
Precise and Accurate Patch Presence Test for Binaries

Hang Zhang
University of California, Riverside

hang@cs.ucr.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Abstract

Patching is the main resort to battle software

vulnerabilities. It is critical to ensure that patches are

propagated to all affected software timely, which,

unfortunately, is often not the case. Thus the capability

to accurately test the security patch presence in software

distributions is crucial, for both defenders and attackers.

Inspired by human analysts’ behaviors to inspect only

small and localized code areas, we present FIBER, an

automated system that leverages this observation in its

core design. FIBER works by first parsing and

analyzing the open-source security patches carefully

and then generating fine-grained binary signatures that

faithfully reflect the most representative syntax and

semantic changes introduced by the patch, which are

used to search against target binaries. Compared to

previous work, FIBER leverages the source-level insight

strategically by primarily focusing on small changes of

patches and minimal contexts, instead of the whole

function or file. We have systematically evaluated

FIBER using 107 real-world security patches and 8

Android kernel images from 3 different mainstream

vendors, the results show that FIBER can achieve an

average accuracy of 94% with no false positives.

1 Introduction

The number of newly found security vulnerabilities has

been increasing rapidly in recent years [3], posing

severe threats to various software and end users. The

main approach used to combat vulnerabilities is

patching; however, it is challenging to ensure that a

security patch gets propagated to a large number of

affected software distributions, in a timely manner,

especially for large projects that have multiple

concurrent development branches (i.e., upstream versus

downstream). This is due to the heavy code reuse in

modern software engineering practice [16, 23, 20].

Thus, the capability to test whether a certain security

patch is applied to a software distribution is crucial, for

both defenders and attackers.

To better facilitate the discussion of the paper, we

differentiate the goal and scope of patch presence test
from those of the more general bug search. Patch

presence test, as its name suggests, checks whether a

specific patch has been applied to an unknown target,

assuming the knowledge of the affected function(s) and

the patch itself, e.g., “whether the heartbleed

vulnerability of an openssl library has been patched in

the tls1 process heartbeat() function”. Bug

search, on the other hand, does not make assumptions

on which of the target functions are affected and simply

look for all functions or code snippets that are similar to

the vulnerable one, e.g., “which of the functions in a

software distribution looks like a vulnerable version of

tls1 process heartbeat().” Our study focuses on

the more specific problem of patch presence test, which

aims to offer a precise and accurate answer. With this in

mind, both lines of work have been studied in the

following contexts:

Source to source. This type of work operates purely

on source code level. Source code is required for both the

reference and target. In recent studies, it is also typically

assumed that patches about specific bugs are available.

Binary to binary. These work do not need any source

code. Both the reference and target are in binary, thus

all comparisons are based on binary-level features only.

It does not assume the availability of patch information

(about which binary instructions are related to a patch).

In this paper, we consider a new category of “source
to binary”, which is a middle ground between the

above two, based on the following observations. First,

open source has become a trend in computer world

nowadays with an exploding number of software open

sourced with full history of commits and patches (e.g.,
hosted on github) [4]. In fact, most of the binary-only

bug search studies include software such as Linux and

openssl. Second, many open-source code or

components are widely reused in closed-source

software, e.g., libraries and Linux-based kernels in IoT

firmware [13, 26]. This is a critical change that allows

us to leverage the source-level insight that can inform

the binary patch presence test.

Unfortunately, the closely related work on

binary-only bug search misses an important link in order

to be twisted to perform accurate patch presence test.

Due to its extremely large scope, they are forced to use

similarity-based fuzzy matching (inherently inaccurate)

to speed up the search process, instead of the more

expensive yet more accurate approaches. As a result,

most of the existing solutions usually take the whole

functions for comparison [26, 27, 13, 31]. However,

since security patches are mostly small and subtle

changes [30], similarity-based approaches cannot

effectively distinguish patched and un-patched versions.

In this paper, we propose FIBER, a complementary

system that completes the missing link and takes the

similarity-based bug search to the next level where we

can perform precise and accurate patch presence test.

Fundamentally, FIBER addresses the following

technical problem: “how do we generate binary

signatures that well represent the source-level patch”?

We address this problem in two steps: First, inspired by

typical human analyst’s behaviors, we will pick and

choose the most suitable parts of a patch as candidates

for binary signature generation. Second, we generate the

binary signatures that preserve as much source-level

information as possible, including the patch and the

corresponding function as a whole.

We summarize our contributions as follows:

(1) We formulate the problem of patch presence test

under “source to binary”, bridging the gap from the

general bug search to precise and accurate patch

presence test. We then describe FIBER — an automatic,

precise, and accurate system overcoming challenges

such as information loss in the binaries. FIBER is open

sourced1.

(2) We design FIBER inspired by human behaviors,

which picks and chooses the most suitable parts of a

patch to generate binary signatures representative of the

source-level patch. Besides, the test results can also be

easily reasoned about by humans.

(3) We systematically evaluate FIBER with 107 real

word vulnerabilities and security patches on a diverse set

of Android kernel images 2 with different timestamps,

versions and vendors, the results show that FIBER can

achieve high accuracy in security patch presence test. We

1https://fiberx.github.io/
2Although Android follows open-source license, many Android

device vendors still do not publish their source code or only do that

periodically (with significant delays) for certain major releases.

discover real-world cases where critical security patches

fail to propagate to the downstreams.

2 Related Work

In this section, we discuss the related work primarily un-

der bug search and how they are currently applied to the

patch presence test problem. We divide them as source-

level and binary-level.

Source-level bug search. Many studies focused on

finding code clones both inside a single software

distribution and across distributions [18, 22, 17, 16, 20].

The general goal is to find code snippets similar to a

given buggy one — a more general goal that can be

twisted to also conduct patch presence test. Since bug

search typically does not limit the search scope to only a

single function, it needs to face potentially millions of

lines of code in large software [16]. Due to the

scalability concern, bug search solutions are typically

framed as some form of similarity matching using

features extracted from the source code, including plain

string [8], tokens [18, 22, 16, 20], and parse trees [17].

Unfortunately, this makes it challenging to ascertain

whether the identified similar code snippets have been

patched; this is because the patched and un-patched

versions can be similar (especially for security patches

that are often small) [16].

Binary-level bug search. Similar to the source-level

work, binary-level approaches follow a similar principle

of finding similar code snippets. To overcome the

challenge of lack of source-level information, e.g.,
variable type and name, these solutions need to look for

alternative features such as structure of the

code [19, 13, 31]. Since the “binary to binary” bug

search does not assume the availability of symbol tables,

they are forced to check out every single function in the

target even if it only intends to conduct an accurate

patch presence test on a specific function. For example,

given a vulnerable function, Genius [13] and

Gemini [31] are essentially looking for the same

affected function(s) in the complete collection of

functions in a target binary. Due to the scalability

concern again, these features and solutions are

engineered for speed instead of accuracy. BinDiff [2]

and BinSlayer [9] check the control flow graph

similarity based on isomorphism. As more advanced

solutions, Genius [13] and Gemini [31] extract feature

representations from the control flow graphs and

encodes them into graph embeddings (high dimensional

numerical vectors), which can speed up the matching

process significantly. Unfortunately, under the huge

search space, more accurate semantics-based solutions

are not believed to be scalable [13, 31]. For instance,

Pewny et al. [26] computes I/O pairs of basic blocks to

match similar basic blocks in a target function.

BinHunt [14] and iBinHunt [24] use symbolic execution

and theorem provers to formally verify basic block level

semantic equivalence.

FIBER is in a unique position that leverages the

source-level information to answer a more specific

question — whether the specific affected function is

patched in the target binary. To our knowledge,

Pewny et al.’s work [26] is the only one that claims

source-level patch information can be leveraged to

generate more fine-grained signatures for bug search

(although no implementation and evaluation). However,

its goal is still focused on bug search instead of patch

presence test, which means that it still attempts to search

for similar (un-)patched code snippets (in binary) in the

entire target, making it too fuzzy to answer the problem

of patch presence test.

Finally, binary-level bug search has been extended to

be cross-architecture [27, 26, 13, 31]. FIBER naturally

supports different architectures with the assumption that

source code is available, allowing us to generate different

signatures for different compiled binaries.

3 Overview

In this section, we first walk through a motivating

example to summarize FIBER’s general intuition, then

position FIBER in a larger picture.

A motivating example. We pick the security patch for

CVE-2015-8955, a Linux kernel vulnerability, to

intuitively demonstrate a typical workflow of patch

presence test which FIBER closely emulates. The patch

is shown in Fig 1.3 To test whether this patch exists in

the target binary, naturally we will follow the steps

below:

Step 1: Pick a change site (i.e., sequence of changed

statements). At first glance, we can see that the patch

introduces multiple change sites. However, not all of

them are ideal for the patch presence test purpose. Line

1-5 adds a new parameter “pmu” for original function,

which will be used by the added “if” statement at line

11. Another change is to move the assignment of

“armpmu” from line 7 to line 17. The “to arm pmu()”

used by the assignment is a small utility macro, which

will result in few instructions without changing the

control flow graph (CFG), making it difficult to be

located at binary level. However, the added “if”

statement at line 11 will introduce a structural change to

the CFG, besides, it also has a unique semantic as it

involves the newly added function parameter. Therefore,

3For simplicity, we include only one of the two changed functions

in the patch and removed comments and context lines. The full patch

can be found in [6].

CMP X1,X22
MOV W0,#0
BNE func_exit

CMP X1,X2
MOV W0,#1
BNE func_exit

func_exit:
......

01 static int
02 - validate_event(struct pmu_hw_events *hw_events,
03 - struct perf_event *event)
04 + validate_event(struct pmu *pmu, struct pmu_hw_events
05 + *hw_events, struct perf_event *event)
06 {
07 - struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
08 + struct arm_pmu *armpmu;
09 struct pmu *leader_pmu = event->group_leader->pmu;
10 ...
11 + if (event->pmu != pmu)
12 + return 0;
13 if (event->pmu != leader_pmu || event->state <
14 PERF_EVENT_STATE_OFF)
15 return 1;
16 ...
17 + armpmu = to_arm_pmu(event->pmu);
18 ...
19 }

X1: [arg_2 + 0x78] event->pmu
X22: arg_0 pmu
X2: [[arg_2 + 0x48] + 0x78] event->group_leader

->pmu

Figure 1: Patch of CVE-2015-8955

it is natural to consider line 11 a more suitable indicator

of patch presence.

Step 2: Rough matching. Now we have decided to

search in the target binary function for the existence of

line 11 in Fig 1, typically we will start from matching

the CFG structure since it is easy and fast. This step can

be similarly carried out in the source code level also.

Specifically, one condition in the “if” statement will

generally lead to a basic block with two successors,

Thus for line 11, we will first try to locate those basic

blocks with out-degrees of 2. Besides, one successor of

the basic block should be the function epilogue since at

line 12 the function will return if passing the checks at

line 11. In Fig 1 we also show a part of the CFG

generated from a patched Android kernel image, we can

see that both the bolded basic block and the basic block

right of it satisfy this requirement.

Step 3: Precise matching. Out of the two candidate

basic blocks in the target binary, we now should need

some semantic information to further distinguish them.

Ideally, if we have the source level information such as

variable names, a human can typically make a decision

already (assuming the target function does not change

variable names). With limited information at the binary

level, we need to map the binary instructions to

source-level statements somehow. This is usually a

time-consuming process for human analysts, since they

typically need to understand which register or memory

location corresponds to which source-level variable.

Following the same example in Fig 14, an analyst needs

to inspect the registers used in the “cmp” instruction of

candidate blocks. Specifically, by tracking the register’s

origin (listed at the bottom of Fig 1), we can finally tell

the differences of the two “cmp” instructions and

correctly decide that the bolded basic block is the one

that maps back to line 11.

System architecture. Fig 2 illustrates the system

architecture, which is abstracted from human analysts’

procedure. It has four primary inputs: (1) the

source-level patch information; (2) the complete source

code of a reference; (3) the affected function(s) in the

compiled reference binary; (4) the affected functions in

the target binary. It is obvious that (4) is readily

available if the symbol table is included in the target

binary (e.g., true in most Linux-based kernel images).

However, in the more general case we do not make this

assumption, neither do the state-of-the-art binary-only

bug search work [13, 31, 26]. Fortunately, these

similarity-based approaches solve this very problem by

identifying functions in the target binary that look

similar to a reference one, thus the symbol table of the

target binary can actually be inferred — in addition to

research studies [13, 31], BinDiff [2] also has a built-in

functionality serving this purpose. We leave the

integration of such functionality into FIBER as future

work, since all kernel images as test subjects in our

evaluation have embedded symbol tables.

This shows that the similarity-based bug search and

the more precise patch presence test are in fact not

competing solutions; rather, they complement each

other. The former is fast/scalable but less accurate; the

latter is slower but more accurate. In a way, bug search

acts as a coarse-grained filter and outputs a ranked list

of candidate functions which can be used as input (4) of

FIBER for further processing. Since the search space of

FIBER is now constrained to only a few candidate

functions (one if with symbol table), it opens up the

more expensive analysis.

With the inputs in mind, we now describe the three

major components in FIBER:

(1) Change site analyzer. A single patch may

introduce more than one change site in different

functions and one change site can also span over

multiple lines in source code. Change site analyzer

intends to pick out those most representative, unique

and easy-to-match source changes by carefully

analyzing each change site and the corresponding

reference function(s), mimicking what a real analyst

would do. Besides, during this process, we can also

obtain useful source-level insight regarding the change

4 We use AArch64 assembly instructions in this example, if not

explicitly stated, the same assembly instructions will also be used in all

other examples across the paper.

-
+

-
+

+

-
+
+

Source
Patches

Ref. function
(src)

-
+

Ref. function
(bin)

Tgt. function
(bin)

Change Site Analyzer

Signature Generator

Matching Engine

Unique Src
Changes

Binary
Signatures

a=b
If(a)
...

Compile

Locate in
tgt. binary Similarity Test

Symol Table

FIBER

Figure 2: Workflow of FIBER

sites (e.g., the types of statements and the variables

involved), which can guide the later signature

generation and matching process.

(2) Signature generator. This component is

responsible for translating source-level change sites into

binary-level signatures. Essentially this step requires an

analysis to ensure that we can map binary instructions to

source-level statements, which is challenging because of

the information loss during the compilation process.

The key building block we leverage is binary symbolic

execution for this purpose.

(3) Matching engine. The matching engine’s task is

to search a given signature in the target binary. To do

that, we first need to locate the affected function(s) in the

target binary with the help of the symbol table. Then the

search is done by first matching the syntax represented

by the topology of a localized CFG related to the patch (a

much quicker process), and then the semantic formulas

(slower because of the symbolic execution). This process

is similar to the one described in the motivating example.

It is worth noting that as long as a signature is

generated for a particular security patch, it can then be

saved and reused for multiple target binaries, thus we

only need to run the analyzer and generator once for

each patch.

Scope. (1) FIBER naturally supports analyzing binaries

of different architecture and compiled with different

compiler options. This is because of the availability of

source code, which allows us to compile the source code

into any supported architecture with any compiler

options. More details will be discussed in §5 and §6.

(2) FIBER is inherently not tied to any source

language although currently it works on C code. We do

require debug information to be generated (for our

reference binary) by compilers that can map the binary

instructions back to source level statements as will be

discussed in §4.3. All modern C compilers can do this

for example.

Potential users and usage scenarios. We envision

third-party auditors/developers will be FIBER’s primary

users, such as independent security researchers, security

companies, software integration companies that rely on

code/binaries supplied from others. Even for first-party

developers, checking security patches at the binary level

offers an extra layer of safety. As will be shown in §6.4,

some vendors indeed forgot to patch critical

vulnerabilities even though they have source access (i.e.,
human errors), while systems like FIBER could have

caught it.

4 System Design

In this section, we describe FIBER’s design in depth by

walking through the requirement of signatures and the

design of each component.

4.1 Signature
The signature is what represents a patch. In general, we

have two criterion for an “ideal” signature:

(1) Unique. The signature should not be found in

places other than the patch itself. Otherwise, it is not

unique to the patch. Specifically, it should not exist in

both the patched and un-patched versions. This means

that the signature should not be overly simple, which

may cause it to appear in places unrelated to the patch.

(2) Stable. The signature should be robust to benign

evolution of the code base, e.g., the target function may

look different than as the reference due to version

differences. This means that the signature should not be

overly complex (related to too many source lines),

which is more likely to encounter benign changes in the

target, creating false matches of the signature.

As we can see, the above two seemingly conflicting

requirements ask for a delicate balance in signature

generation, which we will elaborate in this section.

Fundamentally, we need to pick a unique source change

from a patch for which we believe a corresponding

binary signature can be generated that well represents it.

What works in our favor is that the reference and target

function should share significant variable-level

semantics. Assuming both versions are patched, things

like “how a variable is derived and dereferenced” and

“how a condition is derived” should be the very much

the same. The binary signature simply need to carry this

necessary information to recover the semantics present

in the source.

Informally, we define a binary signature to be a group

of instructions, that not only structurally correspond to

the source-level signature, but also are annotated with

sufficient information (e.g., variable-level semantics) so

that they can be unambiguously mapped to the original

source-level change site. We will elaborate the

translation process in §4.3.

4.2 Change Site Analyzer

The input of the change site analyzer is a source patch

and the reference code base. It serves two purposes. (1)

Since a patch may introduce multiple change sites within

or across different functions, the analyzer aims to pick a

suitable signature according to the criterion mentioned

in §4.1. (2) Another goal is to gain insights of the patch

change sites, from which the binary signature generator

will benefit. We divide this process into two phases and

detail them as below.

4.2.1 Unique Source Change Discovery

A patch can either add or delete some lines, thus we can

either changes based on either the absence of patch (i.e.,
existence of deleted lines) or presence of patch (i.e.,
existence of added lines). For the purpose of discussion,

we assume that our signature generation is based on the

presence of patch and focused on the added lines; the

opposite can be done similarly. The general strategy is

to start from a single statement and gradually expand if

necessary. For each added statement in the patch, the

following steps will be performed:

(1) Uniqueness test. Basically, a statement has to

exist in only the added lines of the patch and nowhere

else (e.g., un-patched code bases)”. For this, we can

apply a simple token-based sequence matching using a

lexer [16]. We wish to point out that this uniqueness test

captures not only token-based information but also

semantic-related information. For instance, the example

source signature in Fig 1 at line 11 encodes the fact that

the first function parameter is compared against a field

of the last parameter, and this semantic relationship is

unique (which we need to preserve in binary signatures).

(2) (optional) Context addition. If no single statement

is unique, we consider all its adjacent statements as

potential context choices. The “adjacent” is

bi-directional and on the control flow level (e.g., the “if”

statement has two successors and both of which can be

considered the context), thus there can be multiple

context statements. We gradually expand the context

statements, e.g., if one context statement is not enough,

we try two.

(3) Fine-grained change detection. By convention,

patches are distributed in the form of source line

changes. Even when a line is partially modified, the

corresponding patch will still show one deleted and one

added line. We detect such fine-grained changes within

a single statement / source line, by comparing it with its

neighbouring deleted/added lines. This is to ensure that

we do not include unnecessary part of the statement

which will bloat the signature. For example, if only one

argument of a function call statement is changed, we

can ignore all other arguments in the matching process

to reduce potential noise, improving the “stability” of

the signature.

(4) Type insight. The types of variables involved in

source statements are also important since it will guide

the later binary signature generation and matching.

Theoretically, we can label the type of every variable in

the reference binary (registers or memory locations in

the binary) and make sure the types inferred in the target

match (more details in §4.3.1). However, sometimes

type match is not good enough to uniquely match a

signature. A special case is a const string which is

stored statically at a hardcoded memory address. If the

only change in a patch is related to the content of the

string, then both binary signature generation and

matching should dereference the char* pointer and

obtain the actual string content; otherwise, the signature

will simply contain a const memory pointer whose value

can vary across different binaries. Even if the pointer

type matches as char* in the target, it is still

inconclusive if it is a patched or un-patched version (we

give some real examples in §6 as case studies).

After the above procedure, we now have some unique

and small (thus more stable) source changes.

4.2.2 Source Change Selection

Previous step may generate multiple candidate unique

source changes for a single patch. In practice, the

presence of one of them may already indicate the patch

presence. In addition, some source changes are more

suitable for binary signature generation than others. In

FIBER, we will first rank all candidate changes and pick

the top N for further translation. The ranking is based

on three factors (from least important to most):

(1) Distance to function entrance. Short distance

between statements in the source-level signature and the

function entrance will accelerate the signature

generation process because of its design which we will

detail in §4.3.

(2) Function size. If the source code signature is

located in a smaller function, the matching engine will

benefit since the search space will be reduced and it is

less likely to encounter “noise”. In addition, the

matching speed will be faster. Note that this is more

important than (1) because the signature generation

process is only a one-time effort while matching may be

repeated for different target binaries.

(3) Change type. The kinds of statements involved in

a change matters. As shown previously in §3, if the

change involves some structural/control-flow changes

(e.g., “if” statement), we can quickly narrow down the

search range to structurally-similar candidates in the

target binary, affecting the matching speed. More

importantly, it can also affect the stability of the binary

signature. Unlike statements such as a function call,

which may get inlined depending on the compiler

options, structural changes in general are much more

robust.

We categorize the source changes into several general

types: (1) function invocations (new function call or

argument change to an existing call), (2) condition

related (new conditional statement or condition change

in an existing statement), (3) assignments (which may

involve arithmetic operations). Actual source changes

can have multiple types, e.g., a function invocation can

have an argument derived from an assignment or follow

a conditional statement. Generally, we rank “new

function call” (if FIBER determines that it is not inlined

in the reference binary5) the highest because one can

simply decide the patch presence by the presence of the

function invocation, which is straightforward with the

symbol table. We also rank “condition” related

signatures (e.g., “if” statement) high because it

introduces both structural changes and semantic

changes. On the other hand, a simple assignment

statement, including assignment derived from arithmetic

operations (e.g., a=b+c;), will not affect the structure in

general, so it is less preferred. Besides, pure control

flow transfer (e.g., addition of a “goto”) is not preferred

as well since we may need to include extra context

statements that are unrelated to the change site, which is

less stable.Note that there are certain source-level

changes are simply not visible at the binary level (e.g.,
source code comments) or difficult to locate (variable

declaration).

4.3 Signature Generator
We first need to compile the reference source into the

reference binary, from which the binary signatures will

be generated according to the selected unique source

change. As discussed in §4.2, we will still assume that

the signature is based on the patched version. Also,

during the compilation process, we will retain all the

compiler-generated debug information for future use.

4.3.1 Binary Signature Generation

Identify and organize instructions related to the
source change. Given the reference binary, the first

thing is to locate the corresponding binary instructions

related to the source change. This can be done with the

5 It looks the presence of the corresponding binary instruction that

calls to the exact function.

help of debug information since it provides a mapping

from source code lines to binary instructions. We will

then construct a local CFG that includes all the nodes

containing the identified instructions, which is

straightforward if these nodes are connected to each

other, otherwise, we need to add some padding nodes to

make a connected local CFG, which by nature is a

steiner tree problem [15]. For this purpose we use the

approximation steiner tree algorithm implemented in the

NetworkX package [5]. The topology of such a local

CFG reflects the structure of the original source change.

Compared to full-function CFG, this local CFG

structure is more robust to different compiler options

and architectures since it excludes unrelated code. That

being said, compilation configurations may still affect

the signature. Therefore, ideally we should use the same

compilation configuration of the reference kernel as the

target. As will be described in §6.1, we follow a

procedure to actively probe the compilation

configuration of the target kernel.

Identify root instructions. Theoretically all these

instructions identified in the local CFG above will be

part of the binary signature. However, this is not a good

idea in practice as only a subset of instructions actually

summarizes the key behavior (data flow semantic); we

refer to such instructions as “root instructions”. The

more instructions we include in a binary signature, the

more specific and less “stable” it becomes. For instance,

a compiler may insert additional “intermediate”

instructions to free up some registers (by saving their

values to memory). If we unnecessarily include all these

instructions, we may not get a match in the target. Take

the two source-level statements in Fig 3 as examples,

the first statement is an assignment where 3 binary

instructions are generated to perform the operation.

However, capturing the last instruction alone is already

sufficient, because we know through data flow analysis

that X1 is equal to X0+0x4 and can therefore discard the

first and second instruction. Similarly, instruction 03

and 04 corresponding to the second statement already

sufficiently capture its semantic, because the outputs of

instruction 00, 01 and 02 will later be consumed by

other instructions.

Simply put, we define “root instructions” to be the

last instructions in the data flow chains (where no other

instructions will propagate any data further), along with

some complementary instructions that complete the

source-level semantic. For instance, by this definition,

the cmp instruction will be the root instruction.

However, we need to complement it with the next

conditional jump instruction to complete its conditional

statement semantic. For function call instructions, the

root instructions will include the push (assuming x86) of

arguments (as they each become the last instruction in a

00 MOV X1,X0 ;X1=X0
01 ADD X1,X1,0x4 ;X1=X0+0x4
02 STR X1,[addr_0] ;[addr_0]=X0+0x4

X0 #00 move X1 #01 +0x4 X1#02 store [addr_0]

00 MOV X1,X0 ;X1=X0
01 LDR X1,[X1+0x4] ;X1=[X1+0x4]
02 LDR X2,[X0+0x8] ;X2=[X0+0x8]
03 CMP X1,X2 ;[X0+0x4]==[X0+0x8]
04 BNE _exit ;branch if not equal

X0 #00 move X1 #01 +0x4 X1
#02 +0x8

X0+0x8
#02 load

X2

 #03,04
conditional jump

#01 load

var a = b + 4;

X1+0x4

If (p->next != p->prev)
goto exit;

Figure 3: Data flow analysis of example basic blocks

Signature Type
Root Instructions

(x86 example)

Function call call,push

Conditional statement cmp, conditional jmp

assignment

(incl. arithmetic ops)

mov,add,

sub,mul,bit ops...

Unconditional control transfer jmp,ret

Table 1: Types of root instructions

data flow chain to prepare a specific argument), and the

call instruction (to complete the function invocation

semantic).

Note that compilers may still generate slightly

different root instructions for the same statements (due

to compiler optimizations, etc.). To facilitate signature

matching, we deem root instructions equivalent as long

as their types are the same (normalization of root

instructions). We illustrate this in Table 1 where we

show the different types of instructions that may be

generated from the same source change. For instance, a

compiler may choose to use bit operations instead of

multiplications for an assignment statement.

Annotate root instructions. Now we need to make

sure that the root instructions are sufficiently labeled

(which is our binary signature) such that they can be

uniquely mapped to source changes.

Following the observation mentioned earlier in §4.1

that the target and reference function should share

variable-level semantics (as they are simply different

versions of the same function), we formulate the goal as

mapping the operands (registers or memory locations)
of the root instructions back to source-level variables.

This is sufficient because if the target function indeed

arg: function argument
var: local variable
ret: callee return value
imm: immediate value
[]: dereference
op: binary operators
expr: arg | var | ret | imm

| [expr] | expr op expr
| if(expr) then expr else expr

Figure 4: Notation for formula (expression) annotating

root instruction operands

applied the patch, the variables related to the patch

should be the same ones as what we saw in the reference

function. Now, our only job here is to ensure that the

binary signature retains all such semantic information.

To this end, we compute a full-function semantic

formula for each operand (up to the point of root

instructions). As shown in Fig 1, these formulas are in

the form of ASTs – essentially formulated as

expressions following the notation in Fig 4.

Note that from a function’s perspective, any operand

in an instruction can really be derived from only four

sources:

(1) a function parameter (external input), e.g.,
ebp+0x4 if it is x86, X0 or X1 if it is aarch64;

(2) a local variable (defined within the function), e.g.,
ebp-0x8 in x86 or sp+0x4 in aarch64 (which use regis-

ters to pass arguments);

(3) return values from function calls (external source),

e.g., a register holding the return value of a function call;

(4) an immediate number (constant), e.g.,
instruction/data address (including global variables),

offset, other constants;

These sources all have meaningful semantics at the

source level. The question is how do we leverage them

in the binary signature. Do we require the binary

signature to state something precise “the fourth

parameter of the function is used in a comparison

statement”, or something more fuzzy “a local variable is

dereferenced at an offset, whose result is passed to a

function call”? These choices all have implications on

the unique and stable requirement of the signature. We

discuss how we handle these four basic cases:

(1) Function parameter. From the calling convention,

we can at least infer where memory location

corresponds to which parameter. Despite the fact that

function prototpye may change in the target, our current

policy assumes otherwise (as the change happens rather

infrequently). As an extension, we could use the type of

the parameter (as mentioned in §4.2), or even its usage

profile to ensure the uniqueness of the parameter. Note

that this would also require analysis of the target

function to derive similar information (which will

require more expensive binary-level type inference

techniques [21, 10]).

(2) Local variable. This is similar to the function

parameter case, except that local variables are much

more prone to change, e.g., new variables may be

introduced. In theory, we could similarly use type

information and the way the local variable is used to

ensure the uniqueness the variable in the signature. For

now, we do not conduct any additional analysis and

simply treats all local variables as the same class

without further differentiation. Interestingly, we will

show in §6 that this strategy already can generate

signatures that are unique enough.

(3) Return values from function calls. This is a

relatively straightforward case, we simply tag the return

value to be originated from a specific function call.

(4) Immediate number. It is generally not safe to use

the exact values of the immediate numbers, especially if

it has to do with addresses. For instance, a goto

instruction’s target address may not be fixed in binaries.

A field of a struct may be located at different offsets,

e.g., the target binary has a slightly different definition.

We need to conduct additional binary-level analysis to

infer if a target address is pointing to the right basic

block (e.g., by checking the similarity of the target basic

block), or the offset is pointing to a specific field (e.g.,
by type inference [21, 10]). Our current design allows

for such extensions but at the moment simply treats

immediate numbers as a class without differentiating

their values, unless the values are related to source-level

constants and unrelated to addresses, e.g., a = 0;.

In our experience, we find that even without having a

precise knowledge of these basic elements in the

signature, the semantic formula that describe them is

typically already unique enough to annotate the

operands; ultimately allow us to uniquely map the root

instructions to source-level statements. We show a

concrete example in Fig 5 with both reference and target

in comparison. As we can see, the patch line is in red:

a=n*m+2;, a fairly straightforward assignment

statement, which is used as a unique source change. In

the binary form, we would identify the store instruction

as root instruction, and annotate both operands

accordingly. In this case, we know that X3=X0*X1+0x2

which represents arg 0*arg 1+0x2 and it is being

stored into a local variable at sp+0x8. Similarly, the

target source has the same patch statement (and should

be considered patched) even though it has also inserted

some additional code with a new local variable. When

we attempt to match the binary signature, there are three

points worth noting:

First, the local variable a is now located at a different

offset from sp, i.e., sp+0x10. We therefore cannot

MUL X3,X0,X1
ADD X3,X3,0x2
STR X3,[sp+0x8]

X0 * X1 + 0x2

foobar(n,m,flag){
int a;
a = n*m + 2;

 ...

foobar(n,m,flag){
bool s;
int a;
if (!flag)
 s = do_sth();
a = n*m + 2;

 ...
STR X0,[sp+0x8]
MUL X3,X3,X1
ADD X3,X3,0x2
STR X3,[sp+0x10]

MOV X3,X0
CBZ X2,loc_0

loc_0:
BL do_sth

X0 * X1 + 0x2

return{do_sth}

Reference

Target

Figure 5: Illustration of the binary signature matching

blindly use a fixed offset to represent the same local

variable across reference and target. Instead, we could

apply the additional strategies mentioned above: (1)

Inferring the type of local variables in the target binary

and conclude that sp+0x10 is the only integer variable

and therefore must correspond to sp+0x8. (2) Profiling

the behaviors of all local variables in the target binary

and attempt to match the one most similar to sp+0x8 in

the reference. For example, we know sp+0x8 in the

binary (i.e., s) takes the value from a function return,

while sp+0x10 (i.e., a) did not (and sp+0x10 is the

more likely one). Interestingly, even if we do not

perform the above analysis, the fact that there is a root

instruction storing a unique formula X0*X1+0x2 to a

local variable (any) is already unique enough to be a

signature that lead to a correct match in the target.

Second, to show that isolated basic block level

analysis is not sufficient, we note the mov instruction in

the first basic block of the target binary which saves X0

to X3 to free up X0 for the return value of do sth(). It

is imperative that we link X3 to X0 so that the final

formula at the root instruction (i.e., last instruction of

the last basic block) will be the same as the one

computed in the reference binary.

Third, there is an additional store instruction in the

last basic block of the target binary, which saves X0

(return value of do sth() to sp+0x8 (i.e., s). Note that

this may look like a root instruction as well from data

flow perspective. However, since it is attempting to

store a return value instead of the formula in the original

signature, it will not cause a false match.

4.3.2 Binary Signature Validation

Even though we have the best intention to preserve the

uniqueness and stability of the selected source change,

due to the information loss incurred in the translation, we

still need to double check that the candidate binary-level

signatures actually still satisfy the requirements.

(1) Unique. For each patch, we will prepare both the

patched and un-patched binaries as references and then

try to match the binary signature against them, with the

matching engine (detailed in §4.4). For a binary

signature based on the patched code, it will be regarded

as unique only when it has no match in the reference

un-patched binary. A unique binary signature may still

have multiple matches (although rare) in the reference

patched binary, in this case, we will record the match

count as auxiliary information. When using it to test the

target binary in real world, only when the match count is

no less than previously recorded one, will we say that

the patch exists in target binary.

(2) Stable. Our previous effort in §4.2 to keep a small

footprint of the unique source change can also help to

improve the binary signature stability here, since the

sizes of source change and binary signatures are related.

Besides, we can also prepare multiple versions of

patched and un-patched function binaries (if more

ground truth data are available) and test the generated

binary signature against them. This can help to pick out

those most stable binary signatures that exist in all

patched binaries but none of un-patched binaries.

4.4 Signature Matching Engine

Matching engine is responsible for searching a given

binary signature in the target binary (i.e., the test

subject). This section will detail the searching process.

As briefly mentioned in §3, we first need to locate the

target function in the target binary by its symbol table,

then we will start to search the binary signature in it. We

divide the search into two phases: rough matching and

precise matching.

Rough matching. This is a quick pass that intends to

match the binary signature by some easy-to-collect

features. These features include:

(1) CFG topology. The binary signature itself is basi-

cally a subgraph of the function CFG. This step is useful

unless the binary signature resides in only a single basic

block (e.g., the signature for an assignment statement).

(2) Exit of basic blocks. In general each basic block

has one of two exit types: unconditional jump and

conditional jump, the former can be further classified

into call, return, and other normal control flow transfer

for most ISAs. Thus, basic blocks can be quickly

compared by their exit types.

(3) Root instruction types. As described in §4.3.1, we

will analyze each basic block in the signature and

decide its root instruction set. The instruction types can

then be used to quickly compare two basic blocks. This

requires generating the data flow graph for each basic

block in target function binary, which is more expensive

than previous steps but still manageable.

With above features, we can quickly narrow down the

search space in the target function. If no matches can be

found in this step, we can already conclude that the sig-

nature does not exist, otherwise, we still need to precise-

ly compare every candidate match further.

Precise matching. In this phase, we leverage the

annotation produced in §4.3.1 to perform a precise

match on two groups of root instructions. We essentially

just need to compare their associated annotation (i.e.,
semantic formulas).

To fulfill the semantic comparison, we first need to

generate semantic formulas for all the matched

candidate root instructions, which can be done in the

same way as detailed in §4.3.1. If all formulas of the

signature root instructions can also be found in the

candidate root instructions, the two will be regarded as

equivalent (i.e., they map to the same source-level

signature/statements).

To compare two formulas (essentially two ASTs),

there have been prior solutions that calculate a similarity

score based on tree edit distance [12, 27]; however,

FIBER intends to give a definitive answer about the

match result, instead of a similarity score. Alternatively,

theorem prover has been applied to prove the semantic

equivalence of two formulas [14], which definitely

provides the best accuracy but unfortunately can be very

expensive in practice. In this paper, we choose a middle

ground. Based on the observations that semantic

formulas capture the dependency and therefore the order

of instructions cannot be swapped, we know that the

structure of formulas is unlikely to change (our

evaluation confirms this), e.g., (a+b)*2 will not

become a*2+b*2. In addition, with normalization of the

basic elements of the formula, the matching process is

also robust to non-structural changes. Basically, the

matching process simply recursively match the

operations and operands in the AST, with some

necessary relaxations (e.g., if the operator is

commutative, the order of the operands will not matter).

We also simplify the AST with a Z3 solver [11] before

comparison.

5 Implementation

We implement the prototype of FIBER with 5,097 LOC

in Python on top of Angr [29], as it has a robust

symbolic execution engine to generate semantic

formulas. To suit our needs, we also changed the

internals of Angr (including 1348 LOC addition and 89

LOC deletion). Below are some implementation details.

Architectural dependencies. As mentioned, FIBER

in principle supports any architecture as we can compile

the source code into binaries for any architecture.

Further, since we use Angr which lifts the binaries into

an intermediate language VEX (which abstracts away

instruction set architecture differences), most of our

system works flawlessly without the need of tailoring

for architectural specifics. This not only allows FIBER

to be (for the most part) architectural independent, but

also facilitates the implementation. For instance, when

searching for root instructions, the data flow analysis is

performed on top of VEX. However, some small

engineering efforts are still needed for

multi-architectural support, such as to deal with

different calling conventions. At current stage FIBER

supports aarch64.

Root instruction annotation. To generate semantic

formulas for root instruction operands, it is necessary to

analyze all the binary code from the function entrance to

the root instruction. We choose symbolic execution as

our analyze method since it can cover all possible

execution paths and obtain the value expression of any

register and memory location at an arbitrary point along

the path.

Symbolic execution is well known for the path

explosion problem, which makes it expensive and not as

practical. We employ multiple optimizations to address

the performance issue as detailed below.

(1) Path pruning. Before starting the symbolic

execution we will first perform a depth first search

(DFS) in the function CFG to find all paths from the

function entrance to the root instructions. We will then

put only the basic blocks contained in these paths in the

execution whitelist, all other basic blocks will be

dropped by the symbolic execution engine. Besides, we

also limit the loop unrolling times to 2 to further reduce

the number of paths.

(2) Under-constrained symbolic execution. As

proposed previously [28], under-constrained symbolic

execution can process an individual function without

worrying about its calling contexts, effectively confining

the path space within the single function. Although the

input to the function (e.g., parameters) is un-constrained

at the beginning, it will not affect the extraction of the

semantic formulas since they do not need such initial

constraints. Un-constrained inputs may also lead the

execution engine to include infeasible paths in real

world execution, however, our goal for semantic

formulas is to make them comparable between reference

and target binaries, as long as we use the same

procedure for both sides, the extracted formulas can still

be compared for the purpose of patch presence test. In

the end, we use intra-function symbolic execution, i.e.,
without following the callees (their return values will be

made un-constrained as well), which in practice can

already generate the formulas that make root

instructions unique and stable.

(3) Symbolic execution in veritesting mode.

Veritesting [7] is a technique that integrates static

symbolic execution into dynamic symbolic execution to

improve its efficiency. Dynamic symbolic execution is

path-based, a same basic block belonging to multiple

paths will be executed for multiple times, greatly

increasing the overhead especially when there is a large

number of paths. Static symbolic execution executes

each basic block only once, but its formulas will be

more complicated since it needs to carry different

constraints of all paths that can reach current node.

However, FIBER does not need to actually solve the

formulas, instead, it only needs to compare these

formulas extracted from reference and target binaries,

thus, the formula complexity matters less for us. Note

that this means an operand may sometimes have more

than one formulas: consider when the true and false

branch of a if statement merges. When we regard a

binary signature as matched in the target, we require

that the computed formulas in the target contain all of

the formulas in the signature (could be a superset). If at

least one formula is missing, we consider the

corresponding source code in the target to have missed

certain important code that contributes to the signature.

6 Evaluation

In this section, we systematically evaluate FIBER for its

effectiveness and efficiency.

Dataset. We choose Android kernels as our evaluation

dataset. This is because Android is not only popular but

also fragmented with many development branches

maintained by different vendors such as Samsung and

Huawei [25]. Although Google has open-sourced its

Android kernels and maintained a frequently-undated

security bulletin [1], other Android vendors may not

port the security patches to their own kernels timely.

Besides, even though required by open source license,

many vendors choose not to open source their kernels or

make it extremely inconvenient (with substantial delays

and only periodic releases). This makes Android kernels

an ideal target. We collect two kinds of dataset

specifically:

(1) Reference kernel source code and security

patches. We choose the open-source “angler” Android

kernel (v3.10) used by Google’s Nexus 6P as our

reference. We then crawl the Android security bulletin

from June 2016 to May 2017 and collect all published

vulnerabilities related security patches6 for which we

can locate the affected function(s) in the reference

kernel image (e.g., it may use a different driver than the

one gets patched, or the affected function itself may be

inlined). We also exclude one special patch that changes

only a variable type in its declaration, requiring type

inference at the binary level to handle, which we don’t

support currently as mentioned in §4.2.2. In total we

collected 107 security patches that are applicable to our

reference kernel.

(2) Target Android kernel images and source code.

Besides the reference kernel, we also collect 8 Android

kernel images from 3 different mainstream vendors with

different timestamps and versions as listed in table 2.

Note that vendors publish way more binary images

(sometimes once every month) than the source code

packages. We only evaluate the binary images for which

we can find the corresponding source code, which

serves only as ground truth of the patch presence test.

All our evaluations are performed on a server with In-

tel Xeon E5-2640 v2 CPU and 64 GB memory.

6.1 Experiment Procedure
To test patch presence in the target binary, we follow the

steps below:

Reference binary preparation. As shown in Fig 2,

we first need to compile the reference source code to

binary, based on which we will generate the binary

signatures. The availability of source code enables us to

freely choose compilers, their options, and the target

architecture. Naturally, we should choose the

compilation configuration that is closest to the one used

for target binary, which can maximize the accuracy. To

probe the compilation configuration used for the target

binary, we first compile multiple reference binaries with

all combinations of common compilers (we use gcc and

clang) and optimization levels (we use levels O1 - O3

and Os7), then use BinDiff [2] to test the similarity of

each reference binary and the target binary, the most

similar reference binary will finally be used for binary

signature generation. Following this procedure (which

is yet to be automated), we observed in our evaluation

that kernel 6 and 7 as shown in table 2 use gcc with O2

optimization level, while all other 6 kernels use gcc with

Os optimization level, which is confirmed by our

inspection of the source code compilation

configurations (e.g., Makefile).

Offline signature generation and validation. For

each security patch, we retain at most three binary

6Some security patches are not made publicly available on the

Android Security Bulletin.
7Optimize for size.

Device No. Patch Build Date Kernel Accuracy Online Matching Time (s)

Cnt* (mm/dd/yy) Version TP TN FP FN Total Avg ∼70% Max.

Samsung 0 102 06/24/16 3.18.20 42 56 0 4(3.92%) 1690.43 16.57 8.47 306.47

S7 1 102 09/09/16 3.18.20 43 55 0 4(3.92%) 1888.06 18.51 8.24 438.76

2 102 01/03/17 3.18.31 85 11 0 6(5.88%) 2421.44 23.74 5.49 1047.10

3 102 05/18/17 3.18.31 92 4 0 6(5.88%) 1770.66 17.36 5.33 386.94

LG 4 103 05/27/16 3.18.20 32 65 0 6(5.88%) 2122.37 20.61 8.90 648.93

G5 5 103 10/26/17 3.18.31 95 0 0 8(7.77%) 1384.47 13.44 4.76 229.46

Huawei 6 31 02/22/16 3.10.90 10 20 0 1(3.23%) 390.35 12.59 8.47 89.35

P9 7 30 05/22/17 4.1.18 25 2 0 3(10.00%) 515.64 17.19 7.4 279.49

* Some patches we collected are not applicable for certain test subject kernels.

Table 2: Binary Patch Presence Test: Accuracy and Online Matching Performance

signatures, after testing their uniqueness by matching

them against both patched and un-patched reference

kernel images. If nothing is unique, we will add more

contexts to existing non-unique signatures.

Online matching. Given a specific security patch, we

will try to match all its binary signatures in the target

kernels. Note that all Android kernel images are

compiled with symbol tables. We therefore can easily

locate the affected functions. As long as one signature

can be matched with a match count no less than that in

reference patched kernel, we will say the patch exists in

the target. As a performance optimization, we will first

match the “fastest-to-match” signature.

6.2 Accuracy

We list the patch presence test results for target Android

kernel images in table 2. It is worth noting that our

patch collection is oriented to “angler” kernel, which

will run on the Qualcomm hardware platform, while

kernel 6 and 7 intend to run on a different platform (i.e.,
Kirin), thus many device driver related patches do not

apply for kernel 6 and 7 (we cannot even locate the

same affected functions).

Overall, our accuracy is excellent. There are no false

positives (FP) across the board and very few false

negatives (FN). In patch presence test, we assume that

all patches are not applied by default. It has to be proven

otherwise. In practice, FP may lead developers to

wrongly believe that a patch has been applied while in

reality not (a serious security risk). In contrast, FN only

costs some extra time for analysts to realize that the

code is actually patched (or perhaps unaffected due to

other reasons) while we say it is not. Thus, we believe

FN is more tolerable than FP. Since we have no FP, we

manually inspect each FN case to analyze the root

causes:

(1) Function inline. Function inline behaviors may

vary across different compilers and binaries. A same

function may be inlined in some binaries but not others,

or inlined in different ways. Some of our signatures

(e.g., the signature for CVE-2016-8463) model inline

function calls based on the reference kernel image, if the

target kernel has a different inline behavior, our

signatures will fail to match. To address this problem,

we need to generate binary signatures based on a

collection of different kernel images to anticipate such

behaviors.

(2) Function prototype change. Although rare,

sometimes the function prototype will change across

different kernel images. Specifically, the number and

order of the function parameters may vary. As discussed

in §4.3.1, we will differentiate the parameter order, thus,

if a same parameter has different orders in reference and

target kernels, the match will fail. We have one such

case (CVE-2014-9893) in the evaluation. To solve this

problem, we can extend our current implementation

with techniques such as parameter profiling (see §4.3.1).

(3) Code customization. As discussed in §4.2, extra

contexts are necessary if original patch change site is

not unique. However, the contexts may be different

across various kernel images due to code customization,

although the patch change site remains the same. If this

happens, our signature (with contexts extracted from the

reference kernel) will not match, although the target

kernel image has been patched. We encountered such a

case in Samsung kernels for CVE-2015-8942. Such

customizations are generally hard to anticipate and it

will likely still cause a FN even if the source code of the

target is given. This is why we prefer not to add

contexts. If we can use more fine-grained binary

analysis such as parameter and local variable profiling,

we may be able to avoid using contexts.

(4) Patch adaptation. A patch may need to be adapted

for kernels maintained by different vendors since the

vulnerable functions are not always exactly the same

across different kernel branches. Adaptation can also

happen when a patch is back-ported to an older kernel

version. In our evaluation, we find that this happens in

some target images for CVE-2016-5696. Strictly

Step Total Cnt. ** Avg. ∼70%

Analyze 21.52s 107 0.20s -

Translation 1608.52s 293 5.49s 6.29s

Match Ref.0 * 2647.78s 293 9.04s 6.00s

Match Ref.1 * 3415.54s 293 11.66s 7.56s

* Match against reference kernels for uniqueness test.

* 0 for un-patched kernel, 1 for patched kernel.

** Analyze: Patch. Others: Binary Signature.

Table 3: Offline Phase Performance

speaking, FIBER intends to detect exactly the same

patch as appeared in the reference kernel, however, to be

conservative, we still regard such cases as false

negatives.

(5) Other engineering issues. Some FN cases are

caused by engineering issues. For example, certain

binary instructions cannot be recognized and decoded

by the frontend of angr (two cases in total), which will

affect the subsequent CFG generation and symbolic

execution.

6.3 Performance

In this section we evaluate FIBER’s runtime

performance for both offline signature generation and

online matching. We list the time consumption of the

offline phase in table 3 and that of online phase in table

2. From the tables, we can see that a small fraction of

patches needs much longer time to be matched than

average, this is usually because the change sites in these

patches are positioned in very large and complex

functions (e.g., CVE-2017-0521), thus the matching

engine may encounter root instructions deep inside the

function. However, most patches can be analyzed,

translated and matched in a reasonable time. In the end,

we argue that a human will take likely minutes, if not

longer, to verify a patch anyways. An automated and

accurate solution like ours is still preferable, not to

mention that we can parallelize the analysis of different

patches.

6.4 Unported Patches

As shown in table 2, for all the test subjects except

kernel #5, FIBER produces some TN cases, which

suggests un-patched vulnerabilities. If related security

patches had already been available before the test

subject’s release date, then it means that the test subject

fails to apply the patch timely. Table 4 lists all the

vulnerabilities whose patches fail to be propagated to

one or multiple test subject kernel(s) timely in our

evaluation. Note that for security concerns, we do not

CVE
Patch Date *

(mm/yy)
Type** Severity*

CVE-2014-9781 07/16 P High

CVE-2016-2502 07/16 P High

CVE-2016-3813 07/16 I Moderate

CVE-2016-4578 08/16 I Moderate

CVE-2016-2184 11/16 P Critical

CVE-2016-7910 11/16 P Critical

CVE-2016-8413 03/17 I Moderate

CVE-2016-10200 03/17 P Critical

CVE-2016-10229 04/17 E Critical

* Obtained from Android security bulletin.

** P: Privilege Elevation E: Remote Code Execution

** I: Information Disclosure

Table 4: Potential Security Loopholes

correlate these vulnerabilities with actual kernels in

table 2.

From table 4, we can see that even some critical

vulnerabilities were not patched in time, indicating a

good potential that they can be leveraged to compromise

the kernel entirely to execute arbitrary code. One such

case is a patch delayed for more than half a year

affecting a major vendor (who confirmed the case and

requested to be anonymized). This illustrates the value

of tools like FIBER.

Besides, we also identify 4 vulnerabilities in table 4

that eventually got patched in a later kernel release but

not in the earliest kernel release after the patch release

date, indicating a significant delay of the patch

propagation process.

It is worth noting that FIBER intends to test whether

the patch exists in the target kernel, however, the absence

of a security patch does not necessarily mean that the

target kernel is exploitable. So the further verification is

still needed.

6.5 Case Study

In this section, we demonstrate some representative

security patches used in our evaluation to show the

strength of FIBER compared to other solutions.

Format String Change. There are 5 patches in our

collection that intend to change only the format strings

as function arguments. Take the patch for

CVE-2016-6752 in Fig 6 as an example, the specifier p

is changed to pK. It will be impossible to detect it at

binary level without dereferencing the string pointer,

since all other features (e.g.,. topology, instruction

type.) remain exactly the same. However, without patch

insights, it is extremely difficult to decide which register

or memory location should be regarded as a pointer and

whether it should be dereferenced in the matching

CVE-2016-6752
- pr_debug("UNLOAD_APP: qseecom_addr = 0x%p\n", data);
+ pr_debug("UNLOAD_APP: qseecom_addr = 0x%pK\n", data);

CVE-2016-3858
- strlcpy(subsys->desc->fw_name, buf, count + 1);
+ strlcpy(subsys->desc->fw_name, buf,
+ min(count + 1, sizeof(subsys->desc->fw_name)));

CVE-2014-9785
- if (__copy_from_user(&load_img_req,
+ if (copy_from_user(&load_img_req,

CVE-2016-8417
- if (hw_cmd_p->offset > max_size) {
+ if (hw_cmd_p->offset >= max_size) {

CVE-2015-8944
- proc_create("iomem", 0, NULL, &proc_iomem_operations);
+ proc_create("iomem", S_IRUSR, NULL,
+ &proc_iomem_operations);

Figure 6: Example Security Patches

process, rendering all binary-only solutions ineffective

in this case. While FIBER can correctly decide that the

only thing changed is the argument format string (see

§4.2) and then test patch presence by matching the

string content.

Small Change Site. It is very common that a security

patch will only introduce small and subtle changes, such

as the one for CVE-2016-8417 shown in Fig 6, where

the operator “>” is replaced with “>=”. Such a change

has no impact on the CFG topology and only one

conditional jump instruction will be slightly different.

Thus, it will be extremely difficult to differentiate the

patched and un-patched functions without the

fine-grained signature. FIBER handles this case

correctly because the conditional jump is part of the root

instruction and we will check the comparison operator

associated with it.

Patch Backport. A downstream kernel may

selectively apply patches (security or other bug fixes),

which can cause functions to look different from

upstream. Our reference kernel (v3.10) is actually a

downstream compared to all test subjects except #6 as

shown in table 2. The patch for CVE-2016-3858

(shown in Fig 6) has a prior patch in the upstream

(which deletes a “if-then-return” statement) for the same

affected function, which was not applied to our

reference kernel, making the two functions look

different although both patched. FIBER is robust to

such backporting cases because the generated binary

signature is fine-grained and related to only a single

patch.

Multiple Patched Function Versions. After a

security patch is applied, the same function may be

modified by future patches as well. Thus, similar to the

backporting cases, two patched functions can still be

different because they are on different versions.

CVE-2014-9785 is such an example. FIBER can still

precisely locate the same change site as shown in Fig 6

even when faced with a much newer target function,

which differs significantly with the reference function.

Constant Change. Patch for CVE-2015-8944 in Fig

6 only changes a function argument from 0 to a

pre-defined constant S IRUSR (0x100 in reference

kernel). Once again, such a small change makes the

patched and un-patched functions highly similar. Even

though a solution wants to strictly differentiate constant

values, it is in general unsafe because the constants are

prone to change across binaries. However, with the

insights of the fine-grained change site, FIBER can

correctly figure out that only the value of the 2nd

function argument matters in the matching and it should

be non-zero if patched, thus effectively handle such

cases.

Similar Basic Blocks. FIBER generates fine-grained

signatures containing only a limited set of basic blocks

(see §4.3.1). It is likely that there will be other similar

basic blocks as the signature if we only look at the basic

block level semantics. One such example has been

shown in Fig 1 and discussed in §3. Previous work

based on basic block level semantics [27, 26] may fail

to handle such cases, While FIBER tries to integrate

function level semantics into the local CFG, resulting in

fine-grained signatures that are both stable and unique.

7 Conclusion

In this paper, we formulate a new problem of patch

presence test under “source to binary” scenario. We

then design and implement FIBER, a fully automatic

solution which can take the best advantage of source

level information for accurate and precise patch

presence test in binaries. FIBER has been systematically

evaluated with real-world security patches and a diverse

set of Android kernel images, the results show that it

can achieve an excellent accuracy with acceptable

performance, thus highly practical for security analysts.

Acknowledgement

We wish to thank Michael Bailey (our shepherd) and the

anonymous reviewers for their valuable comments and

suggestions. Many thanks to Prof. Heng Yin and Prof.

Chengyu Song for their insightful discussions. This work

was supported by the National Science Foundation under

Grant No.1617573.

References

[1] Android Security Bulletin. https://source.

android.com/security/bulletin/.

[2] BinDiff. https://www.zynamics.com/

bindiff.html.

[3] CVE: Vulnerabilities By Year. https://www.

cvedetails.com/browse-by-date.php.

[4] Github Annual Report. https://octoverse.

github.com/.

[5] NetworkX Python Package. https://networkx.

github.io/.

[6] Security Patch for CVE-2015-8955.

https://git.kernel.org/pub/

scm/linux/kernel/git/stable/

linux-stable.git/commit/?id=

8fff105e13041e49b82f92eef034f363a6b1c071.

[7] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brum-

ley. Enhancing symbolic execution with veritest-

ing. ICSE’14.

[8] B. S. Baker. Parameterized duplication in strings:

Algorithms and an application to software main-

tenance. SIAM J. Comput., 26(5):1343–1362,

October 1997.

[9] M. Bourquin, A. King, and E. Robbins. Binslayer:

Accurate comparison of binary executables. In

Proceedings of the 2nd ACM SIGPLAN Program
Protection and Reverse Engineering Workshop.

[10] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking

rootkit footprints with a practical memory analysis

system. USENIX Security’12.

[11] L. de Moura and N. Bjørner. Z3: An efficient

SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[12] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Hender-

son, and H. Yin. Extracting conditional formulas

for cross-platform bug search. ASIACCS’17.

[13] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa,

and H. Yin. Scalable graph-based bug search for

firmware images. CCS ’16.

[14] D. Gao, M. K. Reiter, and D. Song. Binhunt: Au-

tomatically finding semantic differences in binary

programs. In Information and Communications
Security, 2008.

[15] F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner tree problem, volume 53. Elsevier, 1992.

[16] J. Jang, A. Agrawal, and D. Brumley. Redebug:

finding unpatched code clones in entire os distribu-

tions. Oakland’12.

[17] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.

Deckard: Scalable and accurate tree-based detec-

tion of code clones. ICSE’07.

[18] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder:

a multilinguistic token-based code clone detection

system for large scale source code. IEEE Transac-
tions on Software Engineering, 28(7):654–670, Jul

2002.

[19] W. M. Khoo, A. Mycroft, and R. Anderson.

Rendezvous: A search engine for binary code. In

2013 10th Working Conference on Mining Software
Repositories (MSR), 2013.

[20] S. Kim, S. Woo, H. Lee, and H. Oh. Vuddy:

A scalable approach for vulnerable code clone

discovery. Oakland’17.

[21] J. Lee, T. Avgerinos, and D. Brumley. Tie:

Principled reverse engineering of types in binary

programs. NDSS’11.

[22] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:

finding copy-paste and related bugs in large-scale

software code. IEEE Transactions on Software
Engineering, 32(3):176–192, March 2006.

[23] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and

J. Hu. Vulpecker: an automated vulnerability

detection system based on code similarity analysis.

ACSAC’16.

[24] J. Ming, M. Pan, and D. Gao. ibinhunt: Binary

hunting with inter-procedural control flow. In

Proceedings of the 15th International Conference
on Information Security and Cryptology.

[25] OpenSignal. Android Fragmentation Visual-

ized. https://opensignal.com/reports/

2015/08/android-fragmentation/.

[26] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and

T. Holz. Cross-architecture bug search in binary

executables. Oakland’15.

[27] J. Pewny, F. Schuster, C. Rossow, L. Bernhard, and

T. Holz. Leveraging semantic signatures for bug

search in binary programs. ACSAC’14.

[28] D. A. Ramos and D. Engler. Under-constrained

symbolic execution: Correctness checking for real

code. USENIX Security’15.

[29] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,

M. Polino, A. Dutcher, J. Grosen, S. Feng,

C. Hauser, C. Kruegel, and G. Vigna. SoK: (State

of) The Art of War: Offensive Techniques in Binary

Analysis. Oakland’16.

[30] Y. Tian, J. Lawall, and D. Lo. Identifying Linux

bug fixing patches. ICSE’12.

[31] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and

D. Song. Neural network-based graph embedding

for cross-platform binary code similarity detection.

CCS ’17.

