
Off-Path TCP Sequence Number Inference Attack
How Firewall Middleboxes Reduce Security

Zhiyun Qian, Z. Morley Mao
{zhiyunq,zmao}@umich.edu, University of Michigan

Abstract—In this paper, we report a newly discovered “off-
path TCP sequence number inference” attack enabled by
firewall middleboxes. It allows an off-path (i.e., not man-in-
the-middle) attacker to hijack a TCP connection and inject
malicious content, effectively granting the attacker write-only
permission on the connection. For instance, with the help
of unprivileged malware, we demonstrate that a successful
attack can hijack an HTTP session and return a phishing
Facebook login page issued by a browser. With the same
mechanisms, it is also possible to inject malicious Javascript to
post tweets or follow other people on behalf of the victim. The
TCP sequence number inference attack is mainly enabled by
the sequence-number-checking firewall middleboxes. Through
carefully-designed and well-timed probing, the TCP sequence
number state kept on the firewall middlebox can be leaked to
an off-path attacker. We found such firewall middleboxes to
be very popular in cellular networks — at least 31.5% of the
149 measured networks deploy such firewalls. Finally, since
the sequence-number-checking feature is enabled by design, it
is unclear how to mitigate the problem easily.

I. INTRODUCTION

TCP was initially designed without many security con-
siderations and has been evolving for years with patches to
address various security holes. One of the critical patches is
the randomization of TCP initial sequence numbers (ISN)
which can guard against off-path spoofing attacks attempt-
ing to inject packets with a forged source address (for data
injection or reset attacks) [19]. ISN randomization prevents
sequence numbers from being predicted, thus arbitrarily
injected packets are likely to have invalid sequence numbers
which are simply discarded at the receiver.

Firewall vendors soon realized that they can in fact per-
form sequence number checking at network-based firewalls
and actively drop invalid packets even before they can reach
end-hosts, a functionality advertised in products from major
firewall vendors [15], [21], [3]. This feature is believed
to enhance security due to the early discard of injected
packets and the resulting reduced wasted network and host
resources. Ironically, we discover that the very same feature
in fact allows an attacker to determine the valid sequence
number by probing and checking which sequence numbers
are valid using side-channels as feedback. We name this
attack “TCP sequence number inference attack”.

Using the sequence number inference as a building block,
we design and implement a number of attacks including
TCP hijack. In general, all of our attacks require IP spoof-
ing, which is still very common on the Internet according
to a recent study [13]. Besides IP spoofing, different attacks
may have different requirements. For instance, a long-lived

connection inference attack requires only a remote attacker
to perform remote scanning and injection of exploits on
services that run over unencrypted long-lived connections
(e.g., HTTP-based push services [5]). In contrast, TCP
hijack requires an unprivileged and lightweight malware
residing on the victim.

We implement all except one attacks that we proposed.
They are experimented specifically on mobile devices op-
erating under a nation-wide carrier that extensively deploys
sequence-number-checking firewall middleboxes. We show
that a successful TCP hijacking allows an attacker to take
over a connection and inject malicious payload right after
the connection is established. For instance, we demonstrated
that the attack can return a phishing Facebook login page,
as shown in a short YouTube video [9]. We can also inject
malicious Javascript to perform actions on behalf of a victim
user, e.g., to post tweets or follow other people.

We emphasize that even though our attack is implement-
ed on mobile phones, it is not restricted to mobile devices
or mobile networks. The reason for choosing this specific
setting is that mobile networks make our experiments easier
to carry out, as we have direct access to end devices behind
the firewall. Also, the attack model of most TCP hijacking
requires an unprivileged malware residing on the victim
which fits the smartphone model well in that users often
download untrusted third-party apps.

According to our measurement study, such firewalls are
deployed in many carriers – at least 31.5% out of 149.
This means the sequence number inference attack is widely
applicable. It is likely to become more prevalent in the
future as such functionality is considered to be advanced
and desirable. Moreover, since we exploit the very behavior
of sequence number checking — a firewall feature by
design, it is unclear how to easily address the problem
besides disabling the feature or employing application-layer
encryption.

Our study makes the following contributions:
• We discover and report the TCP sequence number

inference attack enabled by firewall middleboxes. We
also devise techniques leveraging it as a building block
to achieve TCP hijacking and a number of other
attacks.

• We measure the popularity and characteristics of such
middleboxes and found they are widely deployed in
major cellular networks throughout the world.

• We survey a broad list of impacted applications rang-
ing from Web-based attacks of directing users to a

1

spoofed login page, application-based attacks of in-
jecting malicious links to Windows Live Messenger
chat messages, to attacks against servers in the form
of DoS and spamming.

In the rest of the paper, we describe related attacks in §II
and fundamentals of the TCP sequence number inference
attack in §III. Next, we discuss the detailed attack require-
ments and design in §IV-B, and implementation results in
§V. In §VI, we measure how many cellular networks have
deployed the sequence-number-checking firewall middle-
boxes. In §VII, we describe what applications are impacted.
Finally, we discuss what went wrong and conclude in §VIII.

II. RELATED WORK

TCP-sequence-number-related attacks. In the past two
decades, researchers have discovered a number of TCP
attacks [33], [1], [12]. The most notable ones are TCP
sequence number prediction [1] and TCP reset attack [33],
[19]. Both attacks are related to IP spoofing and TCP
sequence number, which are also the focus of our attack.

Sequence number prediction attack. Twenty years ago,
certain OSes select the TCP Initial Sequence Numbers
(ISN) based on a global counter which is incremented by a
constant amount every second. It allows an attacker who has
opened a connection to a server to obtain its current global
counter and predict its next ISN with high confidence. With
this prediction ability, an attacker can spoof the IP of a
trusted client when talking to a target server, and complete
the TCP 3-way handshake based on the guess of server’s
next ISN. The problem is fixed after the randomization of
ISN is standardized and adopted.

Blind TCP RST attack. As described in RFC 5961 [27],
the attack is possible because a reset (RST) packet is accept-
ed as long as its sequence number falls within the current
TCP receive window. In a long-lived connection (e.g., BGP
sessions), an attacker knowing the target four-tuple can sim-
ply use brute force all sequence number ranges. Watson [33]
has analyzed in detail the number of packets needed under
various OS/setup taking into consider the source port can
be random. A number of proposals, e.g., requiring the RST
sequence number to exactly match the expected sequence
number, are discussed in RFC 4953 [31]; however, they are
not widely adopted likely due to backward-compatibility
issue and the fact that source port randomization can already
alleviate the problem.

Sequence number inference attack. The first known se-
quence number inference attack is described in 1999 [6]
where the Linux 2.0.X kernel has a bug that silently drops
the third packet in the three-way handshake when the ACK
number is too small, and sends a reset when the ACK
number is too big. Such behavior allows an attacker to infer
the correct ACK number in an ACK packet to complete the
TCP connection. However, it is an isolated bug that has
been fixed since then. The other relevant attack described
in Phrack magazine [24] infers the sequence number by

relying on the fact that a packet with in-window sequence
number can be silently dropped and a packet with out-of-
window sequence number will trigger an outgoing ACK
packet. The limitations of this work are that 1) it requires
sending two orders of magnitude more packets considering
the TCP receive window is usually very small (e.g., 16K);
2) it relies on a very noisy feedback channel (i.e., IPID) on
the end-host. It is only targeting at long-lived connections
where the host has low traffic rate.

Side-channel information leakage. Side channel leaks
are known for decades. There are a wide range of side
channels including CPU usage, power usage, shared mem-
ory/files, etc.. A variety of attacks are possible using side
channels [35], [30], [14], [16]. For example, researchers
have shown that it is possible infer keystrokes through
shared registers [35] and packet size/timing analysis on
encrypted traffic [30], [14]. On the newly emerged smart-
phones, various on-board sensors can also be used as side-
channels. For instance, Soundcomber [29] uses the audio
sensor to stealthily record credit card numbers entered
through keypad. In our work, we also rely on network side-
channels to infer TCP sequence number.

Middlebox security. Firewall middleboxes have been
introduced for many years [21], [3]. Previous work has dis-
covered various vulnerabilities on the firewalls themselves
that range from not properly checking the sequence number
of TCP RST packets resulting in DoS attack on active
connections [4], to failure to correctly process specially-
crafted packets forcing the middlebox to reload or hang. A
more complete summary on firewall vulnerabilities can be
found in a study done by Kamara et al. [22].

III. FUNDAMENTALS OF TCP THE SEQUENCE NUMBER
INFERENCE ATTACK

In this section, we introduce the sequence number in-
ference attack by first describing the behavior of sequence
number checking firewalls, then discussing how to use side
channels to infer the sequence number state kept on such
firewalls, and finally illustrating the attack by an example.

A. Sequence-Number-Checking Firewalls

Many stateful firewalls that track TCP state (e.g., SYN-
SENT, ESTABLISHED) also track the sequence numbers of
the bidirectional traffic. All major vendors including Cisco,
Juniper, and Check Point have such products [15], [21],
[3]. Typically, once a TCP connection is established, it only
allows packets with sequence numbers within a window of
the previously seen sequence numbers to go through. As
an example illustrated in Figure 1(a), when the client and
server exchange SYN and SYN-ACK packets, the firewall
remembers the current sequence number to be X and Y
for client and server respectively. Later packets originated
from both sides will have to be in the window of X or
Y, otherwise, they will be silently dropped. Such a feature
is to prevent arbitrary packets from being injected into the
connection. A window is needed because packets may arrive

2

out of order and should still be allowed by the firewall. Note
that acknowledgment number is typically not checked by
the firewall because packets may or may not even set the
ACK flag. In fact, we verified that all major OSes accept
incoming data packets that do not have ACK flag set. Based
on our observation and experiments with real firewalls (See
§VI), we found that sequence-number-checking firewalls
may behave differently in the following ways.

Window size: Ideally, the firewall should acquire ac-
curate state information associated with the end-host and
accepts packets if and only if they will be accepted by
the end-host. For instance, this requires the firewall to
dynamically track the advertised receive window of the
end-host, which can be expensive in terms of overhead.
In practice, we found that firewalls typically initializes the
window size to a fixed value according to the window
scaling factor (a TCP option) carried in the SYN and SYN-
ACK packet. It is typically calculated as 64K × 2N , where
N is the window scaling factor. The maximum possible
receive window size is 1G and some firewalls simply use
the fixed 1G window directly.

Left-only or right-only window: Some firewalls may
only have a left window or right window such as (Y-WIN,
Y) or (Y,Y+WIN). As discussed later, we found the nation-
wide carrier that we studied indeed has left-only window
firewalls because it buffers out-of-order (right-window)
packets. Similar behavior was previously reported [32].

Window moving behavior: We found two general cases
when the existing window will move: 1) In-order TCP
packet arrives. It implies that the window can only move
forward. We thus name it window advancing. 2) Any
packet with an in-window sequence number. For instance,
if Z is in (Y-WIN, Y+WIN), it can shift the window to
(Z-WIN,Z+WIN). It implies that the window can either
move forward or backward. We name this behavior window
shifting. For the rest of the paper, we assume the window
advancing behavior, which is more popular according to
our measurement study, unless explicitly stated otherwise.

Such firewall products claim that the sequence-number-
checking feature can improve security by defending against
connection hijacking [3], which ironically turns out to be
the opposite. We demonstrate that as long as the target four-
tuple (source/destination IP and port) is known, an attacker
can probe using the spoofed target four-tuple to infer the
valid sequence number, due to the very behavior that the
firewall treats packets with in-window and out-of-window
sequence numbers differently. Figure 1(b) illustrates such
an attack model. The firewall’s differentiation behavior,
coupled with the ability that an attacker can get feedback
regarding which packets are allowed, effectively breaks the
non-interference security property [16]. We discuss how to
obtain the target four-tuple and feedback below.

B. Obtaining Four Tuples – Threat Model

We outline three main threat models where the target
four-tuple can be known:

(1). On-site TCP injection/hijacking. An unprivileged
malware runs on the client with access to network and
the list of active connections through standard OS interface
(e.g., “netstat” command). It cannot tamper with other
applications or OS services. A successful TCP sequence
number inference attack in this case can compromise the
security of other applications or even OS services.

Note that the attacker can also carry out other local
privilege-escalation attacks under this threat model, but
the most known privilege-escalation attacks on Android
are still at the application layer without breaking the OS
sandbox [18]. In contrast, our attack allows the malware
to break the sandbox and compromise the security of other
apps. Regardless, our attack provides additional capabilities
to the attackers.

(2). Off-site TCP injection. An attacker simply guesses
the four tuples. For instance, popular services typically
have well-known port numbers and a few load-balancing IP
addresses. To attack such services, the attacker only needs
to enumerate client IP and port number. This usually works
only when the target connection is long-lived, e.g., instant
messenger or push notification services.

(3). Establish TCP connection using spoofed IPs. An
attacker in this case initiates the connection himself, in
which case the four tuples are obviously known. Coupled
with IP spoofing, an attacker can use this attack to establish
TCP connections with a target server using spoofed IPs
(e.g., for spamming or denial-of-service).

C. Obtaining Feedback – Side Channels

As mentioned, to launch the sequence number inference
attack, an attacker needs feedback regarding which packets
went through the firewall. We discover two main side-
channels that can serve the purpose:

1. OS packet counters: On Linux, the procfs [23]
exposes aggregated information on the number of incom-
ing/outgoing TCP packets, with or without errors (e.g.,
wrong checksum). Alternatively, “netstat -s” exposes a simi-
lar set of information on all major OSes including Windows,
Linux, BSD, and smartphone OSes like Android and iOS.
If the packet went through the firewall middlebox, then
the incoming packet counter will increment accordingly.
Although such counters can be noisy as they are aggregated
over the entire system, we show that some of the TCP error
counters rarely increment under normal conditions and can
be leveraged as a clean side channel.

2. IPIDs from responses of intermediate middleboxes:
IPID is a 16-bit field in the IP header. In practice, many
OSes, including middlebox OSes, have such monotonically
incrementing IPIDs (a known side channel for inferring
how many packets a target system has sent [26]). In
addition, many networks allow intermediate middleboxes
(e.g., routers) to reply with “time-to-live (TTL) expired”
ICMP messages (See §VI-B for measurement results) to
inform the source of a discarded packet due to the TTL
field reaching zero. Thus, an attacker can craft packets with

3

(Y-WIN, Y+WIN)

0? 2WIN? 4WIN? ...
X

(X-WIN, X+WIN)

SYN
seq=X, ack=0

(Y-WIN, Y+WIN)

SYN-ACK
seq=Y, ack=X+1

(a). Sequence-number-checking firewall

(b). Attack model

Figure 1: Sequence number checking
stateful firewall and attack model

Off-path
attacker

Firewall
middlebox

Victim
App

Un-privileged
malware

Phone

2. Spoofed packets (In-window)

1. Spoofed packets
(out-of-window)

4. Packet_count++ feedback

...

T
ryin

g
 [2

G
 –

 4
G

]P
a
ck

e
t_

co
u

n
t+

+

...
...

X
3. Spoofed packets

(out-of-window)

X

Figure 2: An attacker tries to infer
sequence number

()

1 1 11

…...
2G 4G

4G

(a). First iteration

1

(X-WIN, X+WIN)

()

1 1 11
…

2G

(b). Second iteration

(X-WIN, X+WIN)
3G

of packets:

of packets:

2WIN

Figure 3: Sequence number space search
illustration

TTL values large enough to reach the firewall middlebox,
but small enough that they will terminate at an intermediate
middlebox instead of the end-host, triggering the TTL-
expired messages. By reading the IPID values generated by
the intermediate hop before and after sending the spoofed
probing packets, an attacker can infer if probing packets
went through the firewall.

Both side-channels can serve the same purpose. An
attacker can decide which to use depending on their avail-
ability and how noisy the side-channels are.

D. Sequence Number Inference

Now that we know how to obtain the target four-tuple
and feedback regarding which packets are allowed, we need
an efficient way to infer the sequence number. A naive
approach is to test out each individual window sequentially.
In particular, one can check if 0 is in-window, if 2WIN
is in-window, etc. as shown in Figure 1(b). However, that
requires 4G

2WIN round trips to determine which window the
sequence number falls in, which can take too long to finish.

In Figure 2, we illustrate a much faster approach – a
binary-search-like inference that tries half of the sequence
number space at a time (e.g., 0 to 2G) and iteratively narrow
down the sequence number. Here we assume the first threat
model where an unprivileged malware runs on the client
that colludes with an attack server. We also assume that
the attacker has prior knowledge of the firewall behavior
(e.g., window size), which can be easily obtained offline.
Figure 2 illustrates the procedure where the attack server
first tries the upper half of the sequence number space
[2G,4G). As shown in the figure, packets at time 1 and 3
are dropped and only a single in-window packet at time 2 is
allowed. Upon receiving the packet, the phone will increase
the packet counter. At time 4, after the attack server finishes
probing [2G,4G), it can query the malware for the delta of
packet counter before and after the probing. Based on the
incremented packet counter, the attack server knows that
[2G,4G) is the correct range. Otherwise, it is likely that the
other half [0,2G) is the correct one.

In Figure 3, we illustrate this example again via the
sequence number space view. In the first iteration trying out
[2G,4G), a series of packets are sent with sequence numbers
on equally spaced interval of 2WIN (with 2G

2WIN number

of packets sent). Given every 2WIN range is covered by
a packet, one and only one packet will be allowed to go
through if the current sequence number kept on the firewall
indeed falls in [2G,4G). In the second iteration, it continues
to try [3G,4G) to further narrow down the sequence number.
Even though the number of packets sent at each iteration
can be large (especially at the beginning iterations), it is not
hard to see that: 1). the search algorithm takes log2 4G = 32
iterations to complete, which is the same complexity as a
standard binary search algorithm; 2). the larger the WIN
is, the fewer probing packets are required. We discuss
further optimizations to improve the number of iterations
and inference time in §V.

Note that this example assumes window-advancing fire-
walls. In the case of window-shifting firewall, similar
procedure still applies yet it only allows an attacker to
determine a range of possible sequence numbers instead
of narrowing down to the exact value. It is because the first
in-window packet already erases the original state of the
sequence number by shifting the center of the window away.
Nevertheless, it still can allow an attacker to narrow down
the sequence number to a much smaller range, which in
many cases can be inferred using brute force by the attacker.
We omit the details here and focus on window-advancing
firewalls given the latter is most commonly observed.

E. Timing of Inference and Injection — TCP Hijacking

For the TCP sequence number inference and subsequent
data injection to be successful, a critical challenge is timing.
If a user is in the middle of a session, injected TCP packets
may not be “meaningful” at all. Specifically, since the
sequence number inference takes time to finish, the server
could already send part or all of the response (e.g., HTTP
response). The injected packets then will likely just corrupt
the original response, which may or may not achieve the
attacker’s goal.

To address the challenge, we design and implement a
number of TCP hijacking attacks (described in §IV-B)
where injection can happen at deterministic timing, e.g.,
right after the TCP three-way handshake. This can, for
instance, allow an attacker to inject a complete HTTP re-
sponse without any interference from the original response.
In contrast, TCP Injection is a general term that does not

4

Table I: Summary of identified TCP sequence number inference attacks and their requirements

Req. Requirement explanation
On-site TCP hijacking Off-site injection Spoofed

ID Reset-the-server Preemptive-SYN Hit-and-run URL Conn connsPacket count IPID Packet count IPID Packet count IPID phishing infer
C1 Malware on client with Internet access X X X X X X
C2 Malware can read packet counters X X X
C3 Malware can read active TCP four tuples X X X X X X
C4 Client has coarsely predictable ISNs X X
N1 A client can spoof another client’s IP X X X X
N2 A shared responsive intermediate hop X X X X X X
N3 Client network has NAT boxes deployed X
N4 Predictable external port if NAT deployed X X X X X X X
N5 Additional firewall middlebox deployed X X
S1 Legitimate server has stateful firewall X X
S2 Attack server closer to client X X

assume any specific timing of the injection.

IV. TCP ATTACK ANALYSIS AND DESIGN

Applying the basic TCP sequence number inference as
a building block, we detail the design of a number of
TCP attacks, each associated with a list of corresponding
requirements. We show that they are widely applicable and
feasible under many client/server/network combinations.

A. Attack Requirements

We first introduce two base requirements for all attacks:
1) the ability to spoof legitimate server’s IP on the Internet,
and 2) a sequence-number-checking firewall deployed in
the client’s network or anywhere in the network observing
traffic flows in both directions. The former is a known
problem and still widely prevalent on today’s Internet [13],
and the latter is required for the sequence number inference.

Besides the base requirements, we provide a complete
list of requirements in Table I, only a subset of which
are required for any specific attack. We use “C”, “N”,
and “S” to represent client-side, network, and server-side
requirements.

Client-side requirements mainly have to do with mal-
ware’s capability. For instance, C1 specifies that the mal-
ware needs Internet access. C2 requires access to the first
side-channel (i.e., packet counter) to obtain feedback. C3
specifies that the malware can run in the background and
continuously monitor the creation of any new TCP connec-
tion. C1–C3 are common capabilities that an unprivileged
program has in modern OSes. To be more stealthy, the
malware could hide its monitoring activity until the target
app (e.g., browser app) is launched. C4 is a byproduct of the
design decision made in many UNIX-like OSes (e.g., Linux
3.0.1 and earlier) where the ISN for different connections
are not completely independent. Instead, the high 8 bits for
all ISNs is a global number that increments slowly (every
five minutes) and only the low 24 bits are produced as
random numbers. The design is to balance across security,
reliability, and performance, and it is long perceived as a
good optimization (more details discussed in [7], [2]). The
result of this design is that the ISN of two back-to-back
connections will be at most 224 = 16, 777, 216 apart.

Network requirements relate to policies in the network.
For instance, N1 specifies that client-side IP spoofing is
allowed. As discussed, this is fairly common on the Inter-
net [13] and also observable in cellular networks according
to a recent study [32]. N2 corresponds to the second side
channel to obtain feedback as described in §III-C. The
requirement further states that such an intermediate hop
must be on the path for both the attacker connection and
the victim connection for the feedback to be useful (§VI-B
shows more than half of the networks that have sequence-
number-checking firewalls satisfy this requirement). N3
simply describes that a standard NAT is deployed in the
client’s network. N4 says that the NAT-mapped external
port has to be predictable which is a typical requirement
for P2P applications [28]. The requirement is necessary for
on-site attacks that need externally-mapped four tuples (as
described in the next section). A recent measurement study
on NAT mapping type in cellular networks [32] shows that
the majority of the networks satisfy the requirement. N5
states that there is an additional sequence-number-checking
firewall deployed in the network, which is actually what we
observe in the nation-wide cellular network. Except for N1,
other requirements are mostly network design decisions and
cannot be classified as “vulnerabilities.”

Server-side requirement S1 states that the legitimate
server has to deploy host-based stateful firewall that drops
out-of-state TCP packets. Many websites such as Facebook
and Twitter deploy such firewalls to reduce malicious traffic.
For instance, iptables can be easily configured to achieve
this [8]. Note that interestingly this security feature on the
server turns out to help enable one of the TCP hijacking
attack. S2 requires the attack server’s network latency to
the victim needs to be smaller compared to the legitimate
server.

B. Attack Design

In this section, we describe in detail each attack and
the corresponding requirements. Specifically, we design
three classes of attacks for each threat model as described
earlier in §III-B: 1) On-site TCP hijacking/injection. 2)
Off-site TCP hijacking/injection. 3) Spoofed connection

5

establishment. Each class has several attacks with the same
goal but different requirements.

1) On-site TCP hijacking: As noted, TCP hijacking
allows packets injected right after the connection is es-
tablished. It is more powerful than the general case of
injection but with more requirements. Thus, we focus on
the hijacking attack design which also covers the general
case of injection. In total, we devise three TCP hijacking
attacks and all of which are implemented and tested against
the nation-wide cellular network, since all requirements are
satisfied in the network (As shown in §V).

The first TCP hijacking is Reset-the-server. The high-
level idea is to reset the connection on the legitimate
server as soon as possible to allow the attacker to claim
to be the legitimate server talking to the victim. The key
is that such reset packets have to be triggered right after
the legitimate server sends SYN-ACK. To achieve this, we
leverage requirement C4 which allows an attacker to predict
the rough range of victim’s ISN and send reset packets with
sequence numbers in that range. This is helpful because
then the attacker can send much fewer spoofed RST packets
(thus with lower bandwidth requirement) compared to enu-
merating the entire 4G space. Further, after the legitimate
server is reset, requirement S1 is necessary as it helps
prevent the legitimate server from generating RST upon
receiving out-of-state data or ACK packets from the victim.
Here we focus on the design of the attack. Implementation
and feasibility analysis are covered in §V.

Figure 4 illustrates the attack sequence. Here the attacker
is off-path and not man-in-the-middle. It is positioned
between the victim and legitimate server for ease of illus-
tration only. Starting at time 1, the victim app first initiates
a TCP SYN. At time 2, the malware discovers the new
connection attempt by continuously monitoring the output
of “netstat”, and it immediately notifies the attack server
about the new connection including the four tuples. The
malware also starts a new connection to the attack server
so that the server knows the current ISN. At time 3, the
legitimate server receives the SYN, and replies with a SYN-
ACK. At time 4, the attack server floods the legitimate
server with a number of spoofed RST packets based on the
previously gathered ISN. As discussed earlier in §III-E, the
RST packets have to arrive before the ACK/request packets
at time 5; otherwise, the legitimate server will respond
before the attacker can send any malicious content.

From there on, the legitimate server’s connection is reset.
All future packets from the victim are considered out-
of-state and silently dropped due to requirement S1. For
instance, the ACK packet received at time 5 is silently
discarded. From time 6 to 7, we omit the sequence number
inference procedure described earlier in §III-D. At time 8,
the attack server can inject data using the inferred sequence
number.

Table I summarizes the requirements for the at-
tack. Depending on the side-channel used for feedback,

the set of requirements for this attack methodology is
(C1,C2,C3,C4,N4,S1) using the packet count feedback,
and (C1,C3,C4,N2,N4,S1) using the intermediate hop IPID
feedback. Note that N4 is needed because all RST packets
need to have the correct external source port number.

The second TCP hijacking is Preemptive-SYN. The
high-level idea is similar to Reset-the-server in that it
also tries to prevent the legitimate server’s packets from
reaching the client. The difference is that it does so by
turning the firewall middlebox’s sequence number checking
feature against the legitimate server. Remember that the
middlebox initializes the current sequence number from
SYN and SYN-ACK packet, if an attacker can preemptively
send spoofed SYN packets before the legitimate SYN-ACK
packet (e.g., when requirement S2 is satisfied), the firewall
will initialize the sequence number according to the spoofed
SYN instead of the legitimate SYN-ACK. Spoofed SYN
packet is allowed due to TCP simultaneous open [25]. The
attacker cannot directly spoof a SYN-ACK packet without
the knowledge of a valid acknowledge number. Another
difference is that such an attack needs requirement N1
to allow the sequence number inference from the client’s
network. Specifically, a separate attack phone inside the
network is required to spoof the victim’s IP and infer
the sequence number of the victim’s SYN. As described
later in §V, the firewall is deployed at the Gateway GPRS
Supporting Node (GGSN) level [34] such that a single
attack phone can spoof hundreds of thousands of IPs of
other devices. As a result, the attack phone and the victim
phone can be in different cities or states as long as they go
through the same GGSN. The details are described below.

As shown in Figure 5, initially the victim app sends a
TCP SYN packet (with sequence number X) at time 1,
followed by the malware reporting the new connection. Due
to requirement S2, at time 3, the attack server receives the
notification and immediately sends a preemptive SYN (with
sequence number Z) which reaches the firewall middlebox
before the legitimate server’s SYN-ACK. Also, note that
the preemptive SYN packet does not actually reach the
phone (easily achieved with small TTLs set deliberately
by the attacker), necessary to prevent the phone from
replying with SYN-ACK which triggers connection reset
from the legitimate server and prevents the connection
from being established. At time 4, the legitimate server’s
SYN-ACK packet is dropped at the firewall because its
sequence number Y is now considered out-of-window of
(Z-WIN,Z+WIN), assuming that Y and Z are unlikely
close together. During time 5 and 6, the attack phone tries to
infer the sequence number of the victim’s original SYN with
the intermediate hop feedback. At time 7, after finishing
inferring the sequence number, the attack phone reports
it to the attack server which then sends a spoofed SYN-
ACK with the correct acknowledgment number. Since the
victim never actually sees any response after it sends SYN,
thinking the delay is likely due to resource issues, it happily

6

Off-path
attacker

Legit
Server

Firewall
middlebox

Victim
App

Unprivileged
malware

Phone

C
o

n
n

e
ctio

n
 re

se
t

6. Seq number inference -- start

7. Seq number inference -- end

...

8. Malicious response

4. Spoofed
 RSTs

1. SYN

5. ACK/request

3. SYN-ACK (seq = Y)

2. Notification of new conn

Figure 4: Reset-the-server hijacking

Off-path
attacker

Legit
Server

Firewall
middlebox

Victim
App

1. SYN (seq = X)

Phone

5. Seq number inference -- start

Unprivileged
malware

Attack
Phone

6. Seq number inference -- end

...

IP
ID

fe
e

d
b

a
ck

7. Report inferred seq number

8. SYN-ACK (seq = Z, ack = X+1)

2. Notification of new conn

4. SYN-ACK(seq = Y)

9. ACK (seq = X+1, ack = Z+1)

11. RST (seq = Z+1)

10. Malicious DATA

3. SYN (seq = Z)

X

Figure 5: Preemptive-SYN hijacking

Off-path
attacker

Legit
Server

Firewall
middlebox

Victim
App

1. SYN

Unprivileged
malware

Phone

3. SYN-ACK (seq = Y)

2. Notification of new conn

5. ACK / request

7. Seq number inference (with shifting) -- start

8. Seq number inference (with shifting) -- end

...

9. Malicious response

Window-
shifting
Firewall

6. Response
X

4. Shift window

Figure 6: Hit-and-run hijacking

accepts the SYN-ACK and replies with ACK to complete
the connection.

There is however still one remaining challenge — the
ACK packet at time 9 will trigger a reset once it arrives at
the legitimate server, which will terminate the connection
immediately. To get around this problem, the attack server
has to inject data packets immediately following the spoofed
SYN-ACK at time 10 so that it arrives before the RST
packet at time 11. As long as the data packet is accepted
before the connection is RST, the damage is already done.
For instance, we verified that in a HTTP session, a small
data packet containing an iframe pointing to a malicious
URL still makes the browser follow the URL and load the
content even through the connection is reset immediately
after.

The requirements are (C1,C2,C3,N1,N4,S2) using packet
count feedback, or (C1,C3,N1,N2,N4,S2) using intermedi-
ate hop IPID feedback. Here N4 is required because the
preemptive SYN packet needs to have the correct external
source port number as the destination port.

The last TCP hijacking is Hit-and-run. This attack
is possible only when the network deploys two different
firewall middleboxes, which is what we observed in the
nation-wide carrier elaborated in §V. In general, assuming
that the sequence number inference is carried out in network
external to the mobile device, the two different firewalls
have to satisfy the following: a window-shifting firewall
is deployed external to a window-advancing firewall. The
network may intentionally set up the external firewall for
general packet-filtering (which is simpler and potentially
cheaper) and the internal one is for more advanced intrusion
detection (which requires packet reassembly and incurs
more overhead). The problem with this setup is that the
window-shifting firewall allows an attacker to intentionally
shift the window away from its original position which
effectively disallows packets sent from the legitimate server.
At the same time, the attacker still can shift the window
back when it is necessary to traverse the internal window-
advancing firewall to conduct the sequence number infer-

ence. This particular two-firewall setup effectively elimi-
nates the requirement C4 and S1 in the Reset-the-server
attack. We emphasize that the combined effect of the two
firewalls is still a window-advancing firewall and previous
two TCP hijacking attacks still work.

Figure 6 illustrates the attack process in detail. In this
example, we use the setup of the nation-wide network
where the internal window-advancing firewall has a left-
only window of 1G. However, in the general case, the attack
is possible as long as it is a window-advancing firewall.
Time 1–3 match that in the Reset-the-server attack. At
time 4, however, instead of resetting the connection on the
server, the attacker tries to intentionally shift the window
away from its original position. Specifically, regardless
of the original window’s position, an attacker can send
an array of spoofed packets with sequence number 4G,
4G-(WIN-1), 4G-2(WIN-1), . . . , all the way to 0. It is
not hard to see that the center of the window will be
deterministically shifted to 0 (we show the feasibility in
§V). This way, at time 6, the legitimate server’s response is
highly likely to be dropped by the window-shifting firewall
(assuming its sequence number has a low probability of
being close to 0). Note that packets sent at time 4 do
not need to go further beyond the window-shifting firewall,
as easily achieved using a small TTL. These TTL-expired
ICMP packets are sent to the legitimate server, which may
unintentionally terminate the connection on the server side
in extremely unlucky situations. Specifically, the ICMP
packet embeds the original TCP header which includes the
sequence number. The connection will be terminated only if
the sequence number happen to exactly match the one used
in the SYN-ACK packet. If that happens, then all client’s
packets in the future will trigger the legitimate server to
respond with RST packets and stop the attack. However,
having an exact match of the server’s SYN-ACK sequence
number is highly unlikely.

At time 7, the sequence number inference is started.
However, since the window was shifted to 0 in the sequence
number space. Now it is necessary to shift it again in order

7

to allow the attacker’s sequence number inference packets
to pass through the window-shifting firewall. To do so, we
can piggyback the sequence number inference packets along
with the packets for shifting the window. For instance, an
attacker can infer if the sequence number is in [0,2G) by
trying 0, WIN-1, 2(WIN-1), . . . up to 2G, which not only
can shift the window from 0 to 2G, but also tested the [0,2G)
range. Since the internal firewall has a 1G window, only 0
and 1G needs to be sent with a large TTL to go through it.
All other packets can have a small TTL so that they only
pass through the external firewalle. If either 0 or 1G passes
through the internal firewall, then the sequence number falls
in [0,2G). Otherwise, it falls in [2G,4G). One additional
challenge is that the legitimate server may retransmit its
“lost” response packet during the inference. As a result,
the attacker has to shift the window back to a “safe” spot
to prevent the retransmitted packets from passing through.
For instance, one simple way is to shift the window to 0
every time after an iteration (which is what we did in our
implementation). Such “position-reset” happens so fast that
it is very unlikely the retransmitted packets can catch the
“shifting” window.

The requirements are (C1,C2,C3,N4,N5) using packet
count feedback, or (C1,C3,N2,N4,N5) using intermediate
hop IPID feedback.

2) Off-site TCP injection/hijacking: Off-site attacks do
not require the unprivileged malware but they are generally
harder to carry out given the challenge to obtain target four-
tuple.

However, URL phishing is a special case where an
attacker can also acquire target four tuples by luring a user
to visit a malicious webpage that subsequently redirects the
user to a legitimate target website. A successful attack can
replace the content of the target website, or if the user
is previously logged in, the attacker can inject malicious
Javascript to steal authentication cookies or perform actions
on behalf of the user.

Here is how it works: assuming the user visited the
malicious webpage, the attacker can obtain the client IP.
It is also easy to obtain the legitimate website’s IP given
the common use of only a few load-balancing IPs. The
remaining missing information is the source port number
used in the next connection to the legitimate website. If
the attacker can predict that, he can hijack the connection
using the preemptive-SYN technique introduced earlier,
i.e.,, start sending preemptive SYN packet right after the
client is about to be redirected to the legitimate website (i.e.,
make a connection to the legitimate server). However, many
browsers seem to always assign a random local port number
for different web pages which makes the port prediction
very difficult. To overcome the challenge, we design a
simple strategy to intentionally occupy as many local ports
as possible so that the next port used is selected from a
much smaller pool.

Specifically, the malicious website can instruct the client

to open many connections to the malicious site (or any
other server) to consume a large number of local ports. In
addition, the occupied port numbers tend to be contiguous
according to our experiment likely due to the origination
from the same Javascript. One challenge is that the OS
may limit the total number of ports that an application
can occupy, thus preventing the attacker from opening too
many concurrent connections. Nevertheless, we found such
limit can be bypassed if the established connections are
immediately closed (which no longer counts towards the
limit). The local port numbers are still not released since
the closed connections enter the TCP TIME WAIT state
for a duration of 1–2 minutes. If an attacker can manage to
open enough connections, he can easily use brute force the
remaining ports by sending many preemptive SYN packets
simultaneously. The rest of the attack works exactly the
same as in the preemptive-SYN hijacking. Here the on-
device malware is not required since the attacker already
knows the target four-tuple.

Long-lived connection inference. Besides URL phish-
ing, another type of off-site injection is to target long-lived
connections. Instead of guessing the target four tuples, we
discover that it is possible to “query” a network and check
if a particular four-tuple is active through a single ICMP
packet. If the attack targets at popular services, the server
IP and port are typically known, thus the search space is
reduced to only different client IP/port combinations. Since
many popular services using unencrypted long-lived HTTP
connections to implement PUSH services [5], the attack
would basically allow remote scanning and injection of
HTTP-based exploits.

This attack is possible because NAT boxes maintain state
about active or in-session TCP connections, identified by
four tuples. Out-of-session packets are denied access. Such
behavior can leak information about existing/active sessions
(similar to the reason why sequence number can be leaked).
For instance, one approach is to use the intermediate hop
IPID side-channel again to infer if packets with spoofed
target four-tuple can go through. Note that such spoofed
packets should not reach far enough to the firewall mid-
dlebox, so it does not matter what sequence number the
spoofed TCP packets have. In total, the attacker has to
send at least three packets (two to get the IPID before and
after the spoofed probing and one is the probing packet) to
query a single four-tuple, and the results may not be always
reliable due to possible IPID noise.

A more efficient and reliable approach we discover is
through sending a single ICMP error message (e.g., network
or port unreachable) to query a four-tuple. Specifically,
since many NAT boxes check the embedded TCP four
tuples inside ICMP packets and allow them through only
when the four tuples match existing sessions, an attacker
can easily craft ICMP packets embedding target four tuples
and check if they can go through. More importantly, the
source IP address of the ICMP packets themselves do not

8

Off-path
attacker

Intermediate
hop

1. Spoofed SYN (seq = X)

3. Sequence number
inference -- start

In-network
attacker

Firewall
middlebox

Legit
Server

2. SYN-ACK (seq = Y, ack = X+1)

4. Sequence number
inference -- end

5. Reporting the sequence number Y

6. Spoofed ACK (seq = X+1, ack = Y+1)

Non-
responsive …

Figure 7: Establish TCP connection using spoofed IPs
have to be spoofed. This is because ICMP packets are often
sent by IPs other than the two communicating parties such
as a gateway. This allows the attacker to receive direct
response in the form of a TTL-expired message from the
intermediate hop.

3) Establish spoofed connections: The goal of this attack
is to establish TCP connections to a legitimate server from
an attacker using spoofed IPs. It closely resembles the
traditional TCP sequence number prediction attack where
an attacker can guess the sequence number of the legitimate
server’s SYN-ACK and establish connections using spoofed
IPs. We are essentially launching the same attack, but here
we are “inferring” instead of randomly “guessing” the se-
quence number. As elaborated in §VII-C, this attack can be
a useful building block of DDoS attack or spamming where
each connection has a distinct source IP, thus overcoming
IP-based blocking.

The attack sequence diagram is fairly simple as shown in
Figure 7. At time 1, an in-network attacker sends a spoofed
SYN with an unresponsive source IP (more discussion be-
low). At time 2, the server replies with a SYN-ACK back to
the spoofed IP. However, as the spoofed IP is unresponsive,
the packet does not trigger any response packet. The attack
server then performs the sequence number inference during
time 3 and 4. Upon completion, it reports the inferred
sequence number to the in-network attacker at time 5, which
in turn sends the spoofed ACK packet using the inferred
sequence number to complete the TCP handshake with the
victim server at time 6.

Here unresponsive IPs are either IPs that may not be
currently used by any device, or they drop out-of-state TCP
packets on their own (e.g., by host-based firewalls). We
found that there are many such unresponsive IPs in the
nation-wide cellular network that we tested. The require-
ments of this attack are (N1,N2,N4).

V. ATTACK IMPLEMENTATION AND EXPERIMENTAL
RESULTS

We have implemented the complete end-to-end attacks
for all three threat models. Below is our experiment setup.

Client platform. We use Android smartphones because
it fits the first threat model well and it can easily connect
to the nation-wide cellular network with sequence-number-
checking firewalls. Other smartphones such as iPhone could
also be used since it also satisfies all the client-side

requirements. We implement the malware that spawns a
service to run in the background and monitors new target
connections to attack. To prevent from being scanning
the active target connections too aggressively, the malware
stops running whenever the screen is off. In fact, it can
start the scanning activity only when detecting the target
app is at the foreground. We tested the attacks ourselves on
three different controlled Android phones (no other people
is attacked by the malware) with OS versions of Android
2.2 and 2.3.4 and from three vendors (HTC, Samsung, and
Motorola). The default window scaling option is 2 and 4
for Android 2.2 is 2.3.4 respectively.

Network. The experiments are conducted on an
anonymized nation-wide carrier that widely deploys firewall
middleboxes at the GGSN-level. The carrier satisfied all
the network-side requirements (N1 to N4), which allows
us to realistically test all attacks except for URL phishing.
However, different GGSNs [34] may have slightly different
network policy. For instance, some GGSNs prevent inter-
nal hops from replying with TTL-expired messages, thus
violating requirement N2. IP spoofing is however allowed
in every GGSN which enables an attacker to spoof a large
range of IPs (many /16), potentially affecting many users.

Firewall. We found firewalls are deployed in all of the
carrier’s GGSNs. There are two main types: the first has
a fixed window size (i.e., WIN = 1G) with window-
advancing behavior, the second computes the window size
based on the window scaling factor (as mentioned in §III-A)
with window-shifting behavior. The first one also has a left-
only window since it buffers out-of-order packets. In certain
GGSNs, only the first firewall is deployed. In others, both
are deployed with the second one external to the first one
(which enables the hit-and-run hijacking).

Proxy setting. We found that if the proxy is enabled
through the Access Point Name (APN) configuration [10],
then the firewall middlebox is no longer visible, which we
suspect is due to the specific network topology setup and
is a special case. In general, a proxy is similar to NAT
that essentially rewrites the external IP and port. Only the
browsers seem to be affected by the proxy setting and thus
attacks on mobile apps are not affected. We do not have
complete data on how many phones by default have the
proxy enabled, but we do know that the Motorola Android
phone by default does not use the proxy.

In summary, the diversity of the network and firewall
setup implies that carriers may not be fully aware of
the potential impact of various network configurations on
security.

A. Side-channel

So far we have introduced the two side-channels —
packet counter and intermediate hop IPID, now we discuss
them in more details. For the packet counter, we found that
Android has all the standard and advanced Linux packet
counters accessible through publicly-readable procfs. The
following is a list of relevant counters identified.

9

/proc/net/snmp: InSegs. This is a basic counter that sim-
ply records the number of incoming TCP packets received
by the OS, regardless if the packet contains error (e.g.,
wrong checksum). It is the most straightforward counter but
may be noisy as there can be background traffic received
by the client during the sequence number inference.

It turns out that it is possible to find other much less noisy
counters. The idea is to leverage the mismatch in the logic
of identifying error packets between the firewall middlebox
and the client. For instance, we can craft packets that look
erroneous to the client but perfectly legitimate to the fire-
wall. The result is that the firewall still checks the sequence
number, but when the packet reaches the client, it will be
dropped and the corresponding error packet counter will
be incremented. Note that these error packet counters are
much less noisy because they are rarely incremented caused
by naturally occurring packet corruption. Specifically, we
found the following promising counters on Android.

/proc/net/netstat: InErrs. This counter should be incre-
mented every time when, among other things, a packet with
wrong checksum is received. If the firewall lets packets with
wrong checksum through, then an attacker can craft such
packets and make use of this counter. However, we verified
that the firewall in the nation-wide cellular network already
drops packets with incorrect checksum.

/proc/net/netstat: PAWSEstab. This counter is increment-
ed when a TCP packet with an old timestamp is received.
PAWS, or Protect Against Wrapped Sequences, is a mech-
anism that relies on timestamp to prevent old packets with
wrapped-around sequence numbers from being mistakenly
received, a TCP extension standardized in RFC 1323 [20].
All Android phones that we tested have this counter enabled
and the firewall does not check the timestamp at all (likely
due to overhead concerns). As a result, our implementation
uses this counter for all on-site attacks.

For the intermediate hop IPID side-channel, we found
that the noise level is quite tolerable. Specifically, the IPID
of the intermediate hop increments only when the hop
(e.g., router) itself is originating packets (e.g., TTL-expired
messages or packets generated for routing protocols). In
contrast, packets passing through the hop do not affect
its IPID. That means that the IPID should not increment
very often. Moreover, since the probing packets are back-
to-back, the window for observing such noise is very small.
In practice, we found that sending 1–4 packets per window
range is usually enough to overcome the IPID noise.

B. Sequence Number Inference

Theoretically, the time to complete a binary-search-like
probing is 32×RTT . Assuming a cellular RTT of 200ms,
the total time should be about 6.4 seconds. However, as
observed in our experiments, it also takes time to send a
large number of packets to cover the large sequence number
space. In addition, we also add padding time during the
probing to prevent packets arrive out-of-order. In practice,
the binary-search-like probing can take up to 10 seconds to

complete with an RTT of 200ms, which can be too long
since a user may be able to notice the delay. To speed up
the probing, we implement a number of optimizations.

The first optimization is that instead of inferring the
exact sequence number, we can stop the inference once we
know the sequence number is within a range (e.g., of 256
possible numbers). Later, it will not be difficult to simply
brute force all 256 sequence numbers simultaneously. In a
binary search, this can reduce log2 256 = 8 RTTs, which is
significant.

The second optimization is based on the observation that
the sequence number inference is heavily round-trip-bound
instead of bandwidth-bound. As a result, we devise an
algorithm that reduces the number of network round trips
significantly. The idea is that instead of eliminating half of
the sequence number space each iteration, we can eliminate
N−1
N of the search space by simultaneously probing N-

1 of N equally-partitioned bins. We could send different
number of packets in different bins. As an example where
N = 4, we could send 1 packet each window in the first
bin, 2 packets each window in the second bin, and 4 packets
each window in the third bin. This way, an attacker could
tell which bin the sequence number falls in by looking at
the increment of the packet counter. We name the probing
technique “N-way search”. It is not hard to see the resulting
number of iterations can be computed as logN 4G. For
instance, if N = 4, logN 4G = 16, which is only half
of that the original binary search needs.

At a glance, it seems that the bigger N, the better.
However, we also note that by increasing N , the total
number of probing packets also increases (since it requires
more packets for each bin) and so is the inference time.
In practice, we use a small N=2 (i.e., binary search) at the
beginning few iterations, and use larger N (e.g., N = 4)
towards the end, which turns out to work very well. When
using the packet counter feedback, we found that it takes
only about 4–5 seconds to complete the inference when
RTT is at around 200ms.

C. On-site TCP hijacking

We next describe more details on the most critical part
of each hijacking attack. We also analyze the bandwidth
requirement when necessary (e.g., to reset the server) and
present the experimental results in Table II measured using
the Android 2.3.4 OS where we hijack m.facebook.com
with a Planetlab server acting as the attack server.

1) Reset-the-server: In this attack, the most critical part
is to successfully reset the server. As described before,
we leverage requirement C4 which tells the attacker that
the victim connection’s ISN is at most 16,777,216 away
(either smaller or larger) from the ISN of the attacker-
initiated connection. Since RST packets with any sequence
number that falls in the receive window can terminate
the connection [33], the max number of required RST
can be calculated as 16777216×2

server rwnd where server rwnd
represents the server’s TCP receive window size. Further,

10

given that the RST happens right after the server send-
ing out SYN-ACK, server rwnd is in fact the initial
TCP receive window size denoted as server init rwnd.
Typically, server init rwnd is about three to four full
TCP packets long as per TCP slow start. For instance, m.
facebook.com uses 4380, twitter.com uses 5840, and the
corresponding number of required RST packets is 7661
and 5746 respectively. However, different websites can have
very different values. We found chase.com uses 32805
which is almost a magnitude larger. In general, the larger
the server init rwnd, the fewer packets required.

Moreover, to successfully reset the server in time, all
RST packets have to be delivered between time 3 and 5 as
shown in Figure 4. If they arrive after time 5, the server may
already respond to the client’s request. Thus, the valid time
window for reset is basically a round trip time between
the client and the server. The bandwidth requirement is
then computed as

16777216×2
server init rwnd

RTT × 40bytes× 8bits. In our
experiment in cellular networks where RTT = 200ms, it
will be 327Kbps − 12Mbps (as shown in Table II), de-
pending on the server init rwnd values mentioned above.
When RTT is smaller (as on the Internet), the bandwidth
requirement will increase proportionally. This is another
reason why cellular devices are particularly vulnerable and
easy to attack. Although the bandwidth requirement may
seem high, it is important to note that bandwidth resource
is becoming more abundant and cheaper. For instance, the
uplink bandwidth of a standard home Comcast network can
be up to 4.2Mbps (tested in our home). The bandwidth
requirement can even be distributed across a number of
bots. Moreover, the bandwidth requirement is not a hard
requirement and the attack can be attempted multiple times.
For instance, it will be good enough to use TCP hijacking
to steal a user’s password just once. In our experiment,
we use a Planetlab server acting as the attack server to
reset m.facebook.com. We are not certain about the exact
bandwidth, but the reset success rate is quite good according
to our experiment.

As shown in Table II, the success rate of reset-the-server
hijacking is 65% after 20 experiments with 7 failures in
total. 5 of them are caused by the RST race condition
failure. Other 2 are due to sequence number inference
failures (e.g., packet loss). As we can see, the success rate is
high enough to cause real damage. It takes 4 to 5 seconds to
complete the inference when measured with packet count
feedback. It takes only 2 seconds using intermediate hop
feedback as the probing does not go through the cellular
link. The downside is that the latter may not always be
available. Nevertheless, since we observe that it takes more
than 10 seconds to tear down a connection after several
rounds of retransmission, the inference time is definitely
short enough.

2) Preemptive-SYN: During implementation, we found
one interesting detail about the intermediate hop feedback
where its TTL-expired message can inadvertently terminate

Table II: TCP hijacking bandwidth requirements and results
Reset-the-server Preemptive-SYN Hit-and-run

BW required 0.3 – 12Mbps None 6.6 – 26Mbps
BW factor server init rwnd, RTT None WIN, RTT

Success rate 65% 65% 85%
Inference time 4–5s 6–7s 8–9s

the client-side connection. It happens only when a TTL-
expired message embedding a TCP header with a sequence
number matching the original SYN’s sequence number
(similar to the hit-and-run hijacking case). Our optimization
on the sequence number inference should already alleviate
the problem since we stop inference much earlier so that it
is unlikely a spoofed packet has the same sequence number
as in the original SYN.

Note that there is no bandwidth requirement for this
attack as long as requirement S2 is satisfied. Interestingly,
according to Table II, the success rate is still measured
to be 65% after 20 experiments. However, out of the 7
failed cases, 6 are due to the sequence number inference
(likely caused by the noise in IPID side-channel). 1 of them
seems to be due to a load balancing change that causes the
connection to the attack server to go through a different
intermediate hop. However, we observe that this happens
very rarely. In terms of the inference time, it takes about
6 to 7 seconds, slightly longer than the Reset-the-server
attack, due to the need to send more packets per window
to overcome the noise in the IPID side-channel.

3) Hit-and-run: The critical part of this attack is to
shift the window in time at the very beginning to prevent
legitimate server’s packets from going through the firewall.
The number of packets required is computed as 4G

WIN−1
since one packet is sent per WIN − 1. Depending on the
window scaling factor, WIN is 256K and 1M respectively
for the two Android OSes. The bandwidth requirement is
basically

4G
WIN−1

RTT ×40bytes×8bits or 26Mbps and 6.6Mbps
if we plug in the two WIN values (as shown in Table II).
One thing to note is that the window scaling factor is
incremented every time a new Android version is pushed
out, presumably to take advantage of the increasing cellular
network bandwidth. This indicates that future attacks will
have even lower bandwidth requirement.

As shown in Table II, the success rate is 85% with only
3 failed cases caused by the inference failure. No failure
is observed for the initial window shifting likely due to
the lower bandwidth requirement with the window scaling
factor of 4. Note that we need to shift the window back and
forth in each iteration, which means more packets are sent
and packet loss is thus more likely. For the same reason,
the inference time is a little longer.

D. Off-site TCP injection

We were not able to implement the URL phishing attack
on the nation-wide network, which is the only attack we did
not implement. The reason is that when NAT is deployed,
the attack requires knowing the client’s private IP in order
to conduct the sequence number inference from the client’s

11

network (same as preemptive-SYN). However, without on-
site malware, it is difficult to obtain the device IP (i.e.,
private IP) through mobile browsers. The only way to get
device IP seems to be through Java applet which is not
supported on mobile browsers. We have confirmed neither
Javascript nor Flash can do so. Note that this attack is
feasible for cellular carriers using public IP addresses for
their mobile devices (there are in fact many such carriers
according to a recent study [32]).

We did implement the long-lived connection inference
using a single ICMP packet and run a small-scale exper-
iment on the nation-wide carrier to measure the number
of cellular IPs actively using Android’s push notification
service. We pick a particular push server IP 74.125.65.188
and port 5228 (push service port), and choose an entire /16
cellular IPs to probe. For each IP, we enumerate every port
within the default local port range for Android: 32768 –
61000. To avoid probing too aggressively, our experiments
conservatively rate limit the probing to 6 seconds per IP.
Interestingly, using the single-ICMP-packet probing, we
found that about 7.8% of the IPs have a connection with the
server. That means it is fairly easy to find popular services
to attack. Even through the connections are encrypted, it is
still possible to carry out connection reset attacks. In fact,
this approach is much more efficient than the traditional
reset attack where combinations of client port number and
sequence number need to be enumerated.

E. Establish spoofed connections

We implement the attack mostly as described in §IV-B3.
The only difference is that instead of spoofing a single
IP, we spoof as many IPs (for different connections) to a
controlled target server as possible. Specifically, we try to
spoof all IPs inside a /16 IP range in the nation-wide carrier.

For each IP that we want to spoof, we need to first test
if the IP is responsive. To do so, we first send a SYN
packet with a spoofed IP from the attack phone inside the
cellular network to our attack server which responds with a
legitimate SYN-ACK back. If the spoofed IP is responsive,
a RST will be generated. Otherwise, we consider the IP to
be unresponsive. For any unresponsive IP, we send a second
spoofed SYN, this time, destined to the victim server (i.e.,
a controlled lab server). The rest of the work is to simply
conduct the sequence number inference from the attack
server using the intermediate hop feedback so that we can
spoof a correct ACK packet to complete the connection.

Ideally an attacker can simultaneously spoof many IPs.
However, we found that there is only a single shared
responsive intermediate hop where all the TTL-expired
messages essentially share a single IPID counter. If we
parallelize the process, different experiments probing to
the same intermediate hop can interfere with each other.
Consequently, we can only pipeline the process as much as
possible to make sure there is always one sequence number
inference procedure probing to the intermediate hop.

Through our experiments, we found that there are 80%
of IPs are unresponsive, which means that there are plenty
of IPs an attacker can make use of to establish spoofed
connections. We found that we can make about 0.6 success-
ful connection per second on average with more than 90%
success rate (the failed cases are mostly due to sequence
number inference error).

VI. VULNERABLE NETWORKS

To understand the susceptibility of the existing networks
to the described attacks, in this section, we report the mea-
surement results of firewall implementations and availability
of responsive intermediate hop, through a deployed mobile
application (referred to as MobileApp) on the Android mar-
ket (the malware described earlier was not on the market).
The MobileApp measures the network performance and
policy and reports the results to users so that they have
incentives to run our app. The data are collected between
Apr 25th, 2011 and Oct 17th, 2011 over 149 carriers
uniquely identified by their Mobile Country Code (MCC)
and Mobile Network Code (MNC).

A. Firewall implementation types

Methodology. We focus on the three firewall implemen-
tation properties described in §III-A. The three properties
are selected based on experiences with the firewalls encoun-
tered in real carrier networks as well as a number of trial-
and-errors on the earlier deployment of our MobileApp.

To infer the window size, we try the following WIN
values in order: 2G, 128M, 16M, 1M, 512K, 256K, 64K.
Note that testing exhaustively all possible window size
values is too time-consuming as a long timeout (i.e., 4
seconds) is needed for each probing packet to account for
long cellular RTTs. Specifically, for each WIN value, our
MobileApp server test sequence numbers X-WIN+2 and
X+WIN-2 to check if they can trigger any response. X is the
next expected server-side sequence number. The adjustment
by 2 is to accommodate a slightly smaller window imple-
mentation from the common values. The reverse ordering
by window size is to finish the test more quickly if there is
no sequence number checking (i.e., WIN=2G).

To test the left-only/right-only window behavior, we
always try the left window and then the right one (to be
consistent). If the left window probing packet is allowed
but not the right one, we conclude it is left-only window.
Similarly, we can discover right-only window firewalls.
Additionally, we have to eliminate the window-shifting case
where the left-window packet can shift the window to
the left so that the right window packet may be falsely
considered as “out-of-window”. Such cases can be detected
by the test described next.

To test if the firewall has window-shifting behavior, the
basic procedure is as follows: once a left-window packet
with sequence number X-WIN+2 is allowed by the firewall,
we try to shift it further left by (WIN-1) twice. If both
attempts of shifting succeed, we try the sequence number

12

Table III: Sequence-number-checking firewall types

Window Size Left/Right Window Moving # of Carriers
64K left-only window-advancing 6

fixed>128M left&right window-advancing 5
window scaling left&right window-advancing 7
window scaling left&right window-shifting 17
window scaling left-only window-advancing 10

-2G left-only unknown 2

X-WIN+2 again. If the window is indeed shiftable, its center
is already shifted left by 2(WIN-1), making X-WIN+2 out-
of-window (and the packet will be dropped). There are two
corner cases that need to be considered to ensure the validity
of the results. The first one is that since we do not cover
all possible window sizes, the inferred window size WIN
may be an under-estimate of the actual window size. We
address this explicitly by shifting the window far enough
beyond an over-estimate of the actual window size. The
second one has to do with resetting the window position to
its original value after left window test is done before the
right window test.

Results. Overall, out of the 149 carriers, we found
47 carriers that deploy sequence-number-checking firewalls
with at least two completed supporting experiments. 10
other carriers were found to be suspicious but with only one
experiment, thus are excluded due to possible errors caused
by packet loss. If we consider only the 47 carriers, 31.5%
of the carriers are subject to the sequence number inference
attack. The nation-wide network we tested is excluded from
this analysis because it is somewhat a special case with two
different firewalls deployed. We did not look for a similar
two-firewall setup in the measurement and thus cannot
conclude the number of other carriers with such two-firewall
setup. In essence, our experiments test the combined effects
of all sequence-number-checking firewalls.

A detailed breakdown of the measured firewall imple-
mentations is shown in Table III.

Window size. We can observe three main window sizes:
1). 64K — some legacy firewalls only support this value
(window scaling is not supported), 2). window scaling —
where the size is calculated based on the window scaling
factor, 3). fixed > 128M — could be 1G as found in the
nation-wide cellular network. There is one last window size
listed as “-2G” which means that the left window is wide
open, but no packets are allowed for the right window.

Left-only or right-only window. Interestingly, we dis-
cover that many networks have left-only window firewalls.
For the nation-wide carrier, it is because the internal firewall
buffers out-of-order packets as discussed before. However,
we found this may not be the case for other carriers. Upon
a closer inspection, we realize that some firewalls actually
have an even smaller-than-64K right window set based
on the initial receive window size (sometimes below 8K)
carried in the client-side SYN (instead of based on the
window-scaling factor). This behavior matches the ideal
firewall that dynamically adjust the window size based
on the currently advertised receive window. On the other
hand, the left window is still kept to be fixed in case old

packets are lost and retransmitted. Since we did not test
window sizes smaller than 64K, it is possible that some
of the left-only window carriers can in fact be left&right.
Regardless, such minor variations do not impact the attack
as the window size can be obtained offline.

Window moving criteria. We found 17 carriers to have
shiftable windows and all with left&right windows, making
it difficult to infer the exact sequence number but still
susceptible to attacks. The other majority of 30 carriers,
however, allow the exact sequence number to be inferred.

B. Intermediate hop feedback

Methodology. We devise the following probing tech-
nique to infer if any intermediate hop is responsive: from
the previous experiments we can gather an in-window and
an out-of-window sequence number. We conduct two TCP
traceroutes with those two sequence numbers respectively.
If there is any hop that responds to the first traceroute (with
in-window sequence number) but not to the second one, we
flag such hop. Additionally, we send two traceroutes (ICMP
error messages) embedding a correct four-tuple and a wrong
one (with a modified port number). If any hop responds to
the correct one but not the incorrect one, we consider the
single ICMP packet probing as possible.

Results. Out of all the 47 carriers that have sequence-
number-checking firewalls, 24 carriers have responsive in-
termediate hops that reply with TTL-expired ICMP packets.
8 carriers have NAT that allow single ICMP packet probing
to infer active four tuples.

VII. VULNERABLE APPLICATIONS

The TCP sequence number inference attack opens up
a whole new set of attack venues. It breaks the common
assumption that communication is relatively safe on en-
crypted/protected WiFi or cellular networks that encrypt the
wireless traffic. In fact, since our attack does not rely on
sniffing traffic, it works regardless of the access technology
as long as no application-layer protection is enabled. In this
section, we illustrate the broad impact of the attack by a
mere glimpse at a number of impacted applications.

A. Web-based attack

Facebook/Twitter: We found that the login pages for
both desktop and mobile browser are not using SSL. They
are subject to phishing attack where the login page can be
replaced. Further, when users are logged in, webpages by
default are not SSL-enabled (unless turned on in the account
settings). It allows Javascript injection which simply sends
a HTTP post request to perform actions on behalf of the
users such as posting a message or following other users.
Both Facebook and Twitter servers have host-based stateful
firewalls that satisfy requirement S1, which enables Reset-
the-server hijacking. In both cases, gaining access to users’
social networking account is a huge privacy breach.

Banking: Similar to a previous study [17], we survey
68 banking websites from a keyword “bank” search from

13

Google, 4 of which are found to have non-SSL login
page. There is one other website which uses SSL in most
pages but not one specific account query page which also
contains a login form. Also, one website has a login helper
program download link in HTTP that allows the binary to
be replaced. In all cases, successful attacks can cause direct
financial loss. We also verified that all bank servers deploy
host-based stateful firewalls which satisfy requirement S1.

B. Application-based attack

Facebook app: The latest version of the Facebook app as
of this writing was updated on October 5, 2011. We found
that it is impossible to replace the login page as it is part of
the built-in UI (i.e., not fetched over the network). However,
we do find two sensitive connections not using SSL. Even
though we did not test our attacks specifically on them, it
is quite obvious that they are subject to our attacks.

• The main page (e.g., news feed) is fetched through
HTTP (html/text) which is subject to tampering.

• A critical Javascript is fetched through HTTP. An
attacker can inject malicious Javascripts to perform actions
on behalf of the user just as the web-based attack.

Windows Live Messenger app: The protocol [11] is in
plaintext without encryption in most client implementations,
which allows an attacker to inject arbitrary messages while a
user is logged in. The protocol does not require any nonce
carried in the server’s notification of incoming messages.
We verified that an attacker can indeed succeed in posting
malicious links (e.g., to spread virus or spam).

Stocks app: The number one stocks app on the Android
market uses Google finance through HTTP to display stock
prices. It allows an attacker to inject misleading prices
which can cause potential financial loss. Moreover, we
verified that instead of blindly injecting HTTP responses
to a request (to guess for a particular stock), an attacker
can inject “HTTP 301 – Moved Permanently” message to
redirect the request to its own server which can read which
stocks the app is requesting and send the corresponding
fake prices. Unlike a browser with an address bar, such
redirection happens transparently.

Advertisement: We tested that advertisements provided
through AdMob are fetched over HTTP. An attacker can
thus replace the original advertisement with his own to gain
revenue. Note that this attack is not intrusive and can be
carried out repeatedly to achieve long-term benefits, as long
as the malware is kept on the device.

C. Server-side attack

The “Establish spoofed connections” attack described in
§IV-B3 allows an attacker to establish connections with a
target server using many spoofed IPs. It can be applied in
the following scenarios:

Mail server spamming. Using spoofed IPs generally can
increase the probability that a spam email is accepted by
the mail server since IP-based spam blacklists are unlikely
to catch all bad IPs at once. Without IP spoofing, an IP

repeatedly sending spam is likely blacklisted very quickly.
We tested that we can successfully deliver emails by simply
sending a spoofed data packet (with SMTP commands) to
our departmental mail server and acknowledging server’s
response (via a number of spoofed ACK packets).

DoS of servers. Web server and other public-facing
servers are subject to DoS attacks due to a large number
of spoofed connections. Note that it is different from SYN
flooding in that the connections are actually established,
so SYN-cookie-based defense is not effective. We experi-
mented the attack against our own sshd server running on
Ubuntu 11.04 (server kernel build) and found that the 0.6
conn/s rate is in fact enough to cause new legitimate ssh
connections rejected sporadically when the number of active
connections reach a certain limit. We suspect it is due to
a security kernel counter-measure triggered to block new
connections, which also causes the collateral damage.

VIII. DISCUSSION AND CONCLUSION

After constructing a diverse set of attacks, we explore
what actually went wrong and how we can fundamentally
correct them. We discuss the following four aspects.

Firewall design. It is interesting and surprising to realize
that the more checks the firewall performs, the more infor-
mation it can leak. For instance, if it checks the four-tuple
and allows only packets belonging to an existing session
to go through, then an attacker can infer which four tuples
are active. If it checks sequence number, then the sequence
number inference attack becomes possible. Similarly, if a
firewall checks acknowledgment number according to RFC
793 [25] where half of the acknowledge number space is
considered valid (as is in the latest Linux TCP stack im-
plementation), then it may allow an attacker to additionally
infer the appropriate acknowledgment number, which can
help preemptive-SYN attack eliminate the requirement of
IP spoofing in the client’s network. Our study suggests that
firewall middlebox designs should be carefully evaluated on
potential leakage of sensitive network state.

Side-channels. We have summarized two side-channels
that serve as feedbacks of the sequence number inference,
without which the attack would not be possible. They are
intermediate hop IPID and host packet counter. We study
whether they are fundamentally difficult to eliminate. For
IPID, the answer is negative, as many host OSes such as
Linux already use randomized IPIDs. However, for packet
counter, it seems that such aggregated information is always
available on most OSes and considered harmless. Our study
suggests that such information can be abused. One way to
mitigate the problem is to add a permission requirement
to read such packet counters. However, many users may
simply grant the permission. The other important aspect is
that the firewall does not check the TCP timestamp option
(likely due to overhead concerns) which allows an attacker
to leverage the less noisy PAWSEstab counter. It suggests a
dilemma of the firewall design – it has to tradeoff between
performance and the completeness of checks.

14

Other side-effects. We discover several other notable
side-effects of the current host TCP implementation or
setup. For instance, the coarse-grained ISN predictability
is a byproduct of the Linux TCP implementation. Also,
the fact that a server can be kept silent after being reset is
caused by the side-effect of the server’s host-based firewalls.
Interestingly, such implementations and setups are well
intended, yet they in fact facilitate the attacks. In the end,
we do not think they are the culprit of the problem because
even if these two side-effects are eliminated, it prevents
only the Reset-the-server hijacking.

HTTPS-only world. In general, SSL should be able to
defeat most attacks. Hopefully one of the results of our
study is to help push the HTTPS-only world. We do note
that even if SSL is employed by the websites, there is a
special case where an attack may still succeed. Specifically,
when a user types in a URL such as www.chase.com,
the default browser behavior is to initiate a normal HTTP
request first unless the user specifically types in https://
www.chase.com. It is generally the server that subsequently
redirects the browser to the https site via a “301 – Moved
Permanently” HTTP response. Instead of redirecting the
browser, an attacker can simply respond directly with a
phishing page to the initial HTTP request. In this case, the
only difference is that the browser will not show the https
icon. However, average users may not notice.

In conclusion, we are the first to report the TCP sequence
number inference attack using state kept on middleboxes
and attacks built on it. We demonstrate that many networks
and applications are affected today. We also provide insights
on why they occur and how they can be mitigated.

REFERENCES
[1] CERT Advisory CA-1995-01 IP Spoofing Attacks and

Hijacked Terminal Connections. http://www.cert.org/
advisories/CA-1995-01.html, Retrieved on 03/04/2012.

[2] CERT Advisory CA-2001-09 Statistical Weaknesses in
TCP/IP Initial Sequence Numbers. http://www.cert.org/
advisories/CA-2001-09.html, Retrieved on 03/04/2012.

[3] Check Point – What’s New for FireWall-1/TCP Se-
quence Checking. http://www.checkpoint.com/ngupgrade/
whatsnew/products/features/tcpseqcheck.html, Retrieved on
03/04/2012.

[4] Cisco Security Advisory: Cisco Secure PIX Firewall
TCP Reset Vulnerability. http://www.cisco.com/en/US/
products/products security advisory09186a00800b1397.
shtml, Retrieved on 03/04/2012.

[5] Comet (programming). http://en.wikipedia.org/wiki/Comet
(programming), Retrieved on 03/04/2012.

[6] Linux Blind TCP Spoofing Vulnerability. http://www.
securityfocus.com/bid/580/info, Retrieved on 03/04/2012.

[7] Linux: TCP Random Initial Sequence Numbers. http://
kerneltrap.org/node/4654, Retrieved on 03/04/2012.

[8] Stateful Firewall and Masquerading on Linux. http://
www.puschitz.com/FirewallAndRouters.shtml, Retrieved on
03/04/2012.

[9] TCP hijacking video demo. http://youtu.be/T65lQtgUJ2Y,
Retrieved on 03/04/2012.

[10] Access Point Name. http://en.wikipedia.org/wiki/Access
Point Name, Retrived on 03/04/2012.

[11] MSN Messenger Protocol. http://www.hypothetic.org/docs/
msn/, Retrived on 03/04/2012.

[12] S. M. Bellovin. A Look Back at “Security Problems in the
TCP/IP Protocol Suite”. In ACSAC, 2004.

[13] R. Beverly, A. Berger, Y. Hyun, and k claffy. Understanding
the Efficacy of Deployed Internet Source Address Validation
Filtering. In Proc. ACM SIGCOMM IMC, 2009.

[14] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel
leaks in web applications: a reality today, a challenge tomor-
row. In Proc. of IEEE Security and Privacy, 2010.

[15] Cisco. Cisco ASA 5500 Series Configuration Guide using
the CLI, 8.2. http://www.cisco.com/en/US/docs/security/asa/
asa82/configuration/guide/conns tcpnorm.html, Retrieved on
03/04/2012.

[16] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall. Idle
Port Scanning and Non-interference Analysis of Network
Protocol Stacks using Model Checking. In Proc. of USENIX
Security Symposium, 2010.

[17] L. Falk, A. Prakash, and K. Borders. Analyzing websites for
user-visible security design flaws. In Proc. of Usable privacy
and security, 2008.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: attacks and defenses. In Proc. of
USENIX Security Symposium, 2011.

[19] F. Gont and S. Bellovin. Defending Against Sequence
Number Attacks. RFC 6528, 2012.

[20] V. Jacobson, R. Braden, and D. Borman. TCP Extensions
for High Performance. RFC 1323, 1992.

[21] Juniper. Stateful Inspection Firewalls. http://www.abchost.
sk/download/204-4/juniper-stateful-inspection-firewall.pdf,
Retrieved on 03/04/2012.

[22] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and
M. Frantzen. Analysis of Vulnerabilities in Internet Fire-
walls. In ”Computers & Security”, 2003.

[23] G. LEECH, P. RAYSON, and A. WILSON. Procfs Analy-
sis. http://www.nsa.gov/research/ files/selinux/papers/slinux/
node57.shtml, Retrieved on 03/04/2012.

[24] lkm. Blind TCP/IP hijacking is still alive. In Phrack
Magazine, issue 64, 2007.

[25] J. Postel. TRANSMISSION CONTROL PROTOCOL. R-
FC 793, 1981.

[26] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. Investigation of
Triangular Spamming: A Stealthy and Efficient Spamming
Technique. In Proc. of IEEE Security and Privacy, 2010.

[27] A. Ramaiah, R. Stewart, and M. Dalal. Improving TCP’s
Robustness to Blind In-Window Attacks. RFC 5961, 2010.

[28] E. S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. S-
risuresh. NAT Behavioral Requirements for TCP. RFC 5382,
2008.

[29] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapa-
dia, and X. Wang. Soundcomber: A Stealthy and Context-
Aware Sound Trojan for Smartphones. In NDSS, 2011.

[30] D. X. Song, D. Wagner, and X. Tian. Timing Analysis of
Keystrokes and Timing Attacks on SSH. In Proc. of USENIX
Security Symposium, 2001.

[31] J. Touch. Defending TCP Against Spoofing Attacks. R-
FC 4953, 2007.

[32] Z. Wang, Z. Qian, Q. Xu, Z. M. Mao, and M. Zhang. An
Untold Stody of Middleboxes in Cellular Networks. In
SIGCOMM, 2011.

[33] P. A. Watson. Slipping in the Window: TCP Reset Attacks.
In CanSecWest, 2004.

[34] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber, and Z. M.
Mao. Cellular Data Network Infrastructure Characterization
and Implication on Mobile Content Placement. In Proc. ACM
SIGMETRICS, 2011.

[35] K. Zhang and X. Wang. Peeping Tom in the Neighborhood:
Keystroke Eavesdropping on Multi-User Systems. In Proc.
of USENIX Security Symposium, 2009.

15

