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Abstract—Fuzz testing operating system kernels has been ef-
fective overall in recent years. For example, syzkaller man-
ages to find thousands of bugs in the Linux kernel since
2017. One necessary component of syzkaller is a collection
of syscall descriptions that are often provided by human ex-
perts. However, to our knowledge, current syscall descriptions
are largely written manually, which is both time-consuming
and error-prone. It is especially challenging considering that
there are many kernel drivers (for new hardware devices and
beyond) that are continuously being developed and evolving
over time. In this paper, we present a principled solution
for generating syscall descriptions for Linux kernel drivers.
At its core, we summarize and model the key invariants or
programming conventions, extracted from the “contract” be-
tween the core kernel and drivers. This allows us to understand
programmatically how a kernel driver is initialized and how
its associated interfaces are constructed. With this insight,
we have developed a solution in a tool called SyzDescribe
that has been tested for over hundreds of kernel drivers. We
show that the syscall descriptions produced by SyzDescribe are
competitive to manually-curated ones, and much better than
prior work (i.e., DIFUZE and KSG). Finally, we analyze the
gap between our descriptions and the ground truth and point
to future improvement opportunities.

1. Introduction

Fuzzing has become one of the most popular methods
for finding bugs and vulnerabilities due to its practicability
and effectiveness. For example, in the context of large-scale
and stateful programs such as operating system kernels, the
state-of-the-art operating system kernel fuzzer, syzkaller [1],
has found more than 4.6k bugs in the Linux kernel over the
past few years, more than 3.6k of which have been fixed [2].

One necessary component of syzkaller is a collection
of syscall descriptions that are often provided by human
experts. As the primary interface between the user space
and kernel space is syscall, the fuzzer needs to be aware of
the syscalls that are available on an operating system kernel,
values of interest for each syscall, and explicit dependencies
between syscalls [3]. For syzkaller, such syscall descrip-
tions can be provided using a declarative language called
syzlang [4]. However, to our knowledge, current syscall
descriptions are largely written manually [4], which is both

time-consuming and error-prone. Indeed, in our study, we
find that existing manually-curated syscall descriptions can
miss dependencies and/or syscall interfaces, and even in-
correct or out-of-date descriptions. It has also been shown
that incomplete syscall descriptions is a major root cause
limiting the code coverage achieved by syzkaller [3]. More-
over, syscall description generation is not a one-time effort.
Descriptions need to be continuously updated as the kernel
evolves (e.g., there are on average 200 commits daily to
Linux mainline [5]). Last but not least, not all kernel drivers
have manually-curated syscall descriptions [6]. Compared
to the core Linux kernel, kernel drivers account for about
71.9% SLoC of the kernel code and therefore a large fraction
of the attack surface that needs to be tested as well [3].

There exist limited solutions to generate syscall descrip-
tions. DIFUZE [6] attempts to generate syscall descriptions
automatically through static analysis of the source code of
kernel drivers. Unfortunately, without a principled model-
ing of the programming convention in kernel drivers, the
generated descriptions are significantly inaccurate. KSG [7]
achieves the same goal partially through a dynamic analysis
to recover drivers and associated interfaces. However, it has
limited coverage of drivers which have to be loaded already
on a live system, and the requirement of setting up such
a live system with a recompiled and instrumented kernel
can be a high bar for adoption. Unfortunately, there exists
no comprehensive evaluation of the quality of these auto-
matically generated descriptions due to lack of comparison
and ground truth. As such, we believe it remains an impor-
tant and unsolved problem to accurately and automatically
generate syscall descriptions.

In this paper, we present a principled solution to tackle
this problem, focusing on Linux kernel drivers. At its core,
we summarize and model the key invariants and program-
ming conventions regarding kernel driver development. This
allows us to understand programmatically how a kernel
driver is initialized and how its associated interfaces are con-
structed. At a high level, we can then statically reconstruct
the initialization of a kernel driver by faithfully following
the summarized/modeled initialization process. As will be
shown in our design, our modeling is chosen to balance
accuracy and generality (e.g., the convention should not be
changing from version to version).

We have implemented our solution in a tool called
SyzDescribe, which is able to statically, accurately and
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automatically generate syscall descriptions for Linux ker-
nel drivers. We evaluate SyzDescribe against static based
tool DIFUZE, dynamic based tool KSG, manually-written
syzkaller descriptions and even a ground truth dataset which
we curate, demystifying the differences between these solu-
tions. We find that SyzDescribe has a much better accuracy
and coverage than DIFUZE and KSG, generating many
more descriptions compared to manually-written syzkaller
descriptions, and is closest to the ground truth. More specif-
ically, we find that the syzkaller descriptions cover only less
than half of the kernel drivers that SyzDescribe generates.
Interestingly, even when a driver is covered by syzkaller
already, we still find many “bugs” in them due to human
mistakes or lack of ongoing maintenance (kernel code and
descriptions become out-of-sync). Furthermore, we evaluate
the effectiveness of SyzDescribe with a number of fuzzing
experiments, and show that SyzDescribe also performs the
best among all existing solutions. Moreover, by applying the
solution to the kernel drivers of the Pixel 6 Android smart-
phone, where no existing syscall descriptions are available,
we are able to find 18 unique crashes.

We summarize our main contributions as below:
• We present a principled solution that can automatically

and statically generate syscall descriptions for Linux ker-
nel drivers, based on the modeling of the well-established
contract between the core kernel and drivers.

• We evaluate SyzDescribe comprehensively and show that
SyzDescribe is capable of generating descriptions that are
highly accurate, better than manually-curated syzkaller
descriptions and closest to the ground truth.

• We investigate and summarize the root causes for the
gap between the results of SyzDescribe and the ground
truth. We then point out future directions for continuing
to improve automated syscall description generation.

• We open source the implementation of SyzDescribe and
the generated syscall descriptions [8] to facilitate the
reproduction of results and future research.

2. Background and Motivation

In this section, we first briefly introduce Linux kernel
drivers, then explain how syzkaller currently describes them,
and finally summarize existing state-of-the-art solutions for
automatically constructing such descriptions.

2.1. Linux Kernel Drivers and Descriptions

Kernel Drivers. In Linux, drivers are in kernel mod-
ules that can be loaded during either boot time or later
on demand [9]. Each kernel module has well-marked
entry and exit points usually defined by macros such
as module_init(x) and module_exit(x). A sin-
gle driver is usually defined within a single kernel mod-
ule. However, it is also possible that a driver is de-
fined across multiple kernel modules that have depen-
dencies between each other, e.g., two kernel modules
defined by subsys_initcall(alsa_sound_init)

1. resource fd_kvm[fd]

2. resource fd_kvmvm[fd]

3. open$kvm(fd const[AT_FDCWD], file ptr[in, string["/dev/kvm"]],

  flags flags[open_flags],...) fd_kvm

4. ioctl$KVM_CREATE_VM(fd fd_kvm, 

        cmd const[KVM_CREATE_VM],...) fd_kvmvm

5. ioctl$KVM_SET_USER_MEMORY_REGION(fd fd_kvmvm,

        cmd const[ KVM_SET_USER_MEMORY_REGION], 

        arg ptr[in, kvm_userspace_memory_region])

6. kvm_userspace_memory_region {

7.   slot flags[kvm_mem_slots, int32]

8.   flags flags[kvm_mem_region_flags, int32]

9.   paddr flags[kvm_guest_addrs, int64]

10.   size len[addr, int64]

11.   addr vma64[1:2]

12. }

Explicit dependency

Command value

Syscalls interface Device file name

Argument type

Figure 1: Example syscall descriptions of KVM in syzkaller

and module_init(alsa_seq_init) collectively con-
stitute a sound sequencer driver. Conversely, a single
kernel module can also define multiple kernel drivers,
e.g., loop-control driver and loop driver are defined in
module_init(loop_init).

In summary, the initialization of a kernel driver takes
place at one or more entry points, during which the inter-
faces exposed to the user space will be defined — first,
one or more device file names will be defined and exposed
under the /dev directory; second, a number of syscall
handlers will be defined and registered, e.g., open() and
ioctl(). Together, this initialization allows for a user-
space application to interact with the driver (we provide a
concrete example in §3.1).

Conceptually, every kernel driver is associated with a
certain type of device, as its goal is to “drive” the device.
There are three first-level types of devices in Linux kernel:
character device, block device and network interface [10]. In
our work, we consider character devices and block devices
because they can be accessed from user space by device
files in the /dev directory. There are also a limited number
of sub-types within each first-level device type, which we
will describe later on.

A device is uniquely identified by the device number,
which is the combination of a major number and a minor
number. The device number not only uniquely identifies a
device and its file name(s), but is also associated with a
set of syscall handlers, e.g., ioctl(). Even though these
details are often hidden from a user-space application that
is interested in interacting with a kernel driver, they are in
fact critical for generating syscall descriptions to exercise
the kernel driver. We will present an example kernel driver
with all these low-level details in §3.1.
Syscall Descriptions. We now illustrate an example syscall
description for the KVM kernel driver shown in Figure 1,
which includes the following necessary components:
• Syscall interface, which allows user-space applications

to interact with the driver. For example, we see open()
and ioctl(), which are the most common. There can
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also be read(), write(), and others.
• Device file name, which is used as an argument in syscall
open(), e.g., “/dev/kvm”.

• Command value, which decides sub-interface of
ioctl() and denotes the value of the second argument
of ioctl() — see the constant string that succeeds the
“$”, e.g., KVM_SET_USER _MEMORY_REGION in line
5. This explicit separation of sub-interfaces in ioctl()
is due to the fact that each command value often leads
to an independent set of functionalities. Treating them as
separate syscall interfaces allows syzkaller to generate test
cases more effectively.

• Argument type, which are other arguments to syscall
interfaces, e.g., the third argument of ioctl(). For ex-
ample kvm_userspace _memory_region declared
in line 5 and defined from line 6 to line 12.

• Explicit dependency [3] between those syscalls, mainly
involving file descriptors being returned from one syscall
interface (e.g., return value of open()) and used in
another (e.g., first argument of ioctl()). Explicit de-
pendency descriptions allow syzkaller to generate valid
test cases that honor the dependencies (i.e., allowing
the subsequent syscalls to proceed without early ter-
mination). Note that file descriptors can also be re-
turned by syscall interfaces other than open() as well
for those complex device drivers. For example, from
ioctl$KVM_CREATE_VM at line 4, we can see that it
returns fd_kvmvm, which will be used as the first argu-
ment of ioctl$KVM_SET_USER_MEMORY_REGION
at line 5. We refer to such dependencies specifically
as non-open file descriptor dependency. Note that
it is almost impossible to fuzz the syscall interface
ioctl$KVM_SET_USER_MEMORY_REGION correctly
without knowing this non-open file descriptor depen-
dency.

2.2. Current Attempts at Generating Syscall De-
scriptions

Currently, the project repository of syzkaller contains a
number of syscall descriptions for various kernel drivers.
As we confirmed with the maintainers of syzkaller, such
descriptions are manually curated and face a number of
challenges. First, these descriptions may be incomplete or
even incorrect, given that the kernel drivers can be complex
and their logic can evolve over time. Second, maintaining
such descriptions can be costly as it needs to be continuously
updated. Third, it is not scalable as there is a constant
stream of new kernel drivers being developed, e.g., the
various Android kernel drivers to support OEM-specific
device drivers [11], [6].

There do exist limited solutions proposed in recent
years to generate syscall descriptions automatically. How-
ever, none of them is able to generate high quality syscall
descriptions that are competitive with the existing manually-
written ones. Below, we briefly describe these solutions
categorized by dynamic and static solutions and discuss their
pros and cons.

Dynamic Solutions. CoLaFUZE [12] and KSG [7] are
recent solutions mainly using dynamic analysis to identify
kernel drivers and recover their interfaces. First, they scan
all the device files available under /dev, and retrieve file
descriptors of those device files by syscall open(). For
syscall handler discovery, they look for specific syscall
handler structures during the execution of syscall open(),
where the structure would be explicitly referenced. This
way, they can easily pair the device file name and the
corresponding syscall handler structure. As we will describe
later in §3.1, by convention, Linux kernel syscall handler
structures are defined as structures that contain a number of
function pointers, e.g., open, ioctl. After syscall handler
recovery, they both apply symbolic execution to recover the
command values and argument types.

Static Solutions. DIFUZE [6] is the only existing so-
lution based on static analysis. To recover syscall han-
dlers, it first attempts to identify syscall handler struc-
tures from a pre-defined list of struct types, e.g., struct
cdrom_device_ops (it is unclear how the list is gener-
ated). Then it attempts to identify the corresponding device
file name (any constant string) used near the reference
of the structure and pair them up. After syscall handler
recovery, it performs a static inter-procedural analysis on
the ioctl() handler to find command values through all
the equality constraints (i.e., switch cases and if con-
ditions), as well as to find the argument type by inspecting
copy_from_user(), a common kernel function used to
copy data from the user space to the kernel space.

Static vs. Dynamic Solutions Static and dynamic solutions
can both achieve the same goal of recovering syscall han-
dlers, as attempted by existing solutions. At a high level,
we believe static and dynamic solutions are complementary.
Dynamic solutions can directly observe what occurs on
a live system with certainty. For instance, it can directly
observe the syscall handler structure as it is already set
up after the driver is loaded. On the other hand, dynamic
solutions have limited coverage as it requires the driver to
be loaded and initialized properly before it can be analyzed.
Static solutions can cast a wider net, identifying drivers that
are not necessarily loaded, but they may not be very precise
compared to dynamic solutions.

In this paper, we choose to tackle the problem statically.
There are a few high-level reasons. (1) Dynamic solutions
alone will not discover all fuzzable drivers/modules, as a
module may be loadable depending on various factors, e.g.,
depending on another module by specifying the flag of
MODULE_SOFTDEP, or requiring certain hardware. We
believe it is helpful to point out the existence of drivers, so
human experts can intervene, e.g., setting them up properly
for fuzzing. (2) Human experts have the need to write syscall
descriptions without any runtime testing environment. For
example, Android vendors may want to start the description
writing process before real devices are available for fuzzing.
Only static solutions can help generate descriptions that can
aid human experts in such cases. (3) Dynamic solutions need
additional engineering work, e.g., hardware-based tracing,
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recompiling the kernel with instrumentation [7] or installing
a kernel module [12], which can be challenging. For in-
stance, Android devices may have locked bootloaders that
prevent a new kernel image from being flashed. Further-
more, recompiling the kernel and enabling specific features
(e.g., eBPF and kprobe) can have compatibility issues based
on our own experience.

To substantiate the first reason, we evaluated KSG and
show in §5.2.2 that it indeed incurs significant false nega-
tives, i.e., missing drivers, device files and syscall interfaces.
Interestingly, we realize another reason that contributed to
false negatives: dynamic solutions still need to model certain
programming conventions, the lack of which results in direct
failure in retrieving the syscall handlers.

Unfortunately, developing a good static solution is non-
trivial. When evaluating DIFUZE (details in §5.2.1), we
find that it incurs both significant false positives and false
negatives in discovering syscall handlers and device file
names. Fundamentally, there is a lack of proper modeling of
the programming convention in kernel drivers. For instance,
it does not have a principled method of discovering all
syscall handler structures. Instead, it relies on a pre-defined
list of struct types which can be incomplete and out-of-
date as kernel drivers evolve over time. Another example
is that it does not model how the device file names and
syscall handler structures are associated. Instead, it relies
on a simple but unreliable heuristic that treats strings near
syscall handler references as device file names.

3. SyzDescribe Design

SyzDescribe aims at fully automating the generation of
accurate syscall descriptions for kernel drivers, descriptions
that can be directly loaded and used by syzkaller. In this
section, we describe the design choices of SyzDescribe, and
the details of the key components. Starting with a moti-
vating example, we first elaborate on the intuition behind
SyzDescribe and why it can overcome challenges faced in
prior solutions conceptually. We then move to its overall
workflow, and eventually dive into the concrete components
that SyzDescribe comprises.

3.1. A Motivating Example

Figure 2 shows an example kernel driver implementation
(simplified from real drivers), which helps us to elaborate on
the programming conventions and invariants. As mentioned
earlier, since all drivers are defined in kernel modules, there
must be a module init function declared by the macro
module_init (line 16). Its definition can be found in line
5. Next, we can see that the driver’s device file is initialized
in the module init function (lines 6-11), which involves
the creation of two objects. According to the Linux kernel
driver development convention, one object corresponds to
the “driver” (struct cdev) containing the description
of a set of syscall handlers (see line 12) and the other
corresponds to the “device” (struct device) containing
the description of the device file name (see line 13). Note

1. static struct xx xx;
2. static struct xx_device_ops xx_ops = {
3.  .ioctl = xx_function_1,
4. }
5. static int __init xx_init(void) {
6.  dev_t devt = MKDEV(MAJOR, MINOR);
7.  struct cdev *cdev = cdev_alloc();
8.  cdev->dev = devt;
9.  struct device *dev;

10.  device_initialize(dev);
11.  dev->devt = devt;
12.  xx_function_2(cdev);
13.  xx_function_3(dev);
14.  xx.ops = xx_ops;
15. }
16. module_init(xx_init);
17. static struct file_operations ops = {
18.  .open = xx_open,
19.  .unlocked_ioctl = xx_ioctl
20. }
21. void xx_function_2(struct *cdev) {
22.  cdev->ops = ops;
23. }
24. void xx_function_3(struct *dev) {
25.  dev_set_name(dev, "name%d", id);
26. }
27. int xx_open(struct inode *inode, struct 

file *file) {
28.  file->private_data = xx;
29. }
30. long xx_ioctl(struct file *file, int cmd, 

long arg) {
31.  switch (cmd) {
32.    case cmd_1:
33.      struct xx_type xx_arg;
34.      copy_from_user(&xx_arg, arg, 

sizeof(xx_arg));
35.      ...
36.      break;
37.    case cmd_2:
38.      fd = get_unused_fd_flags(...);
39.      file = anon_inode_getfile(..., 

&no_fops, ...);
40.      fd_install(fd, file);
41.      return fd;
42.    default:
43.      xx = file->private_date;
44.      if (xx.ops->ioctl)
45.        xx.ops->ioctl(file, cmd, arg);
46.  }
47.  if (cmd == cmd_3) {
48.    ...
49.  }
50. }
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Figure 2: Simplified example kernel driver implementation

that a single set of syscall handlers can support multiple
devices (e.g., with different device file names), hence the
two separate objects. Furthermore, each device must have
a unique device number (line 6), which is associated with
both the driver and device objects, allowing the two objects
to be paired together to form a complete driver interface
(i.e., both syscall handlers and the device file name).

We can see the definition of the actual syscall handlers,
e.g., xx_open() (line 18) for handling the syscall open()
of the device file and xx_ioctl() (line 19) for handling
the syscall ioctl(). In the ioctl() handler, we can see
the command value in switch case statements (from
line 31 to line 46) or if conditions (line 47). Also, we can
see the third parameter of the ioctl() handler (line 34)
declared as a long type but treated as a pointer to a specific
struct type, under a given command value (line 32). This is
because a given command value may completely change the
behavior the syscall ioctl() and hence require custom
data structures passed in as the third argument. Besides,
we can see that a non-open file descriptor being installed
and returned from ioctl() (line 38-41), under a specific
command value.



5

Kernel Module Analysis
kernel 

module 
identificationIR

Linux Kernel 
Modules 
(LLVM 

Bitcode)

kernel 
modules 
and priority

kernel driver identification
syscall handler & device file 

name recovery

Syscall 
Handlers

Syscall Handler Analysis

command value recovery

additional syscall handler 
recovery

argument type recovery

syzlang

Syscall 
Descriptions

(syzkaller-
compatible)

Device File 
Names

Figure 3: System Overview

Finally, there are two other structs defined in
the beginning (line 1 to 4). Interestingly, struct
xx_device_ops (which is reachable by the other struct)
looks like a syscall handler struct that stores function point-
ers pointing to actual handler functions. However, as we can
see, the struct is only really used inside a syscall handler
(see line 43 to 45) and is not used to handle syscalls. This
shows that a simple heuristic to search for structs that look
like a syscall handler will not work.

3.2. Overview

Now we present the high-level workflow of SyzDescribe
(as depicted in Figure 3). SyzDescribe requires LLVM bit-
code [13] of Linux kernel modules as input and produces
syscall descriptions in syzkaller-compatible format as out-
put. As shown in Figure 3, there are two main stages in
SyzDescribe:
• Kernel Module Analysis, SyzDescribe detects kernel

modules by their initialization functions and associates
modules with priorities that determine the order of execu-
tion during kernel boot time. SyzDescribe then recognizes
the presence of any kernel driver that may span across
more than one kernel module, and recovers the basic
interfaces created and exposed to the user space, i.e.,
supported syscalls (and the corresponding handlers) and
device file name.

• Syscall Handler Analysis, For each discovered syscall
handler, SyzDescribe attempts to recover additional de-
tails about these interfaces. This includes the command
values and argument types supported by the ioctl()
handler. In addition, SyzDescribe can recover additional
syscall handlers which can lead to recovery of non-open
file descriptor dependencies. Finally, SyzDescribe can
translate the knowledge into syscall descriptions directly
usable by syzkaller.
The premise of our solution is that kernel driver de-

velopment follows certain contracts or interfaces between
the core kernel and drivers. SyzDescribe depends on a
minimal set of such contracts (most of which exist for over
a decade), including (1) how a driver / module is initialized,
i.e., where the initialization functions are defined and their
order of invocation; (2) key types of driver and device
objects (e.g., struct cdev and struct device) and
how they are initialized/registered; (3) file-related objects
and how they are associated with syscall handlers. We will
provide more details on exactly what SyzDescribe assumes

in §3.3 and §3.4, and how we model the initialization and
file-related operations based on them. The faithful modeling
of the critical kernel driver operations is the key feature that
differentiates our solution from the prior work.

3.3. Kernel Module Analysis

Here, we focus on modeling the initialization process of
kernel modules (and hence drivers). This component is a
key contribution of SyzDescribe.

3.3.1. Kernel Module Identification. First of all, we need
to detect all module init functions (defined in 2.1) to identify
kernel modules (where kernel drivers are housed) in the
bitcode. In the common case, this is straightforward as
most kernel modules use the easily recognizable macro
module_init() to declare module init functions (as seen
in Figure 2). However, this is not the only macro that does
this. For example, subsys_initcall() is used in the
sound driver for declaring the init function as well. Regard-
less of how many there are, these macros will eventually
use the lowest level macro named __define_initcall.
It is important to note that __define_initcall takes
two arguments — the first specifying the function to be
declared as a module init function, and the second rep-
resenting the priority of the corresponding module init
function, determining the global order of execution by the
kernel. Various higher-level macros that eventually rely on
__define_initcall are defined (see Figure 7 in Ap-
pendix). Note the second argument being different — 0
being the highest priority, 1 being the next, and 1s being
the one after, and so on. In Linux, all loadable kernel
modules are declared by module_init, which means they
will have a priority of 6. Based on this, our analysis can
extract each declared module init function and its associated
priority.

The order of execution of different kernel module init
functions matters when a driver is defined across different
kernel modules. This is because a driver can perform some
partial initialization in one kernel module, e.g., setting up
certain indirect calls (discussed more in §4.2), which would
influence the later kernel module init functions.

We rely on the above “contract”, which has existed in
the kernel since v2.6.19 [14].

3.3.2. Kernel Driver Identification. Now that we can iden-
tify all kernel modules globally and decide the order of their
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Figure 4: Relations among driver/device-related data structures in kernel
(colors correspond to different parts in Figure 2)

initialization, our next task is to identify kernel drivers. As
mentioned earlier, some drivers are defined across multiple
kernel modules and it is not immediately clear which kernel
modules collectively form a single kernel driver. Our solu-
tion is to iterate through all kernel modules and group the
ones that share data structures or unique device numbers.
Driver and device object identification and pairing. From
Figure 2, we know there are two key types of objects that
are defined during the initialization of a kernel driver, and
they collectively define the basic driver interface. Our goal
is to identify the two types of objects and associate them
(regardless of whether they are defined in the same kernel
module or different ones). As shown in Figure 4, one type
of objects is what we call driver objects (e.g., struct
cdev) that contain descriptions about syscall handlers (of-
ten defined as file operation structures). The other type is
what we call device objects (e.g., struct device) that
contain descriptions about device file names.

Since we consider only character and block devices,
there are only struct cdev and struct gendisk
types, which are the corresponding driver objects. There is
only struct device type that corresponds to the basic
device objects.

To pair the two types of objects, we rely on the device
numbers assigned to each type of object (e.g., line 6, 8
and 11 in Figure 2). Different kernel drivers will have their
unique device numbers. If the major number (e.g., MAJOR)
is already unique, then the minor number (e.g., MINOR))
can be optional for the driver object. Otherwise, the two
numbers combined need to be unique globally. Note that
device objects must have minor numbers assigned. When
multiple device objects (with different device file names)
are supposed to be paired with a single driver object, they
will all share the same major number, but the minor number
of the driver object will not be set. This allows the pairing
to rely on only the major number [10].

To summarize, as long as we can recover the major
number and minor number assigned to each driver and
device object, regardless of which kernel modules they are
located in, we can pair them.

We rely on the above “contract” which has existed in the
kernel since v2.6.12. We will explain more details on what
additional types device objects there may be and how we
handle them in §4.3. For now, we will assume that there are
a few pre-defined ones, which means it is straightforward
to identify the creation and initialization of both driver and
device objects by type.
Syscall handler and device file name recovery. Now that

we can track both the driver and device objects by type
as mentioned above, we can simply inspect their related
critical fields, at the time when the objects are registered
through well-marked kernel functions (e.g., cdev_add())
to recover what we need. As we show in Figure 4, syscall
handlers are stored in file operation structures which are
assigned to driver objects, whereas device file names are
stored in device objects.

It is important to note that the various syscall handlers
stored in the same operation structure naturally lead to open
file descriptor dependencies being recovered. Specifically,
by convention, an open() handler is assumed to return a
file descriptor which is then fed into the co-located syscall
handlers such as ioctl() and read() (in the same
operation structure).

For example, we can identify store instructions that
write into cdev->ops, the source operand of which will
correspond to the syscall handler structure. Similarly, we
can identify functions such as dev_set_name(dev,
“name%”, id); that ultimately sets the field of
dev->kobject.name. For ease of implementation, we
model a common set of APIs that perform the initialization
(the complete list is in Figure 8 in appendix), including
the support of common format string specifiers such as
%s and %d. In general, these can be extended with minor
engineering efforts. As shown in our evaluation, we are
able to successfully recover 72% of all device names in
our dataset (see §5.2).

3.4. Syscall Handler Analysis

As mentioned, once we recover the syscall handlers,
we will need to analyze these handlers in more detail to
recover even more specifics about the interfaces exposed
to the user space. This primarily includes the arguments
of syscalls and non-open file descriptor dependencies. Note
that the prior work supports only the former, which can leave
important code uncovered due to the lack of knowledge of
dependencies.

3.4.1. Command Value Recovery. For most kernel drivers,
the main driver logic is encoded in the ioctl() syscall
handler. First, we identify the command values by checking
their uses in switch case statements and if conditions
(only considering equality comparisons). Then we extract
the basic blocks behind a specific command value through
a reachability analysis, i.e., those that belong to the true
branch of an if condition or a particular switch
case. For example, in Figure 2, the reachable basic blocks
of command value cmd_1 are line 33 - 35, and the reachable
basic blocks of command value cmd_2 are line 38 - 41.
Then we can analyze these basic blocks separately to recover
more fine-grained syscall descriptions as will be described
next. Besides, we have a tailored solution to resolve indirect
calls (detailed in §4.2).

3.4.2. Argument Type Recovery. After the reachability
analysis for each command value, we aim to recover the
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Figure 5: Relations of data structures around non-open file descriptors
(colors correspond to different parts in Figure 2)

corresponding type of argument (the one right after the
command argument). Similar to prior work, we model com-
mon kernel functions such as copy_from_user() in
order to achieve this [10], [6], [7]. As we illustrated in
Figure 2, in line 34, we can see the destination argument
type of copy_from_user() being struct xx_arg
(under command value cmd_1). This allows us to infer that
the argument type is a pointer type pointing to a struct
xx_arg object. In addition to copy_from_user(), we
also model function memdup_user() that was missed in
prior work. Note that our current solution does not support
nested argument types [15], which we leave as future work.

3.4.3. Additional Syscall Handler Recovery. In addition
to module init functions, syscall handlers themselves can
also create and register additional syscall handlers. This is
the most common in ioctl() handlers where additional
struct file objects are created and registered. Inside a
struct file object, there is a pointer to the struct
file_operations object, representing the correspond-
ing set of syscall handlers associated with the file object. In
addition, as shown in Figure 5, by convention, a struct
file object is paired with a file descriptor that will be
returned to the user space. For example, in Figure 2, from
line 37 to 41, we can see the ioctl() handler with
command value cmd_2 has created a file descriptor and a
struct file object, and paired them through a specific
function called fd_install().

If we can discover the creation and initialization of a
struct file object, as well as its association with a
file descriptor, we will be able to infer two things: (1) the
corresponding syscall handlers will be exposed to the user
space, which we should continue to analyze recursively for
command value, argument type, and additional syscall han-
dler recovery; (2) a non-open file descriptor dependency,
which is effectively formed because we know that the syscall
handlers will operate exclusively on the paired file descriptor
that is returned to the user space. In other words, following
the example in Figure 2, we know the return value of the
xx_ioctl(fd, cmd_2, arg) should be used as the
first argument of the syscall handlers defined in no_fops.

Our solution models the struct file object and
file descriptor based on the set of related kernel functions.
Interestingly, we find that none of the prior work have mod-
eled these behaviors and therefore will miss the additional
interfaces and non-open file descriptor dependencies in
syscall descriptions. The “contract” (including both the type
of objects and the functions) we rely on has existed in the
kernel since v2.6.12.

4. Implementation

SyzDescribe is implemented as a static analysis tool
using the LLVM toolchain, based on LLVM 14. We sep-
arately handled the kernel module analysis and syscall han-
dler analysis. For the former, SyzDescribe performs a top-
down inter-procedural, context-sensitive, and field-sensitive
analysis. As an optimization, we prune the functions that do
not lead to driver or device related operations. For the latter,
SyzDescribe performs a top-down inter-procedural, context-
sensitive, and flow-sensitive analysis. Flow-sensitivity is
necessary to differentiate the branches executed under dif-
ferent command values where corresponding argument types
are extracted. In total, there are 8.2k (C++) lines of code for
the whole system (including generation of syzlang format
syscall descriptions) and 0.3k (Golang) lines of code for
building and linking LLVM bitcode of the Linux kernel.
In this section, we will describe in more detail several
implementation aspects of our tool.

4.1. Kernel Module Identification

As mentioned, we rely on the macro
__define_initcall() to identify the declaration of
kernel modules. However, in practice, these macros are
expanded during the pre-processing of the compiler. Since
our analysis is on the LLVM intermediate representation
(where macros are already expanded), we can no longer
observe the macros. In fact, even at the source level,
__define_initcall() is implemented through the
inlined assembly. Such assembly code will carry over to the
LLVM bitcode as well. Our current solution is to recognize
the pattern of such assembly directly, which works for
kernel since v4.19. For loadable modules (as opposed to
built-in modules), there is a different expansion of the
macro even though they are still declared using macro
module_init [16]. The form is to set a global function
pointer with the name init_module, pointing to the
entry points of the kernel module. Our current solution is
to search the global function pointer in LLVM bitcode by
name, which works for a kernel since v2.6.12.

4.2. Indirect Call Resolution

The indirect call is a well-known challenge in static
analysis of kernel code. No perfect solution exists given
the kernel’s complex multi-entry and stateful nature [17].
Nevertheless, there are several recent advances [18], [19]
that rely on heuristics based on type information (e.g., parent
structure of a function pointer) to match potential indirect
call targets. The downside of such solutions is that they
still over-approximate and produce many false indirect call
targets, which substantially lengthens the overall analysis
time in some of our experiments.

In our solution, we apply a simple and effective filter on
top of [18] (which has an open source version) to reduce
the set of indirect call targets. Our observation is that the
scope of our analysis is much more focused on module init



8

1. struct miscdevice {

2.   int minor;

3.   const char *name;

4.   const struct file_operations *fops;

5.   struct device *this_device;

6. };

7. extern int misc_register(struct miscdevice *misc);

Syscall handler structure

Minor number Device file name

Figure 6: Miscellaneous structure

functions rather than syscalls. Both can set up indirect call
targets and perform indirect calls. But there is an inherent
ordering of these functions, which we can leverage to prune
indirect call targets that are impossible. Namely, an indirect
call target is feasible at an indirect call site only if the target
has been set up in prior functions. In other words, given
the initial targets of an indirect call site using the solution
from [18], we further constrain the targets to those that have
been seen (and used in some way) in functions that can be
invoked earlier.

We know that different modules are initialized with dif-
ferent priority/ordering in §3.3.1. Loadable kernel modules
are an exception because they can be loaded on demand
at any point in time and therefore cannot be assigned a
specific ordering. The ordering also applies beyond module
init functions. By definition, all syscall handlers for a driver
can only be invoked after the corresponding module init
functions. Furthermore, the open() handler, if present,
is always invoked earlier than other syscall handlers. For
instance, let us say the targets of an indirect call site within
a module init function are said to contain two targets (e.g.,
funcA and funcB) according to [18]. Suppose funcA is
used in another module init function with a higher priority,
and funcB is used in a syscall handler for an unrelated
module, we will retain funcA and prune funcB. This is
because only funcA can possibly be set up before the in-
direct call site. This pruning is effective because oftentimes
the type-based methods will match many false indirect call
targets just because their types match, regardless of where
the targets are (within the same modules or outside). To give
some concrete evidence, we find that SyzDescribe success-
fully reduced the average number of indirect call targets per
call site from 33.2 to 5.8 for the allyesconfig.

4.3. Additional Device Object Modeling

As mentioned in §3.3.2, a key step in identifying drivers
and their interfaces is through recognizing and pairing driver
and device objects. We mention that we only recognize
struct cdev and struct gendisk.

For device objects, there is only one primitive struct
device type, which sometimes can be encapsulated by
other types. For example, struct miscdevice is such
a type that encapsulates struct device — it contains
a pointer to a struct device object, as shown in Fig-
ure 6. Such objects can be created and manipulated directly
through another layer of abstraction (e.g., using separate

APIs). For example, kernel driver developers can choose
to assign the device file name to the field of struct
miscdevice. But then when the object is registered
through misc_register(), the name will be copied
into the field of the encapsulated struct device object
ultimately. Similarly, the minor number will be propagated
to the struct device object.

Note that syscall handlers are supposed to be defined
by driver objects according to the contract we described in
§3.3.2, and yet struct miscdevice contains a pointer
named fops pointing to a set of syscall handlers as well.
This may seem contradictory initially. However, in reality,
for any driver that uses struct miscdevice, there will
indeed be a driver object and its syscall handlers reg-
istered separately with a matching device number. What
happens is that the new syscall handlers defined in struct
miscdevice will be used to replace the original ones after
it is registered through misc_register().

In principle, we can automatically recognize such
extended device objects which encapsulate struct
device and analyze them accordingly. However, for ease
of implementation, we recognize these objects by modeling
the related APIs. By searching through the latest Linux
kernel, we find only four such types, namely struct
miscdevice, struct usb_class_driver,
struct drm_driver, and struct snd_minor. The
first three were defined since Linux v2.6.12 and the last
one was defined in Linux v2.6.16.

5. Evaluation

In this section, we present our evaluation results. Specif-
ically, we aim to answer the following questions:

• RQ1. What’s the number of the syscall descriptions
generated by SyzDescribe compared with other so-
lutions? (§5.1)

• RQ2. What’s the quality of the syscall descriptions
generated by SyzDescribe? (§5.2)

• RQ3. How effective are syscall descriptions gener-
ated by SyzDescribe in fuzzing? (§5.3)

All experiments except Android fuzzing ones are con-
ducted on a machine with an Intel(R) Xeon(R) Gold 6248
CPU and 512GB of RAM, running Ubuntu 18.04 LTS.
The target Linux kernel version is v5.12, which is released
on 04/25/2021. The version of syzkaller and its syscall
descriptions are both based on the commit of 36c8823
(made on a closest date) from the git repository [1]. We
use the allyesconfig for the Linux kernel to generate
descriptions, and the configuration from syzbot [20] for
fuzzing experiments. This is because the allyesconfig cannot
be used to compile a bootable kernel, e.g., only a subset
of drivers from the same category should be enabled in a
specific operating system. The syzbot config represents the
decision made by Google when fuzzing the Linux kernel
through QEMU.
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Table 1: Syscall Descriptions Comparison of SyzDescribe

Name Config #HANDLER #NAME #CMD
&TYPE

#N-
OPEN

Time
(hours)

SyzDescribe allyes 415 653 3,379 58 3.76
DIFUZE allyes 4,334 48 560 0 0.42

DIFUZE_F allyes 4,403 60 761 0 0.16

SyzDescribe syzbot 185 229 2,119 33 0.47
KSG syzbot 88 1,0981 7142 0 2.38

syzkaller 36c8823 153 232 1,737 27 n/a
1 KSG generates many similar device file names (i.e., “usbmon0”,

“usbmon1”, ..., “usbmon40”), which is “usbmon#” in SyzDescribe
and syzkaller descriptions. If we group them, the number is 142.

2 KSG generates some totally repeated CMD&TYPE. If we remove
those repeated ones, the number is 485.

5.1. Overall Results

In this section, we present overall results of the syscall
descriptions generated by SyzDescribe, and compare them
against those from DIFUZE, and KSG, as well as the
syzkaller descriptions (i.e., manually-curated syscall de-
scriptions from the official syzkaller repository).
Metrics. Our comparison focuses on the following metrics.
#HANDLER is the number of syscall handler structures
(from drivers and their non-open file descriptor dependen-
cies). #NAME is the number of device file names. #CMD
is the number of command values. #TYPE is the number
of argument types. #CMD&TYPE is the number of valid
combinations of them. #N-OPEN is the number of non-
open file descriptor dependencies, which result directly from
the additional handlers recovered as described in §3.4.3.
We highlight the non-open dependencies because no ex-
isting solutions attempt to recover them. Moreover, such
dependencies are always from “complex” device drivers and
recognizing them do lead to significant new code coverage
that would otherwise be missed completely (as will be
shown in the kvm example later).
Analysis time. As we can see in Table 1, SyzDescribe
spends 3.73 hours to finish the analysis of 7,554 kernel
modules under allyes, averaging 1.66 seconds per module.
The maximum time SyzDescribe needs to spend on one
module is 86 seconds. DIFUZE runs significantly faster as it
does not attempt to model the module initialization process.
Finally, KSG runs slower than SyzDescribe in the Linux
kernel with syzbot config.

5.1.1. SyzDescribe vs. DIFUZE and DIFUZE_F. Since
our evaluation is based on a new version of Linux ker-
nel (v5.12), we had to port DIFUZE to a newer version
of LLVM/Clang, which is required by Linux v5.12. The
results of this ported version are labeled as DIFUZE in the
Table 2. However, due to the updates of LLVM/Clang and
kernel, there are some compatibility issues that impacted
DIFUZE. To be fair, we fixed these issues that fall under two
categories: (1) correcting hard-coded offsets for certain types
that have changed in kernel v5.12; (2) fixing failed tracking
of copy_from_user() destination object due to changes
in compiled LLVM bitcode (otherwise no argument type can
be recovered). The fixed version is labeled as DIFUZE_F.

As we can see in Table 1, SyzDescribe recovers far less
syscall handler structures than DIFUZE or DIFUZE_F (415
vs. 4,334 or 4,403). However, as will be shown in §5.2.1
and §5.3.1, most syscall handler structures found by DI-
FUZE or DIFUZE_F are actually false positive, given that
they recovered only 48 or 60 device file names. For refer-
ence, in manually-curated syzkaller descriptions, there are
only 153 handler structures from 232 device file names.
In comparison, the 415 handler structures recovered by
SyzDescribe correspond to 653 device file names. Regarding
cmd&type combinations and non-open explicit dependen-
cies, SyzDescribe recovered many more descriptions com-
pared to DIFUZE and even the manually-curated ones.

5.1.2. SyzDescribe vs. KSG. To be fair, we run
SyzDescribe using the same syzbot config which compiles a
subset of drivers (compared to allyesconfig into the kernel,
therefore lowering the number of descriptions. Even then,
SyzDescribe still outperformed KSG significantly, recover-
ing more syscall handler structures (185 vs. 88). Upon a
closer look, the discrepancy was due to: 1) 64 drivers which
are compiled into the kernel but need to satisfy some other
dependencies (e.g., plugin related hardware or execute other
syscalls) to make the related device file exposed under the
/dev directory. 2) 33 non-open file descriptor dependen-
cies. 3) 49 drivers which need additional modeling. The
first reason is clearly a limitation of a dynamic solution. The
second and third reasons are more related to the modeling
necessary to capture the syscall handlers and their associated
interfaces. The third reason is especially interesting because
we did not anticipate that even a dynamic solution still
needs a similar modeling of the programming conventions.
In this case, KSG did not model how to look for the syscall
handlers of block devices, i.e., they are not located through
the struct file object’s pointer field f_ops (which is what
KSG assumes to be), thus missing all the handlers of block
devices.

In terms of file names, SyzDescribe recovers fewer
device file names than KSG (229 vs. 1,098). It would
appear that SyzDescribe does a much worse job. How-
ever, the discrepancy is in fact much smaller than the
data suggest. Specifically, the 1,090 file names are bloated
because KSG counts variations of the same device file name,
e.g., “usbmon0”, “usbmon”, ..., “usbmon4” as separate ones
whereas SyzDescribe (as well as syzkaller syscall descrip-
tions) counts them as a single one based on the format string:
“usbmon%” that appeared in the module initialization logic.
Indeed, all of these file names point to the same set of syscall
handlers. If we group such files for KSG’s result, the number
of file names goes down to 142.

Finally, SyzDescribe recovers many more cmd&type
combinations than KSG (2,119 vs. 714) because (1)
SyzDescribe finds more syscall handlers, and (2)
SyzDescribe performs an inter-procedural static analysis
with a more accurate indirect call resolution while KSG
does an intra-procedural symbolic execution, which misses
many command values and argument types that appear in
the callees of the ioctl() handler. In fact, we find that
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Table 2: Accuracy comparison of SyzDescribe vs. DIFUZE vs. Ground
truth

Name #HANDLER #NAME #CMD #TYPE #N-OPEN

TP FP F1 TP FP F1 TP FP F1 TP FP F1 TP FP F1

SyzDescribe 96 0 0.95 74 31 0.71 1,039 48 0.84 521 2 0.74 6 0 1.00

DIFUZE 49 30 0.53 16 4 0.26 269 24 0.32 0 0 0.00 0 0 0.00

DIFUZE_F 52 25 0.57 16 4 0.26 269 26 0.32 78 4 0.16 0 0 0.00

Ground truth 106 - - 103 - - 1,400 - - 894 - - 6 - -

Table 3: Accuracy comparison of SyzDescribe vs. KSG vs. Ground truth

Name #HANDLER #NAME #CMD #TYPE #N-OPEN

TP FP F1 TP FP F1 TP FP F1 TP FP F1 TP FP F1

SyzDescribe 74 0 0.99 58 24 0.75 837 42 0.81 399 2 0.70 6 0 1.00

KSG 43 2 0.71 45 0 0.77 223 303 0.26 64 15 0.16 0 0 0.00

Ground truth 76 - - 72 - - 1,192 - - 732 - - 6 - -

1,270 of 2,119 combinations recovered by SyzDescribe
require looking into the callees.

5.2. Accuracy of SyzDescribe’s Descriptions

In this section, we try to understand the correctness
of the generated syscall descriptions of various solutions
against a set of ground truth descriptions which we manually
construct.
Dataset. We randomly pick 100 kernel drivers and manually
analyze them with best efforts which form the ground truth
dataset. To mitigate potential errors we make during the
process, we always cross-validate with the syscall descrip-
tions generated with SyzDescribe and from syzkaller (the
manually-curated ones) to see whether we missed anything.
Overall, it takes more than one person month to collect
the ground truth for the 100 drivers. To our knowledge, no
prior work has built a ground truth dataset of this scale for
evaluation.

We use the full 100-driver dataset for comparison against
DIFUZE as shown in Table 2. Again, to be fair against KSG,
we choose to include a subset of the 100 drivers that are
compiled with the syzbot config, i.e.,, 70 drivers; the other
30 are compiled only under the allyes config. Similarly,
because 57 drivers are missed completely in the syzkaller
descriptions, to be fair against them, we choose to include a
subset of drivers that are covered by them, i.e.,, 43 drivers.

5.2.1. SyzDescribe vs. DIFUZE and DIFUZE_F. The
results are shown in Table 2. Compared with DIFUZE
and DIFUZE_F, SyzDescribe has a significant advantage
in all aspects. First, SyzDescribe performs better on both
#HANDLER (0.95 vs. 0.57 of F1) and #NAME (0.71 vs.
0.26 of F1). For #NAME, although SyzDescribe has more
false positives for some complex drivers, SyzDescribe sig-
nificantly boosts the true positives and is much closer to the
ground truth. Because SyzDescribe is more accurate than
DIFUZE in both recovering syscall handlers and resolving
indirect calls, it also finds more command values (0.84
vs. 0.32 of F1) and argument types (0.74 vs. 0.16 of F1).

Table 4: Accuracy comparison of SyzDescribe vs. syzkaller descriptions
vs. Ground truth

Name #HANDLER #NAME #CMD #TYPE #N-OPEN

TP FP F1 TP FP F1 TP FP F1 TP FP F1 TP FP F1

SyzDescribe 47 0 0.99 42 7 0.87 807 34 0.81 393 2 0.68 5 0 1.00

syzkaller 45 0 0.97 46 0 0.98 922 0 0.89 506 3 0.80 3 0 0.75

Ground truth 48 - - 48 - - 1,141 - - 755 - - 5 - -

Table 5: Improvement of SyzDescribe vs. syzkaller descriptions

Category Syscall handler structure #

Commit time
of related
code in

Linux kernel

Update time of
latest syzlang

(before 04/2021)

kernel drivers
with CMD FN

lo_fops 1 05/2020 12/2019
sg_fops 7 10/2014 01/2019

usbdev_file_operations 11 08/2019 01/2020
rfkill_fops 1 06/2009 03/2019

snd_timer_f_ops 6 04/2018 03/2020
snd_ctl_f_ops 1 05/2005 01/2020

nbd_fops 1 04/2005 02/2021
raw_fops 19 01/2020 06/2020

ashmem_fops 2 12/2011 01/2018
ppp_device_fops 4 12/2020 01/2019

tun_fops 1 02/2018 03/2020

kernel drivers
with

TYPE FN

lo_fops 1 05/2020 12/2019
usbdev_file_operations 5 01/2015 01/2020

raw_fops 1 10/2015 06/2020
sr_bdops 9 04/2005 08/2020

hiddev_fops 5 03/2008 04/2020
evdev_fops 3 08/2010 03/2020

kernel drivers
with TYPE FP

snd_timer_f_ops 2 04/2018 03/2020
snd_ctl_f_ops 1 12/2019 01/2020

kernel drivers
with

N-OPEN FN

udmabuf_fops 1 09/2018 02/2019
(fixed in 01/2022)

lo_fops 1 05/2007 12/2019

Besides, SyzDescribe can recover 6 non-open file descriptor
dependencies, which are completely missed by DIFUZE.

5.2.2. SyzDescribe vs. KSG. The results are shown in
Table 3. Compared with KSG, SyzDescribe has advantages
in all aspects except the device file names. For #HANDLER,
SyzDescribe performs better (0.99 vs. 0.71 of F1). For
#NAME, we note that, for KSG, we group variations of the
same device name such as “usbmon0” and “usbmon1” into
a single device name to be consistent with how we count
them in SyzDescribe. SyzDescribe has more true positives
but also has more false positives, which makes its F1 score
slightly worse than KSG (0.75 vs. 0.77). It is worth noting
that, as we will discuss later in §5.3.3, false positives gen-
erally do not have a big influence on fuzzing. SyzDescribe
has an overwhelming advantage in #CMD (0.81 vs. 0.26
of F1) and #TYPE (0.70 vs. 0.16 of F1). Interestingly, we
find that KSG generates many unspecified command values
for ioctl() interfaces, because it is unable to pinpoint
the specific values through its intra-procedural symbolic
execution. We consider such CMDs as FPs, since KSG does
generate an entry for them (sometimes multiple repeated
ones) in the description file. Finally, SyzDescribe again
recovers 6 non-open file descriptor dependencies, which are
completely missed by KSG.
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5.2.3. SyzDescribe vs. syzkaller Descriptions. Table 4
shows the results are competitive with the manually-curated
syzkaller descriptions. Interestingly, SyzDescribe even re-
covered more syscall handlers (0.99 vs. 0.97 of F1), which
is because of two additional non-open file descriptor depen-
dencies. Meanwhile, SyzDescribe generated 42 device file
names (0.87 vs. 0.98 of F1), 807 CMDs (0.81 vs. 0.89 of F1)
and 393 TYPEs (0.68 vs. 0.80 of F1), which are marginally
worse than the existing descriptions.

Note that the results vary from driver to driver. Regard-
ing #CMDs, SyzDescribe generated more CMDs for 11
drivers, the same number for 17 drivers, and less for 13
drivers. Regarding #TYPEs, SyzDescribe generated more
TYPEs for 6 drivers, the same number for 24 drivers,
and less for 11 drivers. Combined together, SyzDescribe
generated either more CMDs or more TYPEs for 13 drivers.
We then analyze these 13 drivers in more depth to un-
derstand these “bugs” in human-generated descriptions. We
summarize the results by types of “bugs” for these drivers
(identified by their corresponding ioctl() handlers) in
Table 5. We can see that SyzDescribe recovers 78 missed
command values or argument types across a total of 13 ker-
nel drivers1. In addition, we see manual syscall descriptions
incur three false positives with regard to the argument types
across two drivers, identified by snd_timer_f_ops and
snd_ctl_f_ops. This drives us to investigate the reason
of these bugs.

Interestingly, for the two drivers (i.e., identified by
lo_fops and ppp_device_fops), they have been
changed with new command values and argument types after
the last update of the syscall description, indicating that
ongoing human maintenance is needed. In both cases, the
last updates to the descriptions were in 2019 and clearly no
updates were made up until 04/25/2021 (which is the version
we analyzed). For the three false positives of syzkaller
descriptions, we find that they are due to the evolution
of the kernel code. In other words, the syscall descrip-
tions were accurate in describing some argument types,
but the definitions of those types have changed after some
Linux kernel versions (04/2018 and 12/2019 respectively),
which causes the syscall descriptions to become out-of-sync.
More interestingly, even though there are other updates to
the syscall descriptions (in 2020), the human experts have
missed such problems. For other cases, the relevant changes
in the kernel have been made much earlier, which technically
are visible to human experts. Unfortunately, they are still
missed likely because of the labor-intensive and error-prone
nature of reading and understanding kernel code. In addition,
we also inspected the two false negatives of the non-open
file descriptor dependencies from Table 4.

We find that only one (i.e., udmabuf_fops) of these
“bugs” is eventually fixed on January 2022 before we started
to report them. This analysis shows that these syscall de-

1. It is possible that SyzDescribe still finds something missed in human-
generated descriptions when SyzDescribe recovers the same number or
even fewer number of command value or argument type (as our results
may not overlap completely), and thus the 13 drivers represent a lower
bound

scription “bugs” can persist over an extended period of
time. So far, we have reported all the bugs to syzkaller
(all of which are fixed) and shared the syscall descriptions
generated by SyzDescribe.

One last thing worth mentioning is that sometimes seem-
ingly small improvements can be significant. One example
is that SyzDescribe recovers 7 missing command values
and 9 missing argument types for the driver identified by
sg_fops, which eventually lead to 4 new crashes in our
fuzzing experiments in §5.3.

5.2.4. SyzDescribe vs. Ground Truth. Table 2 illustrates
how well SyzDescribe performs with respect to ground truth.
In this section, we inspect the gap and summarize the rea-
sons which will be helpful to facilitate further improvements
of SyzDescribe.
• Syscall handler. SyzDescribe does not have any false

positives of #HANDLER. The major reason for the false
negatives (9 out of 10) is that syscall handler structures
take dynamically constructed variables (as opposed to
target functions directly), which we do not handle in
our current implementation. The remaining one case is a
special case as it delays the creation of the device object to
be performed inside the ioctl() handler and not in any
module init functions. However, currently SyzDescribe
only tries to identify device file in module init functions.

• Device file name. The main reason for the false negatives
of #NAME (28 out of 29 false negatives) is similar.
That is, the device file names are constructed dynamically
(not following the standard functions with format strings
that we model). As for the false positives of #NAME,
the reason is that their major number/device number are
generated dynamically, so we can not match the driver
object and device object accurately. In this situation, our
current policy is to match all possible unmatched device
file names within the same module init functions, leading
to false positives.

• Command value. There are two reasons for the false
negative of #CMD. The first reason is the false nega-
tives of #HANDLER, which means we can not find the
command value if we can not find the related ioctl()
handler. There are 13 cases of this reason. The second
reason contributes to the remaining 360 cases and is
related to the implementation of ioctl() handlers. We
find that some drivers employ non-trivial (custom) uses
of the command values to determine which branches to
enter. For example, the check if(_IOC_NR(cmd) ==
_IOC_NR(HIDIOCSFEATURE(0))) makes it difficult
to decide what exact value we should supply. And the
false positive of #CMD is also from this reason. Symbolic
execution is a natural solution to overcome this, which
we leave as future work. Another example is that the
command values can be used in a function array to decide
where to branch (e.g., see Figure 9 in appendix). This can
be improved with better modeling of such programming
patterns.

• Argument type. There are three reasons for the false
negatives of #TYPE. The first reason is again the false
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negatives of #HANDLER or #CMD, which contributed to
216 cases. The second reason is the incomplete data flow
tracking of copy_from_user() to determine the type
of the argument. The third reason is the failure to model
additional functions (defined in inlined assembly) that
copy data from user space, e.g., get_user(), which
we do not currently handle.

• Non-open file descriptor dependency. SyzDescribe re-
covers all of them and there is no false positive or false
negative.

5.3. Effectiveness of SyzDescribe in Fuzzing

In this section, we evaluate the effectiveness of
SyzDescribe by running fuzzing on the generated syscall
descriptions against DIFUZE, KSG, manually-curated
syzkaller descriptions, as well as the ground truth descrip-
tions we created. Overall, it is evident that the descriptions
generated by SyzDescribe is much better than other auto-
mated solutions, competitive with the manually-curated ones
(in many cases complementary), and not too far off from the
ground truth.
Dataset and Setup. We run three fuzzing experiments. The
first two are both against Linux kernels running in QEMU
under the syzbot config. The last one is against an Android
kernel running on a Pixel 6 device compiled through the
official HWAddressSanitizer config [21].

For the first experiment, we pick 30 out of 100 kernel
drivers in Table 2 based on whether they are compiled and
available in QEMU. We fuzz each kernel driver individually
for 24 hours with three runs. For “kvm” specifically, we
run 120 hour fuzzing sessions because it is a much more
complex kernel driver (with 3 non-open file descriptor de-
pendencies). Our fuzzing session for a driver consists of 8
CPU cores (4 QEMU instances with 2 CPU cores each). The
coverage and the number of crashes (unique) for each driver
are averaged over three runs. The descriptions we use in
the experiment include SyzDescribe, DIFUZE_F, syzkaller
ones, and the ground truth. The ground truth descriptions are
curated by fixing FNs and FPs in the syzkaller descriptions,
where they not only command values and type arguments
but also argument value ranges [4], making them even more
powerful.

For the second experiment, we compare specifically
against KSG by fuzzing the whole kernel using all available
descriptions for 72 hours and repeat for three runs (which is
how KSG itself is evaluated [7]). This is because the syscall
descriptions generated by KSG in many cases incorrectly
associate distinct drivers with the same set of syscall han-
dlers. For example, /dev/disks and /dev/dri are two
different drivers and should have their own ioctl() han-
dlers and descriptions. However, KSG associate them with
the same descriptions (e.g., handlers and command values).
Such mix-ups make it hard to tease out the descriptions that
belong to specific drivers.

For the last experiment, we do not have any com-
parison and instead use all the descriptions generated by

SyzDescribe for fuzzing. The fuzzing campaign lasted for
one week.

5.3.1. SyzDescribe vs. DIFUZE_F. Compared with DI-
FUZE_F, SyzDescribe has a significant advantage in both
coverage and number of crashes as shown in Table 6,
which is expected given the accuracy results. Specifically,
DIFUZE_F failed to generate any syscall descriptions for 15
drivers, whose coverage is 0 in Table 6. For other drivers,
SyzDescribe generally produced more or similar coverage.
It is worth noting that SyzDescribe achieved much more
coverage and crashes for “kvm” than DIFUZE_F because
SyzDescribe recovered 3 non-open file descriptor dependen-
cies.

5.3.2. SyzDescribe vs. syzkaller Descriptions. As we can
see, SyzDescribe still makes significant improvements in
overall coverage as shown in Table 6. First of all, there
are 10 drivers without any coverage because of the lack of
syzkaller descriptions. For the other drivers, the coverage
of the syscall descriptions generated by SyzDescribe are
competitive (mostly comparable). Note that the coverage
may not overlap completely even though their numbers look
similar. This is because their corresponding descriptions
can encode complementary information. For example, for
these 20 drivers, we find that SyzDescribe produced more
CMDs in 9 drivers, fewer CMDs in 3 drivers, and the same
number of command values for the remaining ones. How-
ever, more code coverage makes sense but maximizing code
coverage does not directly mean finding most crashes[22].
SyzDescribe achieves fewer crashes then syzkaller descrip-
tions because manually-curated syzkaller descriptions can
include things that are out-of-scope for SyzDescribe. For
example, in addition to argument types, syzkaller descrip-
tions would contain valid ranges of values of arguments
(which SyzDescribe currently does not support). In §6, we
list the additional features in descriptions that SyzDescribe
can support in the future.

5.3.3. SyzDescribe vs. Ground Truth. The results are
shown in Table 6. We can see that overall the ground
truth results are better with respect to both coverage and
number of crashes (which is also the case for most individual
drivers). This is expected as the ground truth descriptions
are the most complete (without FNs or minimal FNs). Inter-
estingly, for some drivers, the coverage by SyzDescribe is
marginally better than the ground truth whereas the number
of crashes by SyzDescribe is much smaller. We find that this
is because, for such drivers, SyzDescribe descriptions and
ground truth descriptions share similar true positives, while
the FPs in SyzDescribe actually helping to uncover some
error handling logic that would otherwise not be covered
(and there is also the randomness of fuzzing). Nevertheless,
such error handling logic is typically shallow, and in most
cases, the ground truth descriptions still find more crashes
even if its coverage is slightly smaller.

To summarize, FPs do not appear to affect coverage
significantly, especially given the long fuzzing sessions.
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Table 6: Effectiveness comparison of SyzDescribe

Device Name SyzDescribe DIFUZE_F syzkaller Ground truth

#Cov crash #Cov crash #Cov crash #Cov crash

“loop%d” 18,644 5.3 0 0.0 15,016 5.0 18,438 6.3
“loop-control” 7,799 1.0 7,789 1.0 6,422 0.7 7,800 1.0
“rtc%d” 14,513 4.0 0 0.0 13,061 4.3 14,153 3.0
“sg%d” 17,017 5.3 0 0.0 17,136 6.0 17,307 5.7
“sr%d” 15,554 2.0 0 0.0 15,264 2.0 15,400 2.3
“ptmx”... 15,195 4.0 0 0.0 15,239 5.7 15,833 6.0
“usbmon%d” 13,898 3.7 0 0.0 13,619 1.7 13,717 3.0
“snapshot” 4,099 0.3 4,070 0.0 3,422 0.0 3,968 0.0
“rfkill” 3,427 0.0 3,595 0.0 2,276 0.0 3,141 0.3
“controlC%d” 14,429 3.3 0 0.0 13,888 3.3 14,610 3.7
“timer” 4,364 0.0 0 0.0 2,977 0.7 4,334 0.5
“nbd%d” 15,606 3.7 0 0.0 15,423 5.3 15,234 2.3
“qat_adf_ctl” 3,779 0.3 0 0.0 2,545 0.0 4,056 1.0
“udmabuf” 2,505 1.0 2,285 0.0 1,391 0.0 2,520 1.0
“i2c-%d” 7,347 1.0 0 0.0 12,576 3.7 12,576* 3.7*

“uinput” 6,070 0.0 6,136 0.0 6,318 1.0 6,003 1.3
“ppp” 7,557 0.3 0 0.0 6,350 0.0 7,605 0.3
“ashmem” 3,799 0.0 0 0.0 3,300 0.0 3,684 0.7
“fuse” 3,423 0.0 3,603 0.0 1,737 0.0 3,409 0.0
“kvm” 16,932 4.0 6,093 1.7 21,593 9.7 24,289 7.0
“btrfs-control” 4,053 0.0 3,684 0.0 0 0.0 4,053* 0.0*

“capi20” 3,756 0.0 0 0.0 0 0.0 3,756* 0.0*

“fd%d” 13,872 3.3 0 0.0 0 0.0 14,127 6.7
“mISDNtimer” 3,546 0.0 3,662 0.0 0 0.0 3,708 0.0
“vhost-net” 4,469 0.0 4,367 0.0 0 0.0 4,469* 0.0*

“vhost-vsock” 4,398 0.7 4,524 0.0 0 0.0 4,398* 0.7*

“vmci” 6,860 2.0 5,320 1.3 0 0.0 6,154 2.0
“vsock” 3,620 0.0 3,359 0.0 0 0.0 3,620* 0.0*

“nvram” 3,732 1.0 3,701 0.0 0 0.0 3,732* 1.0*

“hpet” 3,254 0.3 3,587 0.0 0 0.0 3,254* 0.3*

Sum 247,516 46.7 65,777 4.0 189,553 49.0 259,334 59.8
* The fuzzing results are directly from SyzDescribe or syzkaller because

the syscall descriptions are the same.

Table 7: Effectiveness of SyzDescribe vs. KSG

#Cov crash

KSG 30,345 7.7
SyzDescribe 34,097 9.0

KSG+syzkaller 50,049 11.3
SyzDescribe +syzkaller 58,201 15.3

This is evident when comparing SyzDescribe descriptions
and ground truth descriptions where SyzDescribe produced
more FPs but achieves similar coverage in many cases.
On the other hand, FNs would significantly reduce both
coverage and number of crashes, e.g., ground truth descrip-
tions achieved more coverage and crashes than syzkaller
descriptions because of less FN.

5.3.4. SyzDescribe vs. KSG. As shown in Table 7,
SyzDescribe had better results in both coverage and number
of crashes. Although there are some device file names
missed by SyzDescribe that are discovered by KSG,
SyzDescribe has a significant advantage in CMDs, TYPEs
and non-open file descriptor dependency (as seen in Ta-
ble 3). In other words, SyzDescribe can go deeper than KSG
and get more coverage and crashes. Interestingly, when we
combine the syscall descriptions of SyzDescribe or KSG
with syzkaller ones, SyzDescribe + syzkaller gains even

more improvement in both coverage and number of crashes.
The reason is that the main advantage of KSG is that it can
open more device files, and also call read(), write(),
etc., which SyzDescribe currently does not incorporate into
the descriptions. But this is something covered quite well
by syzkaller descriptions. In contrast, SyzDescribe is more
complementary to syzkaller descriptions.

5.3.5. Fuzzing Android Kernel Drivers of Pixel 6.
Overall, SyzDescribe recovers 154 syscall handlers corre-
sponding to 139 kernel drivers. Because some crashes are
captured by RAMDUMP MODE in Pixel kernel (no public
documentation about it), which can not be captured by
syzkaller automatically, we have to manually record those
crashes. In the end, although we bricked several Pixel 6,
we still manage to find 18 crashes in Pixel 6 as shown
in Table 8, demonstrating the effectiveness of the syscall
descriptions. Unfortunately, due to the lack of detailed crash
reports and documentation of the RAMDUMP MODE, it is
difficult to understand the root causes of the bugs.

6. Limitations and Future Work

There are a few limitations of SyzDescribe, which can
be areas for future work.
Specific values or value ranges. Currently we recover only
the type of argument and do not support specific values
or ranges of values that the last argument of ioctl()
should take. One recent work [23] has explored this through
dynamic analysis.
Other syscalls. SyzDescribe already identifies the syscall
handlers and can in principle generate any syscall inter-
faces other than open() and ioctl(), e.g., read(),
write(), mmap(). The challenge though is to infer the
appropriate argument types and values, which we leave as
future work.
Other explicit dependencies. SyzDescribe supports only
file-descriptor-related explicit dependencies but not other
dependencies [3]. It will require a separate analysis such
as the one proposed in HFL [15], which we consider being
complementary.
Merging syscall descriptions. As we saw in §5.2.3 and
§5.3, descriptions produced by SyzDescribe are comple-
mentary in various aspects, e.g., non-overlapping CMDs and
TYPES. This means that it is beneficial to merge the two
syscall descriptions into a more complete description. We
have not implemented the solution but envision that it is a
promising direction to continuously maintain a single copy
of description by both human and automated solutions.

7. Related Work

Linux Kernel Fuzzing. There are a number of recent
studies improving various aspects of kernel fuzzing. Most
notably, they are based on the state-of-the-art kernel fuzzer
syzkaller. For example, MoonShine [24] generates seeds for
syzkaller from traces of existing test cases, which improves
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Table 8: Crashes found in Pixel 6

Kernel PANIC: KP: Asynchronous SError Interrupt WARNING in lwis_ioctl_handler
Kernel PANIC: KP: Oops: Fatal exception: __skb_ext_put WARNING in gvotable_cast_vote
Kernel PANIC: KP: Oops: Fatal exception: dit_enqueue_reg_value_with_ext_lock WARNING in irq_set_irq_wake
Kernel PANIC: KP: BRK handler: Fatal exception: dit_hal_ioctl WARNING in kbase_mem_pool_grow
Kernel PANIC: KP: BRK handler: Fatal exception: dit_hal_get_netdev WARNING in drm_mode_object_add
Kernel PANIC: KP: BRK handler: Fatal exception in interrupt: comm:init, swapper/3-7 WARNING in gpio_to_desc
APC Watchdog: itom triggering err_fatal from HSIO USB31DRD_LINK to Refe WARNING in corrupted
PMUCAL Watchdog: pmucal_local_disable: error on handling disable sequence. (pd: blkpwr_bo) Emergency Restart
WARNING in drm_atomic_helper_commit_modeset_disables INFO: corrupted

the bootstrapping stage of fuzzing. SyzVegas [25] improves
mutation algorithm in syzkaller with reinforcement learning.
HEALER [26] improves the quality of generated test cases
and maximizes the coverage by learning relations between
syscalls, which relies on the existing syscall descriptions in
syzkaller. Besides, some tools are built for fuzzing specific
Linux kernel subsystems, e.g., file systems [27] and device
drivers [28], [29]. PrIntFuzz[29] first enables more device
drivers in QEMU via automated virtual device simulation,
then generates the syscall descriptions for those drivers using
DIFUZE[6] and fuzzes them from multiply interfaces. A
recent study [3] measured the uncovered code after extensive
fuzzing sessions and highlighted insufficiencies in syscall
descriptions. Kernel fuzzing has also been used for purposes
such as evaluating the impact and exploitability of bugs [30],
[31], [32].

HFL [15] combines syzkaller with symbolic execution
to enhance various aspects of kernel fuzzing, e.g., resolving
nested argument types, and inferring non-open file descriptor
dependencies. Even though HFL does not aim to directly
generate syscall descriptions, the inferences made during
the process can be in principle ported to generate com-
plementary aspects of syscall descriptions. Another very
related work is SyzGen [23] that aims to generate syscall
descriptions of closed-source macOS drivers from existing
traces through binary analysis. The fundamental difference
from SyzDescribe is that traces SyzGen relies on already
included the basic device file names and syscall interfaces,
which is the main result of SyzDescribe. Given the syscall
interfaces, SyzGen also tries to infer the valid ranges of
values for syscall arguments, which is complementary to
SyzDescribe.
Programming Convention Modeling in Linux kernel. The
contract between the core kernel and drivers is not the only
programming convention that can be modeled. For example,
Linux kernel maintains a list of error codes for different pur-
poses, which have been modeled in prior to discover security
check failures [33], e.g., -EACCESS represents permission
denied. Common APIs and data structures are also common
targets for modeling, e.g., locks and synchronization APIs
have been modeled in Linux kernel for concurrency bug
discovery [34]. Hecaton [35] relies on the kernel program-
ming convention, where error handling (cleanup) code can
be associated with specific state-changing statements, to
undo the effects of syscalls. LinKRID [36] models the
usage of internal reference counters of the Linux kernel to
correctly perform reference counting. SADA leverages the
Linux kernel convention for programming Direct Memory

Access (DMA) in drivers to find unsafe DMA accesses [37].
DIFUZE [6] models how syscall handlers are often rep-
resented by operation structures that contain a number of
function pointers, in an attempt to pair them with a device
file name. Unfortunately, the modeling does not include the
driver and device objects which lead to incorrect results in
many cases, as we extensively explained in prior sections.
Linux Kernel Static Analysis. In terms of the scope of
the Linux kernel, there are generally two styles of static
analysis tools. The first is a focused analysis of specific
parts of the kernel (e.g., certain drivers). This includes
DR.CHECKER [38], K-Miner [39], Juxta [40] and more
recently SUTURE [17], which make it possible to conduct
a precise analysis, e.g., with inter-procedural flow-, context-
, field-, index-, or opportunistically path-sensitive. Another
style is to analyze all functions in the Linux kernel, e.g.,
the study of bugs in Linux [41], [42], µchex [43], Gras-
pan [44], INCRELUX [45], UBITect [5], which have better
scalability but often need to trade off other aspects (such
as precision and the kinds of analysis). Interestingly, none
of these mainstream static analysis tools focused on the
module init functions, which are completely separate from
syscalls. For built-in modules, their module init functions are
executed only once at the time of kernel boot. As we show,
analyzing them in the correct order recognizes important
data structures and context that can benefit the subsequent
syscall analysis. We believe this is a missed opportunity that
should be investigated further for other applications.

8. Conclusion

In conclusion, we present a principled solution to au-
tomatically generate syscall descriptions for Linux kernel
driver with static analysis. The solution hinges on un-
derstanding the process of module initialization and the
contract between the core Linux kernel and drivers. We
evaluate SyzDescribe comprehensively and summarize the
root causes for the gap between the results of SyzDescribe
and ground truth, which is necessary for the future directions
to improve automated syscall description generation.
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Appendix

1 #define pure_initcall(fn) __define_initcall(fn, 0)
2 #define core_initcall(fn) __define_initcall(fn, 1)
3 #define core_initcall_sync(fn) __define_initcall(fn, 1s)
4 #define postcore_initcall(fn) __define_initcall(fn, 2)
5 #define postcore_initcall_sync(fn) __define_initcall(fn, 2s)
6 #define arch_initcall(fn) __define_initcall(fn, 3)
7 #define arch_initcall_sync(fn) __define_initcall(fn, 3s)
8 #define subsys_initcall(fn) __define_initcall(fn, 4)
9 #define subsys_initcall_sync(fn) __define_initcall(fn, 4s)
10 #define fs_initcall(fn) __define_initcall(fn, 5)
11 #define fs_initcall_sync(fn) __define_initcall(fn, 5s)
12 #define rootfs_initcall(fn) __define_initcall(fn, rootfs)
13 #define device_initcall(fn) __define_initcall(fn, 6)
14 #define device_initcall_sync(fn) __define_initcall(fn, 6s)
15 #define late_initcall(fn) __define_initcall(fn, 7)
16 #define late_initcall_sync(fn) __define_initcall(fn, 7s)
17 #define __initcall(fn) device_initcall(fn)
18 #define module_init(x) __initcall(x);

Figure 7: List of initcalls

1 int kobject_set_name_vargs(struct kobject *kobj,
const char *fmt, va_list vargs);

2 int kobject_set_name(struct kobject *kobj, const
char *fmt, ...);

3 int kobject_add_varg(struct kobject *kobj, struct
kobject *parent, const char *fmt, va_list vargs
);

4 int kobject_add(struct kobject *kobj, struct kobject

*parent, const char *fmt, ...);
5 int kobject_init_and_add(struct kobject *kobj,

struct kobj_type *ktype, struct kobject *parent
, const char *fmt, ...);

6 int dev_set_name(struct device *dev, const char *fmt
, ...);

7 struct device *device_create(struct class *class,
struct device *parent, dev_t devt, void *
drvdata, const char *fmt, ...);

8 struct device *device_create_with_groups(struct
class *class, struct device *parent, dev_t devt
, void *drvdata, const struct attribute_group

**groups, const char *fmt, ...);
9 struct device * device_create_groups_vargs(struct

class *class, struct device *parent, dev_t devt
, void *drvdata, const struct attribute_group

**groups, const char *fmt, va_list args);
10 int sprintf(char * buf, const char *fmt, ...);

Figure 8: Functions manipulating device file names

1 static const struct ioctl_handler {
2 unsigned int cmd;
3 int (*func)(struct snd_seq_client *client, void *

arg);
4 } ioctl_handlers[] = {
5 {SNDRV_SEQ_IOCTL_PVERSION, snd_seq_ioctl_pversion},
6 ...};

Figure 9: Example case of function array
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