lnK

+1

)
ln

2
δ

(14)

with probability of at least 1−δ for any 0 < δ < 1.

8.3 Program Evolution During Kernel
Fuzzing.

(a) Default (b) TS only

(c) SS only (d) TS+SS

Figure 11: Evolution forests down-sampled to around 500
nodes.

To further understand the impact of MAB task selection and
seed selection, we inspect the program evolution in Syzkaller.
Everything starts from generated programs, which then go
through a series of minimizations and mutations, creating
a tree-like structure. We pick one run for each setup and
construct the program evolution forest, down-sample it to
around 500 nodes and show it in Figure 11.

We observe that different strategies have very different
approaches to program evolution. Vanilla Syzkaller (Figure
11(a)), as discussed earlier in Figure 2.2, favors a depth-first
approach thanks to the LIFO workqueue and triage-smash-
first policy. It performs very few generations (13 trees before
sampling) and is quite biased when it comes to exploration
(a.k.a. mutation). With only task selection (Figure 11(b)),
SYZVEGAS performs the most generation tasks and creates
the largest number of trees (789 before sampling), but spend
less time exploring them while suffering from the same biased
exploration of the default Syzkaller. With only seed selection
(Figure 11(c)), a reasonable number of trees (202 before sam-
pling) are created and trees are more balanced. However, it
is clear that the tree created by the very first generation is
explored much more in-depth than the latter trees. Finally,
with both task and seed selection, SYZVEGAS combines both
the large tree numbers because of scheduling, and the explo-
ration balance from seed selection. Specifically, with more
generations at the beginning, SYZVEGAS is able to turn more
of these generations (347 before sampling) into trees.

	Introduction
	Background and Motivation
	Syzkaller
	Observations and Intuition
	Multi-armed Bandit Problem

	Design and Implementation
	Reward Assessment
	Task Selection
	Seed Selection
	Implementation

	Evaluation
	Fuzzing the Linux Kernel for 24 hours
	Fuzzing with Various Setups
	Applicability of SyzVegas's seed-selection in user-space

	Discussion & Future Work
	Related Work
	Conclusions
	Appendix
	Workflow of Syzkaller
	Exp3-IX Algorithm
	Program Evolution During Kernel Fuzzing.

