
Investigation of Triangular Spamming:

a Stealthy and Efficient Spamming Technique

Zhiyun Qian1, Z. Morley Mao1, Yinglian Xie2, Fang Yu2

1University of Michigan and 2Microsoft Research Silicon Valley

Abstract—Spam is increasingly accepted as a problem
associated with compromised hosts or email accounts. This
problem not only makes the tracking of spam sources difficult
but also enables a massive amount of illegitimate or unwanted
emails to be disseminated quickly. Various attempts have been
made to analyze, backtrack, detect, and prevent spam using
both network as well as content characteristics. However,
relatively less attention has been given to understanding
how spammers actually carry out their spamming activities
from a network angle. Spammers’ network behavior has
significant impact on spammers’ common goal, sending spam
in a stealthy and efficient manner. Our work thoroughly
investigates a fairly unknown spamming technique we name
as triangular spamming that exploits routing irregularities of
spoofed IP packets. It is highly stealthy and efficient in that
triangular spamming enables 1) exploiting bandwidth diversity
of botnet hosts to carry out spam campaigns effectively without
divulging precious high-bandwidth hosts and 2) bypassing the
current SMTP traffic blocking policies. Despite its relative
obscurity, its use has been confirmed by the network operator
community. Through carefully devised probing techniques and
actual deployment of triangular spamming on Planetlab (a
wide-area distributed testbed), we investigate the feasibility,
impact of triangular spamming and propose practical detec-
tion and prevention methods. From our probing experiments,
we found that 97% of the networks which block outbound
SMTP traffic are vulnerable to triangular spamming and only
44% of them are listed on Spamhaus Policy Blocking List
(PBL).

I. INTRODUCTION

Spam constitutes an enormous waste of network re-

sources. As reported, over 90% to 97% of all emails are

spam [8]. Despite all the past efforts in spam mitiga-

tion, the problem still remains unsolved. There are two

main categories of spam filtering techniques: content-based

and blacklist-based. While content-based filtering is the

canonical way, blacklist-based approach (e.g., Spamhaus,

Spamcop [19], [18]) is receiving much attention recently

because it does not rely on email content and may be

more efficient and less susceptible to evasion. While IP-

based blacklist is simple and lightweight, compiling and

maintaining such a list is challenging due to the changing

landscape of compromised hosts: more hosts can become

compromised; they could change IP addresses over time;

and they may also be patched. As a result, it is not surprising

that most IP blacklists provide a very limited coverage of

malicious IPs involved in sending spam [36].

Further, as spam detection and prevention techniques

evolve, so do spamming techniques. Spammers are increas-

ingly more stealthy by restricting each IP or compromised

host to only send very few spam messages to each target in

order to stay under the radar [39]. In the meanwhile, ISPs

are enforcing the outbound SMTP (port 25) blocking policy

for their end-hosts in an effort to reduce spam originated

from their networks [13], [14].

In this paper, we systematically study triangular spam-

ming, a clever spamming technique that has been known for

several years, but never systematically studied. Triangular

spamming, as its name suggests, involves three main parties,

target mail server, original spam sender (or high-bandwidth

bot) and relay bot (or low-bandwidth bot). The key idea is

that with relay bots’ cooperation, the original sender (high-

bandwidth bot) can send spam in high throughput while

hiding its own IP address by spoofing the relay bots’ IP

addresses. In a recent NANOG survey [9], although the

network operator community is already aware of such prob-

lems, our study shows that most ISPs still do not enforce

the correct SMTP blocking policy to prevent triangular

spamming.

We focus on three key questions:

1. What are the requirements of triangular spamming, and

is today’s network vulnerable to such spamming behavior?

2. What are the benefits of triangular spamming, and is

it used in the wild today?

3. What are the possible solutions to prevent or mitigate

such a spamming approach?

As triangular spamming essentially exploits network-

level vulnerability, it requires a detailed understanding of

network operational practices that are usually overlooked

in security research domain. In this paper, we surveyed the

network policy practices in addition to conducting large-

scale experiments to verify and explore current network

policies of various ISPs. More specifically, we are focusing

on the port blocking policy employed by ISPs.

Our study makes the following contributions:

1. We designed an accurate and effective probing tech-

nique to discover the networks that attempt to block out-

going port 25 traffic but fail to enforce the correct port

blocking policy, thus are vulnerable to triangular spamming.

2. We found that 97% of the blocking networks fall into

the above category. Only 44% of such prefixes are listed on

Spamhaus PBL [37].

3. We conducted experiments to ascertain the existence

of triangular spamming at the mail server side.

Figure 1. Triangular spam delivery example

4. We systematically evaluated the feasibility and ben-

efits of triangular spamming via experiments of actually

deployed setups on Planetlab. Based on the operational

experience, we discuss promising prevention and detection

approaches to triangular spamming.

The remainder of the paper is structured as follows:

§ II describes the basic requirements and implication of

triangular spamming. § III studies the port blocking policy

extensively for thousands of networks. § IV describes our

experience and lessons learned from building triangular

spamming and deploying it on Planetlab on our own. § V

describes possible detection and prevention techniques and

ascertain the existence of triangular spamming. § VI surveys

the related work and § VII concludes our work.

II. TRIANGULAR SPAMMING MECHANISM AND

IMPLICATION

As shown in Figure 1, triangular spamming exploits IP

spoofing to route packets indirectly for the purpose of

hiding the identity of actual sending hosts and increasing

spam throughput. The spammer picks one or more high-

bandwidth bots (or original sender) to send spam directly

to target mail server while spoofing the source IP addresses

of relay bots. These bots listen for any relevant packets,

e.g., those from port 25 from the mail server and forward

them back to the original spammer.

A. Triangular spamming requirement

IP spoofing is allowed at the origin sender network.

IP spoofing has long been studied for implications such as

DoS attacks [28]. Although the problem has been studied

extensively for two decades or so, it is still largely unsolved

due to various deployment challenges, e.g., the network pol-

icy for enforcing anti-spoofing such as unicast reverse path

forwarding (uRPF) [26], [21] is limited by multi-homing,

route asymmetry, complexity of managing and updating the

filtering rules. Indeed, based on the Spoofer study [27], 31%

of the IP addresses studied allow successful spoofing of

an arbitrary, routable source address. We perform our own

study to determine the degree IP spoofing is possible in

order to ascertain the feasibility of triangular spamming on

today’s Internet.

Traffic from mail server to relay bots are not blocked.

As we can observe from Figure 1, even though the relay

bot does not have to contact the mail server directly, it

must receive packets from the mail server in order to relay

them back to the original sender. However, if such traffic

is blocked, then triangular spamming will fail to operate.

In §III, by conducting intelligent probing to infer port

blocking policies, we show that most ISPs do not block such

traffic today. On the other hand, traffic from the relay bot

to the original sender can be easily tunneled and encrypted

so that it can be hard to detect and filter.

Also, it is generally more difficult for NATed hosts to

participate as relay bots given that they will have to be

able to receive packets on a specific source port. However,

with the development of NAT traversal techniques such

as uPnP [22] (many home routers by default enable this

feature), it is rather easy for compromised hosts to initiate

requests to add or modify port mappings on their routers.

In fact, previous attacks have demonstrated that a malicious

Web site can use Flash to control the client’s uPnP-enabled

router [6]. Note also that the port value only needs to be

larger than 1024 (which will unlikely be in conflict with

other applications).

B. Implications of triangular spamming

Port blocking policy bypassing. Many ISPs nowa-

days enforce outbound SMTP traffic (port 25) blocking

in an effort to prevent compromised hosts or bots inside

their networks from sending spam targeting destinations

outside their networks. In the following we denote from

the perspective of a given network outgoing packets with

destination port 25 as OUT traffic and incoming traffic

with source port 25 as IN packets (which is usually the

response packets sent from the mail server) for ease of

exposition. The phrase “outbound SMTP traffic blocking”

refers to an abstract policy that tries to prevent outbound

spam by either blocking IN traffic or OUT traffic or both.

The problem is that only blocking OUT traffic but not

IN traffic (which is the second requirement of triangular

spamming) by ISPs is insufficient to fully prevent their

internal hosts from participating in spamming activities.

Using triangular spamming, those IP addresses can still be

“hijacked” to send spam. Note that for ISPs that do not try

to prevent outbound spam, they will not block IN traffic

either as it is necessary for outgoing SMTP connection to

be established.

Higher spamming throughput compared to sending

directly from botnets. Spammers can rent high bandwidth

pipes to send spam with higher throughput due to the

nature of triangular spamming — most of the traffic is

uplink traffic directly flowing from the spammer to the mail

server without going through bots (See Figure 1). Although

response packets from the mail server have to inevitably

traverse bot hosts, they may not be the bottleneck as the

spammer can parallelize connections by leveraging many

different bots they may already have access to today.

III. ISP PORT BLOCKING POLICY INFERENCE AND

POLICY IMPACT ANALYSIS

How ISPs configure outbound SMTP traffic blocking

determines whether triangular spamming can work. As we

discussed, many ISPs now enforce the outbound SMTP

traffic blocking policy, but it is unclear what the exact

policy is. In this section, we present a systematic empirical

analysis on the port blocking policy of various ISPs. More

specifically, we intend to study 1) which ISPs currently

enforce outbound SMTP traffic blocking, covering as many

ISPs as possible, 2) under their current policies, how many

are vulnerable to triangular spamming either as sending

hosts or as relay hosts as described previously.

A. Port blocking model

We make several reasonable assumptions about the fire-

wall blocking model in order to design tests to infer firewall

policies. First, we assume that ISPs are not blocking port

25 traffic based on packet content (also known as Deep

Packet Inspection or DPI) given DPI is more expensive

and difficult to operate at line speed. Indeed, direct port

25 blocking is the most commonly enforced policy [13],

[14]. We also assume that blocking is directional and can be

configured based on TCP/IP header, e.g., source/destination

IP address, source/destination port, protocol types (e.g.,

TCP or UDP) and TCP flags (e.g., SYN, ACK). This model

is commonly adopted in most modern firewalls ranging

from heavy-weight devices (e.g., Cisco PIX firewall [4])

to host firewall software on PCs (e.g., iptables [10]). For

example, a sample firewall rule that blocks outbound SMTP

traffic would appear as:

SrcIP DstIP SrcPort DstPort Protocol TCP-flags Action

Any Any Any 25 TCP ALL Drop

There are two important observations to make here. First,

suppose this rule is applied to outgoing traffic, i.e., traffic

from ISPs’ internal hosts to external networks, it effectively

blocks only unidirectional outgoing traffic, implying that

packets from an external mail server destined to internal

hosts with source port 25 will not be blocked. This moti-

vates our study on inferring current port blocking policies of

different ISPs to discover if they are vulnerable to triangular

spamming. This problem is illustrated in Figure 2 — the

ISP can either block OUT traffic, IN traffic, or both. It is

known that many ISPs only block OUT traffic due to the

simplicity of such policies and the additional complexity of

configuring incoming port 25 traffic filtering as mentioned

in previous work [27]. For instance, depending on where

the firewall is located, there has to be many exceptions

in the firewall rules specifically (sometimes separately) for

outgoing mail servers and incoming mail servers. As the

recent NANOG survey [9] shows, some real-world ISP

operators do consider that blocking OUT is simpler and

has less impact on the traffic (there is less outgoing traffic

than incoming traffic).

Figure 2. Possible outbound SMTP traffic blocking policy

Second, we note that a stateful firewall that tracks in-

dividual TCP connection states could block IN packets

associated with triangular spamming simply because they

are “out-of-state”. For example, SYN-ACK packets without

any prior associated SYN packets will be dropped by such

a stateful firewall. However, it is difficult for ISPs to adopt

this due to two reasons: 1) it is expensive to keep track

of the state associated with a large number of flows, and

2) some out-of-state traffic, e.g., probing, can be legitimate.

Note that host firewalls can easily support stateful checking,

but if the host is already compromised, such firewalls are

easily disabled or bypassed. On the other hand, network

firewalls are unlikely modified by spammers. Given this key

difference, we attempt to distinguish host-based blocking

from ISP-level port blocking as discussed later in §III-B2.

B. ISPs that block OUT traffic

To study whether most ISPs block OUT traffic instead of

IN traffic, we first find a set of candidate ISPs or IP ranges

that block outbound SMTP traffic and then use the probing

methodology discussed in §III-C1 to distinguish OUT traffic

blocking from IN traffic blocking.

1) Experiment design: There are several approaches to

discover the outbound SMTP traffic blocking behavior.

Surveying ISPs would be the simplest approach. How-

ever, many ISPs treat such information as confidential and

only reveal it to new or existing customers. Very few

ISPs openly disclose such information (e.g., Sonic.net [14]).

ISPs’ knowledge of their policies may lack sufficient de-

tail and may also be inaccurate due to misconfigurations.

Further, port blocking policy may change over time and

may vary depending on location. For example, Comcast was

known to enforce such policies [5]. However, our controlled

experiment (via testing using Comcast service at home)

indicates that Comcast is not blocking outbound SMTP

traffic at the time we conducted the experiment.

The second approach is to obtain control at both end-

points by installing a probing program on end-hosts in-

side various ISPs, which communicate with a server man-

aged by us. For instance, the ICSI Netalyzr [7] requires

users to download a Java applet and likewise the Spoofer

project [27] requests users to explicitly download a program

to run. However, such an approach is more challenging to

accomplish wide-scale adoption.

Figure 3. HTML code snippet

The third approach is to probe with single end control

only. We can mimic a mail server sending TCP packets with

source port 25 to the other end (on some well-known ports)

with SYN-ACK or ACK flags. Depending on the OS and

host firewall settings, probed end-hosts may respond with

a RST packet (we verified this behavior for Windows XP

SP2 and Linux Ubuntu 9.04). If all live end-hosts respond

to the our source port 80 probing but never to our source

port 25 probing, it is highly likely that this ISP is blocking

outbound SMTP traffic instead of individual hosts doing so.

This approach has the benefit of being easily carried out so

that we can probe any host or network of interest. However,

the choice of which IP address ranges to start with limit its

use.

Considering tradeoffs of these various approaches, we

adopt a hybrid one combining the second and third ap-

proach. In order to obtain control from ISP’s side, we chose

to develop a simple, invisible Flash [1] program that can be

easily embedded in Web sites and transparently executed

at the client side. Figure 3 shows the HTML code to be

inserted into Web pages (Note that IP address of the server

is used to avoid an additional lookup overhead). We inserted

it at various university department and educational Web

sites in the U.S. and China to obtain a variety of client

IP addresses.

Note that simpler HTML code like <img

src=“http://OURSERVER-IP:25/a.jpg” WIDTH=0

HEIGHT=0/> can achieve the same goal. However,

direct port 25 access in HTML is blocked by browsers like

Firefox due to security reasons, i.e., one can craft forged

HTML Form Post formatted to send out spam emails.

However, Flash is in a completely different domain from

the browser and is allowed to initiate outgoing port 25

connection by default. If our Flash program indeed fails

to establish the connection, then it is most likely blocked

by firewalls at the host or at the network. To distinguish

between these two, more data points from that network are

needed.

The choice of Flash is supported by the observation that

99% of modern browsers deployed [23] have the Flash

plugin installed. Thus almost every client can execute the

program which simply tries to initiate an outgoing port

25 connection and terminates immediately upon success.

Logging by our server will record this along with the initial

download of the Flash script via HTTP. This allows us to

distinguish IP addresses that succeeded in the test from

those that failed to connect to the port 25 on our server.

2) Probing results: As shown in Table I, based on our

two months of data collected, we gathered about 21,131

unique IP addresses (excluding 2,749 local IP addresses) in

our Web log spanning across 7,016 BGP prefixes. Based

on a simple DNS name heuristic, we classify the prefixes

into educational institutions and ISPs, since our clients are

mostly students who likely access through home or school

networks. 341 of them are educational institutions, 2987

are ISPs, and 3691 are unknown (We randomly probed IP

addresses within the prefix with some threshold, if none of

them has a DNS name, then it is classified as unknown).

Although 3,563 (51%) prefixes contain at least one IP

address blocked for outbound SMTP traffic, only 2,600

prefixes (37%) have all IP addresses blocked. Interestingly,

there are 622 IP addresses that connected to port 25 without

connecting to our Web server. We suspect that these are

spammers probing for open relays.

For many prefixes, we only have limited samples (IP

addresses) and the blocking behavior may not represent

the prefix-level policy, i.e., it is possible the host firewall

blocks the outbound port 25 traffic which is not easily

determined by the Flash script. As a result, we conducted

further probing to verify that the ISPs are indeed block-

ing outbound SMTP traffic in those IP ranges. Extensive

probing (piggybacked in our IN/OUT blocking described

in Section III-C) for every IP address in the prefix range is

carried out to avoid incorrect conclusions caused by outliers,

i.e., host firewall rather than ISP firewall blocking traffic.

Although we could also develop some randomized probing

algorithm, the problem is that we do not know when is

sufficient to stop and even if we stop at some threshold

number of responses, we may still miss the remaining IP

addresses with different behaviors.

The results show that about 688 prefixes have at least

some /24 sub-ranges blocking outbound SMTP traffic, as-

suming the policy is configured at most at the granularity of

/24, matching the finest routing granularity on the Internet.

Out of these 688 prefixes, 25 are educational institutions,

483 are ISPs, and the remaining 180 are unknown.

To illustrate the diversity of our dataset, we look up the

country for IP addresses from IP whois database [25].

They span across 127 different countries. Due to a lack

of space, only countries with more than 100 IP addresses

are shown in Table II. As expected we observe that most

IPs are from the U.S. and China matching the locations of

the hosting Web sites. At the prefix level, we analyze the

percentage of blocking prefixes as verified using probing

and show the diverse policy across countries. Since our

instrumented Web sites are most likely visited by universi-

ties and home users, we expect that many prefixes should

perform outbound SMTP traffic filtering at least at some

sub-ranges. The results show that the top two countries

for enforcing such port blocking policy are Turkey and

Canada. Compared to the top two countries, the U.S. has

a lower filtering enforcement rate. But it is still better

compared to the remaining countries. China and Korea have

the worst blocking percentages, implying that ISPs in those

countries visible in our data do not pay much attention to

spam prevention through network-based filtering. This is

consistent with previous findings that China and Korea are

two big sources of spam emails.

Table I
SUMMARY OF IPS GATHERED FROM THE WEB FLASH EXPERIMENT

of IP addresses # of prefixes

of IP in web log (Baseline): 21131 7016
of IP in port 25 log: 13576 4280

of IP in web log but not port 25 log: 7555 3563
of IP in port 25 log but no web log: 622 397

Table II
DISTRIBUTION OF IPS AND PREFIXES BASED ON COUNTRY

Country # of IPs # of prefixes # of blocking % of blocking
prefixes prefixes

AU 638 162 13 8%
GB 198 120 8 6%
KR 341 145 2 1.3%
DE 118 81 6 7%
CN 6259 1006 4 0.3%
IR 270 89 3 3%
IN 1274 547 9 1.6%
US 10499 2714 252 9.3%
CA 274 151 53 35%
TR 150 87 36 41%

C. ISPs blocks OUT but not IN traffic

Based on the previous results, we obtain an estimate of

how prevalent the outbound SMTP traffic blocking policy

is on today’s Internet. We delve deeper in the results to

infer whether ISPs that block OUT traffic neglect to block

IN traffic, where the latter is a necessary requirement for

serving as a relay in triangular spamming.

1) Probing design: As shown in Figure 2 and discussed

previously, it is easy to infer that the ISP is preventing

outbound SMTP traffic, but non-trivial to discern at which

direction blocking takes place. To summarize, we can first

send a TCP SYN-ACK probe packet to some hosts in the

IP range of interest with source port 80 and destination port

80 (or any other well-known ports). Depending on the OS

and whether the port is open, the host may respond with

a TCP reset (RST) packet. If we receive the corresponding

RST packet, this shows that hosts will respond to probes

to unused ports. We then immediately send another TCP

probe packet but with source port set to 25. If we do not

observe any response this time, assuming it is not the host

firewall that blocks the traffic, it would be the ISP that

blocks either IN traffic (which is our probe traffic) or OUT

traffic (which is the RST response sent from the probed

host). Note that it is also possible that the ISP spoofed the

RST packets uniformly as their policy, and in this case, we

will conservatively think that the ISP is not blocking port 25

while in reality spoofing RST can be a form of blocking. As

a result, we may underestimate the port blocking prefixes.

Figure 4. Outbound SMTP traffic blocking policy inference

However, since the latest large-scale study [43] did not

report the exact same RST behavior (they discover the most

popular RST injection is after SYN and SYN-ACK packet

and in the same direction), we believe such behavior (RST

after SYN-ACK in the opposite direction) is rare if deployed

at all.

Making use of the properties of IPID values (ID field

in IP header) generated by the end-host as many previous

studies have done, we devise a simple approach to distin-

guish the IN or OUT traffic blocking. Figure 4 shows this

probing methodology.

At step 1, suppose we already know that the ISP is

blocking outbound SMTP traffic but have no idea whether

it is IN or OUT blocking. We send several probing packet

(e.g., 5 packets) with source port 80 to some well-known

ports. If we receive responses, we record the IPID values

of the responses and detect the presence of a monotoni-

cally increasing pattern using a simple algorithm similar

to nmap [20]. Let X be the last IPID value received. At

step 2, we send a burst of packets (e.g., 1000) with source

port 25 to the same destination port and expect no response

for these packets. At step 3, we send more probe packets

again with source port 80 and examine the resulting IPID

values in the response packets. If these values are roughly

starting from X + 1000+ E where E is the expected IPID

value increase due to other packets sent by the host between

Steps 2 and 3, then we can infer that the ISP performs OUT

traffic blocking instead of IN traffic blocking. This is based

on the conjecture that the increase in IPID values indicate

that the host did receive our probe packets and responded

to them, resulting in increase in IPID values. We did not

receive the response packets due to ISP’s firewall blocking

such OUT packets. On the other hand, if the IPID value

has not increased by what is expected, we conclude that the

ISP imposes IN traffic blocking and possibly also combined

with OUT traffic filtering. Note that such a conclusion

is unlikely to be incorrect due to the previously verified

monotonically increasing IPID values.

Note that here we assume that the host probed has

system-wide monotonically increasing IPID values which

may not hold. For example, the IPID values can be random

or always set to 0 for response packets that do not belong

to the same TCP flow in recent Linux kernels. However,

for Windows XP SP2 and SP3 that we tested (arguably still

the most prevalent OS at the time we conducted probing),

they all have such system-wide monotonically increasing

IPID behavior. In fact, Windows 7 also has such property.

Our probing results discussed next also verify this behavior

for a large fraction of probed IP addresses. Hosts that do

not have this property are not probed further. As long as

we have sufficient number of samples from a prefix we can

still infer the ISP-level policy.

Our probing test technique is summarized in Algorithm 1.

Algorithm 1 IN or OUT traffic blocking probing test

algorithm

Input: Prefix p that has blocking behavior,
repeat {For each IP ip from the prefix p where except ip ended
with last octet 1 or 254 or 255}
response1 = Probe(ip, 80, 80);
response2 = Probe(ip, 25, 80);
if(response2 == succ) notBlocking;
else if(response1 == fail) unknown;
else if(response1 == succ) {
blocking;
IPIDs = probeIPIDs(ip, 80, 80);
if(increasing(IPIDs) == false) {
IPIDNotIncreasing;
continue;

}
burstProbe(ip, 25, 80);
IPID = probeIPIDs(ip, 25, 80);
if(IPID ≈ IPIDs[last] + E + 300)
{ OUT-traffic-blocking; }
else IN-traffic-blocking;

}

until [All ip in prefix p has been probed]

2) Results: We take candidate prefixes generated from

our Web Flash experiment for the probing test algorithm

to infer the ISP’s policy. Some prefixes can be very large

(e.g.,/11 or /12), requiring significant time to probe every

single IP inside them. Instead, we probed only a subset of

IPs in such prefixes due to time constraints and overhead.

To prevent triggering any firewall alarms, for each prefix,

we conservatively spawn only a single-threaded process to

perform probing. As a result, on average, it takes 2 – 4 days

to probe an /16 prefix. But since we are parallelizing the

probing for different prefixes, we can still gather results in

reasonable amount of time. We were able to probe most

IPs for smaller prefixes, e.g., prefixes smaller than /15.

For larger prefixes, we covered about 25% (for some /11

prefixes) to 80% of their IPs.

Table III is an example of our probing result for prefix

24.247.80.0/20 which belongs to the Charter ISP [3]. We

sub-divide the prefix into /24 prefixes based on the common

assumption that finest policy granularity is at the /24

level. Each row represents the result for a particular /24.

Each column shows the number of IP addresses within

the /24 for a particular category. We can see that clearly

most /24s are entirely OUT-traffic-blocking with only few

exceptions. For instance, the fifth row has 7 IP addresses

detected as OUT-traffic-blocking but only 1 IP was found

to be not blocking outbound SMTP traffic, generating a

potentially inconsistent configuration policy within the /24.

However, we do know that it is common that ISPs allow

customers to unblock port 25 for “power users” [16].

In this case, we believe that the few unblocked port 25

IPs are such exception cases. An anomaly is shown in

the ninth row indicating that 24.247.88.0/24 has no IPs

blocked for outgoing port 25. In fact, all 19 IPs are not

blocked for either IN or OUT. Upon further investigation,

we found that this /24 are static IP addresses (with DNS

name such as 24-247-88-64.static.bycy.mi.charter.com) as

opposed to dynamic IP addresses (with DNS names such as

24-247-80-0.dhcp.bycy.mi.charter.com). Usually static IPs

are business-level customers who pay more for access to

open ports [24]. Further, as expected we found that none of

the IPs are identified to be IN-traffic-blocking.

Interestingly, we found that only 22 prefixes out of 688

blocking prefixes (3%) appear to deploy IN-traffic-blocking

policy. We identify prefixes as IN-traffic-blocking if at least

some /24 IP range contain the number of IN blocking IPs

to be at least twice the number of both non-blocking ones

and OUT blocking ones. In fact, when the number of IN

blocking IPs is at least twice the number of non-blocking

ones, it is almost always true that the OUT blocking IPs

will be 0. However, it is still possible that some IPs are

not blocked due to reasons such as customer’s requests of

sending outbound SMTP traffic. A quick analysis reveals

that these IN blocking prefixes belong to US, Japan, and

European countries like German, Sweden, UK, Belgium

and Italy, mostly concentrated within European countries.

There is only one educational instititution: umass.edu. Some

ISPs in the U.S. also block IN traffic such as verizon.com.

However, there are only 2 out of the 131 verizon prefixes

that we probed perform IN blocking.

Note that some ISPs block outbound SMTP traffic (either

IN or OUT blocking) on demand based on the SMTP

traffic volume to prevent abuse. This can also reflect in our

probing results that sometimes /24 prefixes have more non-

blocked IPs than blocked ones. Typically, this is because

the majority of the hosts are not sending spam, so outbound

SMTP traffic from them is not blocked. Blocked hosts are

likely the ones detected to be sending spam. In this case,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of prefix blocking measured by /24

F
ra

c
ti
o
n
 o

f
b
lo

c
k
in

g
 p

re
fi
x
e
s

Figure 5. Distribution of blocking /24 subnet pctg (OUT SMTP traffic)

triangular spamming stealthily eliminates outgoing SMTP

traffic from compromised bots, increasing the difficulties of

detecting outgoing spam for ISPs.

Next, we analyze the results for OUT blocking prefixes.

Besides the 22 IN blocking prefixes, the remaining 666

blocking prefixes are OUT blocking. Similarly, we consider

a /24 as OUT blocking if the number of blocking IPs within

the prefix is at least twice the number of non-blocking ones.

Figure 5 plots the distribution of the percentage of blocked

/24s within a prefix for all prefixes with at least some

blocked /24s. We can observe that 20% of the prefixes are

blocking all of their /24 sub-ranges and about 40% of the

prefixes have about 50% /24 sub-ranges blocking outbound

SMTP traffic. This shows the surprisingly non-uniform

policy configuration at the ISP level and demonstrates room

for improvement, as discussed later in §V. In subsequent

discussions, we assume it is OUT blocking instead of IN

blocking whenever we refer to blocking if not specified.

Table III
AN EXAMPLE OF IN/OUT TRAFFIC BLOCKING PROBING RESULTS FOR

24.247.80.0/20 (CHARTER.COM)

IP prefix # of OUT # of non- # of unknown # of IN
blocking blocking (e.g., host down) blocking

24.247.81.0/24 14 0 238 0
24.247.82.0/24 13 0 239 0
24.247.83.0/24 7 0 235 0
24.247.84.0/24 7 1 244 0
24.247.85.0/24 6 0 246 0
24.247.86.0/24 10 0 242 0
24.247.87.0/24 9 1 242 0
24.247.88.0/24 0 19 233 0

...

We analyze the inconsistent policy configuration behav-

ior for prefixes with nonuniform outbound SMTP traffic

filtering setting for its subnets. We found that the following

three types are most common:

1. Dynamic IP vs. static ranges (or unblocked dynamic

ranges), examples shown in Table III.

2. Sub-ranges delegated for other purposes. An example

is shown in Table IV. Within the Stanford university’s

/14 prefix, some prefixes ranging from 171.66.120.0/24 to

171.66.127.0/24 have been assigned for other purposes.

Many of corresponding reverse DNS names of IPs for

such prefixes are changed to names like ’lcgsl.highwire.org’

Table IV
IN/OUT TRAFFIC BLOCKING PROBING RESULTS OF 171.64.0.0/14

(STANFORD.EDU)

IP prefix # of OUT # of non- # of unknown # of IN
blocking blocking (e.g., host down) blocking

...
171.66.120.0/24 0 232 20 0
171.66.121.0/24 0 199 53 0
171.66.122.0/24 0 228 24 0

...
171.66.128.0/24 4 0 248 0
171.66.129.0/24 0 0 252 0
171.66.130.0/24 5 0 247 0

instead of ’*.stanford.edu’. These IP blocks appear to be

used for the Stanford University Press, which likely requires

more admissive SMTP traffic policies.

3. Legitimate mail servers residing in the prefix, some-

times even co-located with a blocking /24 prefix. For

example, we found that in a university prefix 128.118.1.0/24

contains several machines allowing outbound SMTP traffic,

which are legitimate mail servers according to the MX

records. Other than these machines, however, 28 other hosts

are blocked for OUT traffic (The rest did not respond),

indicating that the policy made exceptions for these mail

server machines.

3) Correlation with Spamhaus PBL: Spamhaus

PBL [37] is a popular blacklist widely used for identifying

IP or IP ranges that should not deliver unauthenticated

SMTP emails. The list includes both dynamic and static

IP ranges and is gathered either from ISPs (ISP operators

may volunteer to contribute to the list) or through other

analysis. We are curious to know if the blocking prefixes

we identified are already on PBL. If so, even if triangular

spamming were used, they will still eventually be blocked

at the mail servers (since the spoofed IP addresses fall into

PBL). Surprisingly, out of 666 prefixes, there are only 296

(44%) of them are listed on PBL. It is possible that ISPs

may think that since they already block the user IP ranges

for OUT port 25, there is no need to report these IP ranges

to PBL. However, with triangular spamming, this is not

the case. It is still useful to report these IP ranges to PBL

which can be considered as another layer of defense.

To understand what kind of prefixes is missed by PBL,

we studied three prefix types as described previously. Out of

23 blocking educational institutions, PBL only listed one of

them. We imagine the reason is that many universities have

departmental mail servers which are difficult to be captured

in a large prefix. The only one university prefix that gets

on PBL is 130.18.78.0/23 where its DNS names are of the

form ts3.dialup.msstate.edu. For 466 blocking ISPs, only

194 of them are listed. For the remaining 176 unknowns,

101 are listed. This shows that prefixes without DNS names

have the highest listed ratio, indicating that they are more

likely to be bad prefixes. For ISP prefixes, we found that

PBL is still largely incomplete.

We summarize the findings from our extensive probing

based analysis. We found that most ISPs today are not

careful in blocking incoming SMTP traffic (with source

port 25), despite some effort in reducing spam originated

from their networks by blocking outgoing traffic destined

to port 25. This opens many prefixes as relay nodes in

triangular spamming scheme, resulting in these nodes par-

ticipating in spamming in a quite stealthy way. Our designed

probing methodology enables marking of specific prefixes

vulnerable to triangular spamming for subsequent detection

purposes.

IV. EXPERIENCE AND ANALYSIS ON TRIANGULAR

SPAMMING

The previous section shows that today’s network policies

allow the possibility of carrying out triangular spamming.

To better understand its operational model, as the next

step, we build an actual triangular spamming infrastructure

deployed in the Planetlab environment to explore various

tradeoffs. In particular, we focus on the following questions:

1. Does triangular spamming require significant engineer-

ing effort and how easily can it be deployed (maliciously

installed) on the relay bot and/or original sender?

2. Does triangular spamming really work in the real world

(via Planetlab deployment)?

3. How much bandwidth utilization or throughput benefit

can there be by using triangular spamming?

4. What property of the system can be leveraged for

detection?

A. Implementation

Figure 1 shows that triangular spamming requires two

separate components: one on the original sender and one

on the relay bot. We build both components under Linux.

Linux is chosen due to ease of development and deployment

on Planetlab testbed. The development effort involves about

1700 lines of C code for the original sender and about

700 lines of C code for the relay bot. For the component

on the original sender, it can either be deployed on a

spammer-owned machine or some bot with good network

connectivity. One can imagine that the number of such

machines is likely smaller compared to common bots. For

example, based on the Torpig study [38], about 22% of the

infected hosts are in corporate networks that tend to have

better bandwidth support than dial-up and cable networks.

Next we discuss in detail the implementation and design

choice for each component.

1) Component on the original sender: To support IP

spoofing, one can either modify the mail sending program

directly or implement in a transparent fashion independent

of the mail software. The latter is the preferred approach

adopted by us because one can write mail sending program

independently of the triangular spamming infrastructure.

Our design of the component is shown in Figure 6. We

intercept outgoing packets destined to port 25 and dynami-

cally rewrite the source IP address to the relay bot’s IP. We

Figure 6. Component on the original sender

also modify the source port due to specific constraints of

the Planetlab, as it only allows one to intercept incoming

packets destined to certain reserved port ranges.

Note that the relayed packet has its source IP address set

to the relay bot’s IP (instead of the mail server’s IP) because

ISPs of relay hosts may prohibit IP spoofing. In fact,

Planetlab does not allow IP spoofing [12]. As a result, we

have to rewrite the source IP address to the mail server IP

address upon receiving the packet at the original sender. We

know which server IP address to rewrite to because we keep

track of the mapping between spoofed source IP addresses

and destination mail server IP addresses. Similarly, we

rewrite the destination port to the actual port used by the

original sender.

Since TCP is used, the sender and the receiver will take

care of retransmission for lost packets. The relay bot is

therefore stateless.

We use iptables’ built-in support to intercept and deliver

packets to the user-level program that can modify the pack-

ets and re-inject them. Since it involves additional kernel-to-

user and user-to-kernel transition for every packet, it is not

as efficient compared to a kernel-module-based approach.

For ease of implementation, we chose to implement our

prototype in user space. The associated overhead is not an

inherent limitation.

2) Component on the relay bot: It is rather simple

to implement the component on the relay bot given its

functionality is to simply relay packets to the original

sender by rewriting the destination IP (the source IP is also

rewritten to avoid unnecessary IP spoofing). However, it

is important to understand under which condition the bot

relays packets. For instance, it is obviously unnecessary

to relay non-SMTP packets. Instead, One simple strategy

is to only relay packets with source port 25. As long as

the original packet is not dropped and the user’s SMTP

traffic is not impacted (assuming the user also uses port

25), it is safe to relay them. However, sometimes, additional

care has to be taken. Consider the original packet is not

dropped and successfully received by the kernel, the kernel

will consider the packet as out-of-state. Depending on the

operating system (OS), it may generate a TCP reset packet

upon receiving such packets. Reset packets are undesirable

because they can terminate the TCP connection at the mail

server side even though the original sender does not intend

to.

Fortunately, many OSes do not generate such packets.

For instance, we have tested and verified that Windows XP

SP2 and Windows XP SP3 (arguably still the most prevalent

OS in use as of writing) by default do not generate such

reset packets for closed ports. We suspect that the “silent

drop” behavior is the correct behavior from security and

privacy point of view. It is also the case for newer Linux

kernels. However, we do discover that Windows Vista SP1

and Windows 7 will generate the reset packets.

In any case, even if the OS generates reset packets, they

still can be dropped via mechanisms such as iptables.

B. Real-world deployment on Planetlab

We successfully deployed triangular spamming on Plan-

etlab. Using tcpdump trace, we are able to verify that the

server believes it is talking to the relay bot (setup on

Planetlab node) instead of the original sender.

1) Limitation of Planetlab environment: Unfortunately

Planetlab nodes generate reset packets instead of “silently

dropping” out-of-state TCP packets likely due to their

customized kernel. As a result, we have to modify the

server to drop such reset packets to prevent the mail server

side connection from being reset. However, such limitations

are unlikely present on compromised machines because the

attacker would have full control over the machines and can

easily alter their behavior.

2) IP spoofing blocking study using Planetlab: After

setting up the basic infrastructure, we investigate whether

triangular spamming works in reality, meaning that if we

spoof IP addresses of Planetlab nodes across the world, will

our spoofed traffic be detected or dropped at certain ISP

along the path via uRPF [21]? More specifically, although

our university does not block spoofed traffic, intermediate

ISPs may still block our traffic. Similarly, one may argue

that spammers can always find an ISP that does not filter

spoofed traffic, but this is only true for their home ISP, may

not necessarily hold for intermediate ISPs. We empirically

study from our vantage point to check whether our spoofed

traffic is dropped.

The Spoofer project [27] shows that 80% of filters are

implemented at a single IP hop from sources and 95%

of the blocked packets are observably filtered within the

source’s Autonomous System. Their result is promising for

triangular spamming, i.e., as long as spammers can locate an

ISP allowing IP spoofing (which is quite likely given that

33% of the tested IPs from the Spoofer study can spoof

arbitrary IP addresses), it is unlikely that spoofed traffic is

blocked in the middle of the path. This is because in practice

implementation of such IP-spoof prevention techniques are

often limited by multi-homing, route asymmetry, and other

factors.

In our experiment, we attempt to spoof all available

Planetlab nodes’ IP addresses and use them to connect to

multiple mail servers across various countries. Note that

although the Planetlab node will generate a reset packet

immediately after it receives the SYN-ACK packet from the

mail server, it still relays the SYN-ACK packet back to the

original sender so that we know the IP spoofing succeeded.

We record each <spoofed IP, destination IP, isSucc> pair

in our trace and the results are shown in Table V.

The result is mostly consistent with that of Spoofer [27].

Once the home ISP allows IP spoofing, it is likely to allow

arbitrary routable IP address spoofing. For example, we

can successfully spoof arbitrary Planetlab node IP addresses

(except a node in Korea) to most popular U.S. mail servers

except Yahoo. The result is shown in Table V. We have

double verified by repeating the experiments several times

for the failed IP addresses. Interestingly, not only India and

Japan filter the spoofed Korea IP, Yahoo and Gmail in the

US also filtered them. This is contradicting with Spoofer’s

results about arbitrary IP spoofing assertion that may be

caused by insufficient diversity of spoofed nodes, although

the Korea node seems to be an only exception here. For

Yahoo mail server in China, the IP spoofing almost always

failed. We verified that the result is consistent for other

servers in China too, indicating that there is some specific

filter along the path to China. However, despite these failed

IP spoofing cases, the results are still very promising for

triangular spamming as the filtering is sporadic and virtually

non-existent for US destinations.

C. Bandwidth utilization analysis

1) Bandwidth utilization shifting: As we can see in

Figure 1, the bandwidth utilization behavior completely

changes from the perspective of relay bots. Without trian-

gular spamming, a bot directly initiates a SMTP connection

to the mail server and sends spam messages using its

uplink bandwidth. With triangular spamming, all the uplink

traffic is shifted to the original sender and such traffic is

invisible to the relay bot’s network, effectively lowering the

bandwidth utilization of bots.

Further, since relay bots are most likely DSL or cable

modem hosts, their downlink bandwidth is usually much

higher than uplink bandwidth. For instance, a certain ADSL

connection has a downlink bandwidth of 8 Mbit/s and

a uplink bandwidth of 1.0 Mbit/s. Although the relay

bot still needs to forward packets to the original sender

consuming its uplink bandwidth, the forwarded packets are

SMTP response packets and the SMTP-response traffic is

much smaller than SMTP-send traffic. Analyzing randomly

sampled spam from our local mail server log, we estimate

that the size of SMTP-send traffic is about 5 to 10 times

of the SMTP-response traffic, depending on what the spam

message contains. As a result, we can conclude that trian-

gular spamming allows spammers to associate many more

concurrent connections with a relay bot without triggering

alarms from bandwidth-usage-based anomaly detectors. We

will show that in the next section, we can use selective

forwarding to even reduce the bandwidth usage on relay

bot even further.

Table V
IP SPOOFING RESULTS - SPOOFING PLANETLAB NODE IPS

Destination Location Spoofing-succ count Failed Count Failed IP & Location

Local Mail server US 313 0 N/A
Hotmail US 313 0 N/A
Yahoo US 312 1 116.89.165.133 (Korea)
Gmail US 312 1 116.89.165.133 (Korea)

Yahoo.com.cn China 6 307 All except some servers in the US
University server France 313 0 N/A
University server India 312 1 116.89.165.133 (Korea)
University server Japan 312 1 116.89.165.133 (Korea)
University server Brazil 313 0 N/A
University server Korea 313 0 N/A

For relay bots whose IPs are blocked for outgoing

SMTP traffic, there is a clear advantage of using triangular

spamming. It is primarily because IP addresses are scarce

resources and blacklists nowadays can identify malicious

IPs rather quickly so that the IP addresses may be rendered

unusable. As we have shown in previous results, the IP

ranges that block outgoing SMTP traffic are not necessarily

listed on blacklists. This gives spammers strong incentives

to use such IP addresses given they could still successfully

deliver spam.
2) Spamming strategy and techniques: In this section,

we show that triangular spamming offers an opportunity to

improve spamming throughput (i.e., the number of emails

sent per second). Consider the following two spamming

strategies:

Strategy 1: All bots directly send spam at their full speed.

Strategy 2: Triangular spamming is used where only high

bandwidth bots send spam.

Strategy 1 is the baseline for comparison. This strategy

provides a good overall throughput since it utilizes the dis-

tributed resources of the botnet. However, it has two notice-

able disadvantages: first, it will expose the high bandwidth

bot IPs; second, even the low bandwidth bots risk of being

detected at its hosting ISP if they are sending spam at full

speed. On the other hand, bandwidth-usage-based detector

may not be able to catch high-bandwidth bot since it is

spoofing different IP addresses. Moreover, spammers may

also rent their own high-bandwidth machines in ‘spammer-

friendly’ ISPs. For strategy 2, the high bandwidth bot can

hide its own IP address while sending at full speed. For

low bandwidth bot, given their bandwidth limitation, we

think it might be a good idea to conserve their spamming

activity. Instead, they can be mostly focusing on relaying

server responses back to the sender.

We envision two spamming techniques under Strategy 2

that can help improve throughput for triangular spamming:

Technique 1. Selectively relaying packets at the relay bot

— reducing unnecessary network bandwidth usage.

Given that the common case is that senders can suc-

cessfully deliver emails. It is not really necessary for the

sender to receive the response from the mail server. We

have verified using our triangular spamming prototype that

the relay bot needs to relay only the TCP SYN-ACK packet

to the high bandwidth bot for spamming. This technique

can significantly reduce both the uplink bandwidth usage

of the relay bots and the total bandwidth usage of the high

bandwidth bot. Depending on the email size, the SMTP-

response (incoming traffic) at the high bandwidth bot is

around 1/5 – 1/6 of the total traffic when the email body size

is around 1700 bytes (this is relatively large spam email size

likely in HTML format). It is possible that some messages

are larger such as image spam and some spam messages are

smaller — many spam messages only contain a few words

then a link to a scam Web site or a messenger contact. For

cases where spam messages are smaller, it is a clear benefit

in bandwidth usage reduction.

Note that the above is somewhat an ideal case, there are

some minor issues at the TCP layer that need to be fixed.

First, from the mail server’s perspective, it may not receive

any TCP ACK messages for its response packets since

the high-bandwidth bot never gets them in the first place.

But in reality, the mail server’s initial congestion window

is large enough to hold all the outgoing packets without

receiving any ACK (although it may cause the mail server

to unnecessarily retransmit the response packets). One pos-

sibility is to let the relay bot to ACK mail server’s response

packets directly without burdening the high-bandwidth bot.

Similarly, at the sender side, although the initial congestion

window at the high-bandwidth bot is also typically large

enough to hold all outgoing packets without getting any

ACK. It would again cause unnecessary retransmissions that

waste bandwidth resources. In order to mitigate this issue,

we have two options: 1) let the relay bot relay the ACK

packets from the mail server to the high-bandwidth bot or

2) spoof the ACK packets locally at the high-bandwidth

bot. The second option has the potential problem of not

able to detect packet loss (since we always spoof the ACK

without knowing whether it is received by the mail server),

although this may rarely happen. The first option will use

some bandwidth to relay the ACK packets but the size of

ACK packets should be relatively small and it is simpler. We

have successfully implemented the first option and verified

that the emails can be successfully received by mail servers.

Technique 2. Aggressive pipelining.

The SMTP protocol is interactive and I/O bound as each

SMTP session typically involves many round trips limiting

the aggregated throughput. Thus, SMTP has incorporated

the pipeline support as introduced in RFC2920 [15] in 2000

to pipeline the commands to reduce the overall session

time. In the extreme case, one may send all commands in

a single batch to the server. However, as specified in RFC,

the EHLO, DATA, VRFY, EXPN, TURN, QUIT, and NOOP

commands can only appear as the last command in a group

since their success or failure produces a change of state

that the SMTP client must accommodate. In order to test

the pipelining support in today’s mail server, we pick a set

of popular mail servers (both open source and commercial)

including: sendmail, Java Apache Mail Enterprise Server

(JAMES), Gmail, Hotmail, Yahoo mail, and AOL mail.

Interestingly, only two mail servers, Gmail and AOL mail,

strictly enforce the RFC. All other mail servers allow full

pipelining (sending all commands in a single batch). For

Gmail and AOL mail, we have to wait after the server

processes each ‘critical’ command such as EHLO before we

can issue the next set of commands. Normally we know that

the server has finished processing a command by observing

its response. However, if RTT is large, spammers will have

to wait for very long before they can move on to the next set

of commands. But based on our experiments on a variety of

mail servers that we tested, the next set of commands will

be accepted as long as the server has finished processing the

previous ‘critical’ command. This means that it is possible

to aggressively pipeline the commands such that the next set

of commands arrive just after the server finishes processing

the previous ‘critical’ command. Typically, the processing

time of the ‘critical’ command should be smaller than the

wide area RTT which can be hundreds of milliseconds.

Algorithm 2 and 3 have the pseudo-code that illustrates

different pipelining approaches. In Algorithm 3, when t1 =
t2 = 0, it becomes full pipelining.

Algorithm 2 Normal pipelining

send(“EHLO [hostname]”);
recv and process(response);
send(“MAIL FROM: <sender@aaa.com>\r\nRCPT TO:
<receiver@bbb.com>\r\nDATA\r\n”);
recv and process(response);
send(“[actual data]\r\nQUIT\r\n”);

Algorithm 3 Aggressive pipelining

send(“EHLO [hostname]”);
sleep(t1);
send(“MAIL FROM: <sender@aaa.com>\r\nRCPT TO:
<receiver@bbb.com>\r\nDATA\r\n”);
sleep(t2);
send(“[actual data]\r\nQUIT\r\n”);

Here, since the EHLO command is relatively simple to

process, the processing time is usually very small. However,

for the next set of commands (MAIL FROM to DATA),

there are three commands combined together, which may

take the mail server longer to process. By carefully choosing

delay t1 and t2 in Algorithm 3, one can potentially increase
the throughput for every single connection and possibly the

overall spamming throughput.

0 5 10 15 20 25
0

50

100

150

Number of receiving mail servers

T
h
ro

u
g
h
p
u
t

(M
b
p
s
)

Delay = 0ms
Delay = 50ms
Delay = 100ms

Figure 7. Impact of delays on the spamming throughput

Next, we try to quantitatively study the impact of delay

t1 and t2 on the throughput. We conduct the throughput
experiment on Emulab where 25 pc3000 machines with

1Gbps network interface are used. Each machine has a

single 3GHz core. We pick one machine as the sender and

the rest of the machines as potential receiving mail servers

running the open source mail server JAMES. We spawn a

large number of threads for concurrent connections for each

mail server. Each thread continuously sends emails with a

new TCP connection. As shown in Figure 7, the throughput

increases as the number of mail servers increases, indicating

that the initial bottleneck is at the mail server side. In the

experiment, we choose the delay t1 and t2 to be 0ms,
50ms and 100ms respectively and draw the throughput

curve accordingly. Figure 7 shows that it is difficult to gain

higher throughput when the corresponding delay is large.

Without aggressive pipelining, to achieve high throughput,

spammers may need to pick a large number of concurrent

mail servers (which could be possible). With aggressive

pipelining, one may be able to achieve significant through-

put improvement with the same number of mail servers by

reducing the delay t1 and t2. For the case of 100ms and
50ms delay, the throughput improvement is about 1.5X –

2X with the same number of mail servers.

In reality, on the high-bandwidth bot, two of the fol-

lowing can happen: 1. Network bandwidth is the limiting

factor (network bandwidth can be fully utilized). 2. CPU is

the limiting factor (too many concurrent connections may

cause context switches to occur too frequently such that

the bandwidth may not be fully utilized). The throughput

saturates or grows slowly as the number of concurrent

connections increases.

Technique 1 applies to case 1 given that it can reduce

unnecessary messages received at the high-bandwidth bot.

At the high-bandwidth bot, it is likely that the uplink and

the downlink are shared (Ethernet rather than ADSL). If

the network bandwidth is the bottleneck, this technique can

free up additional bandwidth to deliver spam messages.

Technique 2 applies to case 2 as shortening each in-

dividual RTT can help improve the overall throughput.

Intuitively, t1 and t2 have to be at least greater than the
server processing time for the corresponding commands.

To get an idea of this value, we empirically vary t1 and
t2 and target at one Gmail server which does not allow
full pipelining. We perform the measurement on both peak

hours (noon) and off-peak hours (mid-night). We found

that during peak hours, t1 = 400ms and t2 = 800ms are
often large enough to ensure successful email delivery. For

off-peak, t1 = 20ms and t2 = 40ms are large enough.
The difficult question is what delay value for t1 and t2
to pick in practice. Without triangular spamming, since

each bot can only send one or two spam messages (to

avoid being blacklisted), there is no easy way for them

to reuse the learned processing time. One possibility is

to let bots coordinate the learned processing time, but this

can be inefficient. Another possibility, offered by triangular

spamming, is to use the measured processing time from one

or more previous connections.

The reason that it can work under triangular spam-

ming setting is that it is easy to share the measured

processing time information across multiple connections (all

with different spoofed IPs) given all connections happen

on the same physical machine (the high-bandwidth bot).

More specifically, when triangular spamming starts, we

open multiple connections for each target server. There

are some bots that relay packets back earlier than others.

We can use the RTT values observed from quick bots as

an approximation for the processing time. One potential

problem to consider is that we should avoid making too

many concurrent connections to the same server because

it will likely overload the server and inflate the processing

time. So it is a good idea to spread the connections across

multiple mail servers. A simple way to do so is to spread the

connections across multiple IP addresses/machines exposed

by a single mail provider, or sometimes even a single IP

address may also correspond to multiple servers internally.

To study the feasibility of the second technique, we again

use the Planetlab to measure how diverse RTT values can

be, i.e., quick bots vs. slow bots, in a globally distributed

environment simulating a botnet. We use a machine in

a university to act as the original sender, as university

networks are typically well-provisioned. The idea is that

if there are indeed many slow bots, we can use the second

technique to reduce RTT and increase throughput.

Figures 8 through 11 show the RTT distribution for dif-

ferent target mail servers. We can see that for Hotmail and

Gmail servers, the RTT distribution is quite diverse ranging

from 50ms to 300ms. If we assume that we only need a

single connection to compute the approximate processing

time, it can improve the throughput significantly.

For the local mail server experiment, we simulate the

scenario where triangular spamming is carried out within

the same ISP or organization as the victim mail server.

In this case, although the direct RTT between our original

sender and the local mail server is only 0.4ms, the RTTs ob-

served are much larger due to triangular routing. However,

the increased stealthiness achieved by triangular spamming

has the cost of affecting throughput due to large RTTs.

Aggressive pipelining could help to improve the throughput

of each individual connection significantly.

For the Indian mail server experiment, we simulate the

scenario where spammers are targeting a mail server far

away from the original sender. We can see that the RTT is

clustered at around 200 – 300ms, for 82% of IPs studied,

which is mostly bounded by the RTT between the original

sender and the target mail server. In fact, the smallest RTT is

227ms, indicating that it could be effective to use aggressive

pipelining. But some initial measurement of the processing

time has to be done rather than in parallel (where the

processing time measured from quick bots can be used for

slow bots).

D. Implication on detection

We observe that although the IP address can be spoofed,

some properties exhibited by the original sender may not

be easily imitated. For instance, they may run different

operating system and resulting in different OS fingerprints.

Also, the network delay between the target mail server and

the original sender can be different from the delay between

the target mail server and the spoofed host. If we can probe

the spoofed host in real time to detect deviations in such

properties, we may be able to discover triangular spam-

ming. In this section, we briefly discuss several properties

promising for detection. Detailed detection results will be

shown in §V.

1) Round Trip Time difference: As we have shown in

Figures 8 through 10, RTT can differ widely across relay

bots. However, from the target mail server’s perspective,

it does not know the original sender’s IP address and

can only observe two other RTTs. One is active RTT

between itself and the relay bot by direct probing. The

second is passive RTT observed locally by observing the

delay between sending SYN and receiving SYN-ACK. If

no triangular spamming is involved, the two RTT values

should be comparable.

However, in the presence of triangular spamming, the

passive RTT is calculated as t1 + t2 + t3 where t1 to t3

correspond to the network delays of the three steps shown

in Figure 1. The active probed RTT can be calculated as

t2 + t′2 where t′2 is the reverse path network delay of step

2. For simplicity, we assume t′2 to be roughly the same

as t2 (similarly for t1 and t3 as well) which allows us to

calculate the likelihood of detecting RTT differences. If we

compare the passive RTT with the active RTT, the difference

is (t1+t2+t3)−2×t2 = (t1+t3−t2). Although triangular
inequality is shown to be invalid sometimes [40], we show

that the chances that t1 + t3 − t2 is close to 0 would still

be small.

To understand how likely we can observe large values for

t1 + t3 − t2, we again conduct experiments on Planetlab.

First, we measure t1 + t2 + t3 as previously described.

Second, we measure 2 × t1 by probing from the original

sender to the target mail server. Last, we measure 2× t3 by

probing from the original sender to the Planetlab nodes. The

distribution of the value t1 + t3− t2 is shown in Figures 12

through 15.

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

RTT (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 8. Hotmail RTT

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

RTT (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 9. Gmail RTT

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

RTT (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 10. Local mail server RTT

0 800 1600 2400 3200 4000
0

0.2

0.4

0.6

0.8

1

RTT (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 11. Indian server RTT

−200−150−100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

T1 + T3 − T2 (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 12. Hotmail passive/active
RTT difference

−300 −200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1

T1 + T3 − T2 (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 13. Gmail passive/active RTT
difference

−150 −100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

T1 + T3 − T2 (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 14. Local mail server pas-
sive/active RTT difference

−300 −200 −100 0 100 200 300
0

0.2

0.4

0.6

0.8

1

T1 + T3 − T2 (ms)

F
ra

c
ti
o
n
 o

f
IP

 a
d
d
re

s
s
e
s

Figure 15. Indian server pas-
sive/active RTT difference

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative difference of RTT

F
ra

c
ti
o

n
 o

f
IP

 a
d

d
re

s
s
e

s

Triangular routing

Direct connection from planetlab

Figure 16. Hotmail relative deviation
from passive RTT

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Relative difference of RTT

F
ra

c
ti
o

n
 o

f
IP

 a
d

d
re

s
s
e

s

Triangular routing

Direct connection from planetlab

Figure 17. Gmail relative deviation
from passive RTT

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Relative difference of RTT

F
ra

c
ti
o

n
 o

f
IP

 a
d

d
re

s
s
e

s

Triangular routing

Direct connection from planetlab

Figure 18. Local mail server relative
deviation from passive RTT

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Relative difference of RTT

F
ra

c
ti
o

n
 o

f
IP

 a
d

d
re

s
s
e

s

Triangular routing

Direction connection from planetlab

Figure 19. Indian server relative
deviation from passive RTT

The results show that for Hotmail server, about 20% of

the IP addresses exhibit a difference between passive RTT

and active RTT of 50ms or larger. Depending on the relative

deviation from the passive RTT, 50ms can be sufficiently

large to be considered as an anomaly. For Gmail servers, the

difference is much smaller, so is the absolute RTT value. For

the local mail server, little difference is found between the

passive RTT and the active RTT. This is expected because

original sender and the target mail server are very close such

that t1 is close to zero and t2 and t3 are approximately the

same.

From Figure 16 to Figure 19, we can see that the

distribution of relative difference of the active and passive

RTT computed by t1+t3−t2

t1+t2+t3
. However, in order to know if

the difference is large enough to be an anomaly, we need

to know the baseline of normal RTT variation in a short

period of time (within the order of seconds). Although it

is known that the RTT variation can be very large over

time, in triangular spamming detection, we can set up a

real-time active probing infrastructure to probe the active

RTT and compare it against the passive RTT. If the real-

time RTT variation is small, it is still possible to detect

such relatively large and stable RTT difference introduced

by triangular routing. We measure the RTT variation by

sending 3 consecutive probes with 1 sec interval from the

Planetlab nodes. The results clearly show that 95% of the

times the relative difference will be smaller than 0.1. This

implies that the relative RTT difference can be a useful

feature for detecting triangular spamming.

2) TTL value difference: Similarly, TTL values gener-

ated from the original sender can differ from the ones

generated by the relay bot as observed via active probing.

Previous work has studied the effectiveness of using TTL

value to detect spoofed DDoS traffic [41]; thus, we do

not repeat the study of measuring the difference in TTL

values. Here we point out one key difference between DDoS

attack and triangular spamming: spoofed DDoS attacks

usually have no control over the hosts with spoofed IPs,

but in triangular spamming, the relay bots coordinate with

the original sender. It is thus harder to detect triangular

spamming. More specifically, the original sender can craft

a starting TTL such that the receiver cannot tell whether it

is generated by a different host other than the relay bot.

However, this coordination has to be done on a per-

destination and per-relay-bot basis which is likely high over-

head and may severely degrade the spamming throughput.

This is not a huge problem in DDoS attack since the attack

is typically targeted and well prepared before the actual

attack. The difficulty lies in obtaining the correct initial

TTL at the real sender.

In conclusion, we think TTL can be a useful feature

for detecting triangular spamming despite the robustness

problem outlined above.

3) OS fingerprint: It is also possible to collect

lightweight passive OS fingerprints from the first SYN

packet using tools such as p0f [11]. Clustering the IP

addresses by fingerprints can help detect traffic associated

with the same original sender. However, this can be evaded

since the original sender can easily modify its kernel to

mimic different types of OS fingerprints.

4) Port blocking behavior: If the OUT SMTP traffic is

blocked at the ISP, there should not be any SMTP traffic

generated from such IP addresses. As a result, if we can

identify that an incoming IP is blocked for OUT traffic,

then it is highly likely that triangular spamming is used.

The limitation is false negatives. This can only detect cases

where the relay bots are indeed blocked for OUT traffic

which is not a requirement for triangular spamming.

V. DETECTION AND PREVENTION

In this section, we discuss how to apply the previously

discussed techniques using data on our departmental mail

server to detect any evidence of triangular spamming and its

prevalence. We also discuss possible prevention techniques.

A. Experiment setup

Data source. Monitoring a mail server at our univer-

sity department mail server for 8 days from 2009.11.9 –

2009.11.16, we observe about 360,000 emails, of which

233,746 (87.6%) emails are spam emails (according to

SpamAssassin) from 200,347 distinct IP addresses. Each

log entry has four pieces of information: timestamp, sender

IP, spam tag, and spam score output by SpamAssassin.

Spam filter - SpamAssassin. Our mail server runs

SpamAssassin [2] as the spam filtering system. It employs

several detectors including Spamhaus [19] (IP-based black-

list). Every email is labeled based on a computed score

combining results from all detectors. If the score exceeds a

fixed threshold (5.0 in our case), the corresponding email

will be labeled as spam.

Real-time probing experiment. We probe in real-time

to gather the TTL and RTT information to help detect

triangular spamming. Two sets of probes per destination

port per host are conducted, one with source port 25 and

the other with source port 80. The destination port is chosen

from the most popular ports potentially open on the hosts,

e.g., port 25, 80, 22. We limit probing to at most 4 different

destination ports to limit the overhead. Probing is stopped

if any destination port responds. A lack of response from

source-port-25 probes in the presence of responses from

other source ports (e.g., port 80) indicates that the IP address

is blocked for SMTP traffic.

B. Detection results

Given that triangular spamming can abuse port-25-

blocked IP addresses for sending spam, we are interested in

knowing the prevalence of such IP addresses seen by our

mail server and the usefulness to correlate this with other

features such as TTL discrepancy from real-time probing.

For instance, if their port 25 is blocked, does that mean the

actively probed TTL value is more likely to be deviate from

the passively observed TTLs?

Our results show that on average about 4% of IP ad-

dresses observed by our mail server are blocked for port 25

based on our real-time probing, indicating likely presence of

triangular spamming. We then compute various correlations

to verify whether such blocked IPs differ from other IPs in

any particular properties. Note that if these IP addresses

are involved in triangular spamming, they might also relay

our probing packets such that we can still get response.

However, the original sender may think our probing packet

is invalid and thus do not care to respond.

Spam ratio. The spam ratio of these blocked IP addresses

are 99.9%. Compared to the overall 87.6% spam ratio, it

is evident that these IP addresses are much more likely to

send spam. In fact, we found only 4 blocking IP addresses

(out of 7246) sent legitimate emails. Upon a closer look,

1 of them is likely false negative by SpamAssassin based

on its DNS name (18.151.195.200.static.copel.net) and it is

listed on multiple blacklists. The other three do appear to be

legitimate mail servers. However, we found that these three

servers have a particular security policy that results in no

response to our SYN-ACK packet if the packet has source

port 25. They do however respond to SYN packets with

source port 25. We plan to incorporate SYN probing in our

real-time probing in the future to more reliably determine

the port 25 blocking behavior.

TTL or hop count value difference. For these blocked

IP addresses, we compare the actively probed TTL value

using source port 80 with the passively observed TTL

value. Using TTL value directly can result in inaccuracies

due to differences in initial TTL value settings. Instead

we infer the hop count values using previously established

approach [31] to compute the absolute difference in hop

count for the two TTL values. Besides triangular spamming,

the discrepancy could also stem from firewall or gateway

responding to our probing, which is not easy to discern

from anomalous triangular routing. Figure 20 plots the

distribution for hop count difference for blocking and non-

blocking IPs. It indicates that blocked IP addresses are more

likely to have a larger hop count difference, likely caused

by triangular spamming.

RTT difference. Similar to TTL, we plot the relative dif-

ference of RTT for blocking and non-blocking IP addresses

shown in Figure 21. We can see that clearly blocking IPs

tend to have a larger relative difference. In fact, more than

50% of the blocking IPs have a relative difference greater

than 0.1 which is already larger than the expected difference

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

X = absolute hop count diff (active vs. passive)

P
r

(
H

o
p
C

o
u
n
t d

if
f ≥

 X
)

Blocking IP addresses
Non−Blocking IP addresses

Figure 20. Absolute hop count
for blocking and non-blocking
IPs

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

X = Relative RTT difference

P
r

(
R

T
T

d
if
f >

=
 X

)

Blocking IP addresses
Non−blocking IP addresses

Figure 21. Relative RTT dif-
ference for blocking and non-
blocking IPs

as shown in our planetlab RTT study.

OS fingerprints. We group a set of IP addresses into

clusters based on the passively observed OS fingerprints.

Here we include hop count in the OS fingerprint (which we

call signatures) to consider IPs with same OS fingerprint but

with different hop count as different senders. The results

show that although there are 52,860 different signatures

out of 233,746 IP addresses, the entropy of the signature

is only 10.7 bits, indicating that it may not be diverse

enough. We also found that the blocking ports are often

with different signatures, likely caused by the fact there are

multiple original senders involved in the current triangular

spamming architecture. In fact, there can be a hierarchical

structures where there are a set of high bandwidth bots

acting as original senders and each of them peers with

multiple relay bots.

Blocking prefix correlation with a popular mail

service provider. By correlating with a month-long mail

service provider’s sampled log trace using the coarse-

grained blocking prefix information, we gathered 93,359

IP addresses of which 97% are sending purely spam.

While there are certain legitimate mail servers mixed in the

blocking prefixes, it is possible to filter them based on their

DNS MX records (reverse look up their hostname based on

IP, and then look up the MX record for that domain name).

Further, 95% of these IP addresses appear only in 5 or fewer

days and 54% of them only appear in a single day in the

month-long trace, indicating that they are more likely to be

spam hosts. It is known that stable IP addresses are tend to

be legitimate while appear-once IP addresses are likely to

be spamming IP [39].

From the results above, we can conclude that despite the

stealthy behavior of triangular spamming, it also exposes

information that can be leveraged for detection. Features

proposed above are lightweight enough that they can be

easily collected during run-time to help classify spam.

C. Prevention

Two straightforward ways exist to prevent triangular

spamming. The approach of disallowing IP spoofing at

every ISP is not feasible given the scale of the Internet

and a lack of unified configuration enforcement. The other

more realistic way is to have ISPs that block OUT traffic

also block IN traffic. However, it does put the management

burden on ISPs to correctly configure the firewall rules. An-

other less obvious prevention method is to deploy stateful

firewalls at ISPs to prevent relay bot from relaying out-of-

state TCP traffic or just focus on port 25 related traffic to

limit imposed overhead. For instance, it is possible to push

such functionality into the modem so that it does not have to

be deployed at some centralized point to cause performance

problems. The question is whether stateful firewall is a

desired feature for customers. We think arguably that this

can be the right decision and most users will not likely

be impacted, just as the case for outbound SMTP traffic

blocking.

VI. RELATEDWORK

There has been a significant amount work on spam

detection over the years. The techniques proposed can be

broadly categorized into content-based, blacklist-based and

behavior-based. Content-based approach has been mostly

extensively studied [30], [32]. The blacklist-based approach

was originally from third-party used to blacklist individual

IP address. Popular ones include SpamHaus [19], Spam-

Cop [18] and SORBS [17]. Behavior-based approach is

complementary and is growing in popularity (e.g., [34],

[29]). The detection methodology we proposed focusing on

spammer behavior also belongs to this category.

Our work is instrumental in highlighting the arms race

caused by evolving spamming techniques in response to

the improved detection methods. When the blacklist-based

approach first came out, spammers try to avoid being listed

by having each bot IP send very few spam to each target

mail server domain to stay under the radar [33]. In an effort

to prevent outgoing spam, many ISPs enforce outbound

SMTP traffic blocking mostly on dynamic IP ranges. As

more ISPs perform outgoing SMTP traffic blocking, fewer

IP addresses are available to spammers. However, our work

demonstrates that current ISPs’ port blocking practice is

insufficient and triangular spamming can still leverage those

blocked IP addresses to send spam in a stealthy manner

without triggering alarms monitoring outbound SMTP traf-

fic. From the perspective of ISPs where relay bots reside,

they will not notice too much traffic since the bots are only

relaying response messages from the server side, at a much

lower rate compared to original outgoing spam. Another

side benefit is that the bot can still participate in other

malicious activities such as DDoS attack.

In terms of detecting triangular spamming, we can bor-

row ideas from previous studies of general IP spoofing

defense. For instance, TTL value is proposed to detect

spoofed DDoS traffic in [41]. Cryptographic puzzles [42]

can be introduced to slow down the spoofer. However, they

are all different from the triangular spamming setting where

botnets cooperate with the spoofer to carry out the attack.

Also related to our study is prior work on firewall policy

inference such as FireCracker [35]. However, there are two

key differences: 1). their goal differs from ours in that they

try to infer the complicated policies that depend on IP/port

combinations and try to reduce the number of probes to

infer such behavior, while our goal is to determine IN/OUT

traffic blocking behavior. 2). We are inferring ISP-level

policy which has certain characteristics that allow us to

infer the IN/OUT blocking. More specifically, since policy

is uniform on a range of IP addresses, we can probe the

entire range and leverage the behavior in IPID value change

for some hosts within that range to help our inference.

VII. DISCUSSION AND CONCLUSION

To conclude, our work is the first to highlight the practice

of triangular spamming, a stealthy and fairly efficient spam-

ming technique that can be relatively easily carried out on

today’s Internet by thoroughly investigating its feasibility

in the presence of existing network policies and ease of op-

erational deployment. We bring attention to the community

that today’s SMTP traffic blocking policies can be bypassed

to carry out such spamming activities while protecting the

identities of hosts actually sending out spam messages.

Through extensive empirical data analysis and experimental

evaluation, we propose detection and prevention schemes

that are shown to be promising approaches to mitigate

against this relatively new spamming practice.

Note that triangular spamming exploits the network level

security vulnerabilities (IP spoofing and insufficient firewall

port blocking policy). We believe this is just one instance

where application protocols are misused due to the underly-

ing network vulnerabilities. Other attacks remain possible.

REFERENCES
[1] Adobe flash player. http://www.adobe.com/products/
flashplayer/.

[2] The apache spamassassin project. http://spamassassin.
apache.org/.

[3] Chater cable, internet, telephone. www.charter.net/.

[4] Cisco pix 515e firewall quick start guide, version
6.3. http://www.ciscosystems.org.ro/en/US/docs/security/pix/
pix63/quick/guide/63 515qk.html.

[5] Comcast takes hard line against spam. http://news.zdnet.com/
2100-3513 22-136518.html.

[6] Hacking the interwebs. http://www.gnucitizen.org/blog/
hacking-the-interwebs/.

[7] The icsi netalyzr beta. http://netalyzr.icsi.berkeley.edu/.

[8] Microsoft: 3% of e-mail is stuff we want; the rest
is spam. http://arstechnica.com/security/news/2009/04/
microsoft-97-percent-of-all-e-mail-is-spam.ars.

[9] Nanog survey - isp port blocking practice. http://seclists.org/
nanog/2009/Oct/727.

[10] netfilter/iptables project homepage. http://www.netfilter.org/.

[11] The new p0f 2.0.8 (2006-09-06). http://lcamtuf.coredump.
cx/p0f.shtml.

[12] Planetlab acceptable use policy (aup). http://www.planet-lab.
org/aup.

[13] Port 25 blocking. http://www.postcastserver.com/help/Port
25 Blocking.aspx.

[14] Port 25 (sonic.net). http://sonic.net/support/faq/advanced/
port 25.shtml.

[15] Rfc2920, smtp service extension for command pipelining.
http://tools.ietf.org/html/rfc2920.

[16] Sbc email problem. www.sfsu.edu/∼helpdesk/sbc/index.
htm/.

[17] Sorbs. http://www.au.sorbs.net/.

[18] Spamcop. http://www.spamcop.net/.

[19] Spamhaus. http://www.spamhaus.org/.

[20] Tcp/ip fingerprinting methods supported by nmap. http://
nmap.org/book/osdetect-methods.html.

[21] Unicast reverse path forwarding. http://en.wikipedia.org/
wiki/Reverse path forwarding.

[22] Universal plug and play. http://en.wikipedia.org/wiki/
Universal Plug and Play/.

[23] Useful statistics for web designers. http://www.tvidesign.co.
uk/blog/useful-statistics-for-web-designers.aspx.

[24] Verizon - our attention needed: Re-configure your
email settings to send email. http://www22.verizon.
com/ResidentialHelp/HighSpeed/General+Support/Top+
Questions/QuestionsOne/124274.htm.

[25] Whois ip address/domain name lookup. http://cqcounter.
com/whois/.

[26] F. Baker and P. Savola. Ingress filtering for multihomed
networks. In RFC 3704, 2004.

[27] R. Beverly, A. Berger, Y. Hyun, and k claffy. Understanding
the efficacy of deployed internet source address validation
filtering. In In Proc. of IMC, 2009.

[28] P. Ferguson and D. Senie. Network ingress filtering: Defeat-
ing denial of service attacks which employ ip source address
spoofing. In RFC 2827, 2000.

[29] S. Hao, N. A. Syed, N. Feamster, A. Gray, and
S. Krasser. Detecting Spammers with SNARE: Spatio-
temporal Network-level Automatic Reputation Engine. In
Proceedings of Usenix Security Symposium, March 2009.

[30] F. Li and M.-H. Hsieh. An empirical study of clustering
behavior of spammers and group-based anti-spam strategies.
In In Proc. of CEAS, 2006.

[31] Z. M. Mao, L. Qiu, J. Wang, and Y. Zhang. On as-level path
inference. In In Proc. of SIGMETRICS, 2005.

[32] B. Medlock. An adaptive, semi-structured language model
approach to spam filtering on a new corpus. In CEAS 2006
- Third Conference on Email and Anti-Spam, July 2006.

[33] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu. On network-level
clusters for spam detection. In In Proc. of NDSS, 2010.

[34] A. Ramachandran, N. Feamster, and S. Vempala. Filtering
spam with behavioral blacklisting. In In Proc. of CCS, 2007.

[35] T. Samak, A. El-Atawy, and E. Al-Shaer. Firecracker: A
framework for inferring firewall policy using smart probing.
In In the Proceedings of the fifteenth IEEE International
Conference on Network Protocols (ICNP’07), 2007.

[36] S. Sinha, M. Bailey, and F. Jahanian. Shades of Grey: On the
Effectiveness of Reputation-based ”Blacklists”. In Malware
2008, 2008.

[37] Spamhaus policy block list (PBL). http://www.spamhaus.
org/pbl/, Jan 2007.

[38] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szyd-
lowski, R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet
is my botnet: Analysis of a botnet takeover. In In Proc. of
CCS, 2009.

[39] S. Venkataraman, S. Sen, O. Spatscheck, P. Haffner, and
D. Song. Exploiting network structure for proactive spam
mitigation. In In Proc. of USENIX Security Symposium,
2007.

[40] G. Wang, B. Zhang, and T. S. E. Ng. Towards network
triangle inequality violation aware distributed systems. In In
Proc. of IMC, 2007.

[41] H. Wang, C. Jin, and K. G. Shin. Defense against spoofed
ip traffic using hop-count filtering. IEEE/ACM Trans. Netw.,
2007.

[42] X. Wang and M. K. Reiter. A multi-layer framework for
puzzle-based denial-of-service defense. Int. J. Inf. Secur.,
2008.

[43] N. Weaver, R. Sommer, and V. Paxson. Detecting forged tcp
reset packets. In In Proc. of NDSS, 2009.

