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Abstract—VM migration is an effective countermeasure against at-
tempts at malicious co-residency. In this paper, our overarching objec-
tives are to (a) get an in-depth understanding of the ways and effec-
tiveness with which an attacker can launch attacks towards achieving
co-residency and (b) to design migration policies that are very effective
in thwarting malicious co-residency, but are thrifty in terms of the band-
width and downtime costs that are incurred with live migration.

Towards achieving our goals, we first undertake an experimental
study on Amazon EC2 to obtain an in-depth understanding of the side-
channels an attacker can use to ascertain co-residency with a victim.
Here, we identify a new set of stealthy side-channel attacks which,
we show to be more effective than currently available attacks towards
verifying co-residency. We also build a simple model that can be used
for estimating co-residency times based on very few measurements on a
given cloud platform, to account for varying attacker capabilities. Based
on the study, we develop a set of guidelines to determine under what
conditions victim VM migrations should be triggered given performance
costs in terms of bandwidth and downtime, that a user is willing to bear.
Via extensive experiments on our private in-house cloud, we show that
migrations using our guidelines can limit the fraction of the time that an
attacker VM co-resides with a victim VM to about 1 % of the time with
bandwidth costs of a few MB and downtimes of a few seconds, per day
per VM migrated.

1 INTRODUCTION

Infrastructure-as-a-Service (IaaS) providers allow VMs that be-
long to different users, to share the same physical infrastructure.
Thus, the risk of sharing a physical machine with a potential
malicious VM is very real [1], [2], [3]. Once an attack VM
is able to co-reside with a victim VM on the same physical
machine, it can launch arbitrary attacks (e.g., using side channels
to achieve information leakage) to compromise the security of the
victim VM. Although providers continuously make improvements
to better isolate resources across VMs, new vulnerabilities are
expected to emerge as hardware architectures and hypervisor
technologies evolve [4].

Prior to launching such attacks however, the attacker typically
needs to place a malicious VM on the physical machine that
houses the victim VM (co-reside with the victim). The process
of performing co-residency today requires the attacker to launch
its VMs, use side-channels to ascertain co-residency, and upon
failures terminate and repeat the process. Once co-residency is
achieved, the longer a victim VM resides on the same physical

machine occupied by the attacker VM, the higher is its risk of
being compromised.

In this paper, we have two main objectives. First, we seek
to get an in depth understanding of the ways and the effectiveness
with which an attacker can achieve co-residency with a victim VM
in practice. Towards this, we undertake an extensive experimental
effort on Amazon’s EC2 cloud infrastructure, to understand the
side channels that an attacker can use to ascertain co-residency
with a victim VM. En route, we discover a new set of very stealthy
and highly effective timing based side channels that can be used
today to ascertain co-residency.

Migrating a VM is a way of mitigating long periods of co-
residency with an attacker VM [5]. As our second objective, we
seek to determine under what conditions a victim VM should
be migrated to minimize its co-residency time with an attacker,
given a bandwidth/downtime cost the user of the VM is willing
to bear. Towards this (based on the above experimental studies)
we formulate a set of guidelines, which are based on (a) the
time that a victim VM has resided on a host machine and (b)
monitoring the side channel that the attacker could have used to
ascertain co-residency. We perform extensive experiments on our
in house cloud (built using CloudStack [6]) to demonstrate that
our guidelines can drastically reduce the times for which a victim
VM co-resides with an attack VM with low costs in terms of
downtimes and bandwidth.

To summarize, our contributions are as follows:

• We carry out extensive experiments on Amazon EC2, arguably
the most popular cloud provider, to develop a comprehensive
understanding of the efficacy of an adversary in successfully
co-residing its VM with a victim’s VM.

• We build a simple model that can provide us with rough
estimates of how long it takes for an attacker with varying
capabilities, to successfully co-reside with a victim. The model
requires very few measurements and can provide guidelines on
how often VMs should be migrated in different scenarios.

• We discover a set of new highly effective timing based side
channels that can be used by an attacker to determine if any of
its VMs co-resides with a targeted victim VM. Our side channel
provide the highest accuracy in ascertaining co-residency as
compared to other previously proposed side channel tests (≈ 86
%), but with lower false positive rates. In addition, we believe
that they are much harder to detect than the latter since they do
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not create explicit congestion on a shared resource.

• We consider VM migration as a countermeasure to thwart
malicious co-residency and develop a set of guidelines on when
to invoke victim VM migration given a cost budget in terms of
the bandwidth expenses and downtimes that the user is willing
to tolerate. We perform extensive experiments on an in house
KVM-based private cloud (users cannot invoke live migrations
on commercial clouds today) to evaluate our guidelines. The
results show they can drastically reduce the times for which a
victim VM co-resides with an attack VM. Specifically, with
very reasonable performance costs (of the order of MB of
bandwidth and seconds of downtime per day, per VM migrated),
the fraction of time that the victim VM co-resides with an attack
VM can be limited to about 1 %.

Roadmap: In §2 and in §3 we present related work and our
threat model, respectively. We present an experimental study on
co-residency on Amazon EC2 and showcase our new attacks in
§4. We present a model to estimate the time taken to achieve co-
residency in §5. Our mitigation guidelines are derived in §6. We
present our evaluations in §7. A discussion on how the migration
guidelines influence costs while mitigating side channels targeting
information leakage is provided in §8. We conclude in §9.

2 RELATED WORK

Side channel attacks targeting information leakage: Side
channel attacks exploit physical information leakage such as
timing information, cache hits/misses, power consumption etc.
This information is typically obtained based on the usage of shared
resources (e.g., cache). There are several side channel attacks on
cloud tenants that have been previously studied [1], [2], [7], [8],
[9], [10], [11]. Side channel attacks can target different shared
resources; examples include the cache, shared storage etc. For
example, the FLUSH+RELOAD attack [12] achieves information
leakage by flushing the L3 cache and observing the times taken
for reloading specific memory blocks previously in the cache; a
short time indicates that the memory blocks were reloaded by the
victim. Based on the attack, the time taken to successfully extract
information ranges from the order of minutes to hours. We point
out here that almost all such work on information leakage attacks
however, assume that the victim has already co-resided with the
victim process. In contrast, we focus on side-channels used by an
attacker to ascertain co-residency.

Co-residency with a victim process: For almost all side-
channel attacks reported, an attack process (VM) will need to
co-reside with the victim process (VM) on the same physical
machine. The attacker will need to launch its VM and use some
kind of side channel to ascertain if has co-resided with a victim.
Side channels have also been proposed for enabling co-residency
checks (e.g.,[13]). However, these prior efforts do not provide a
comprehensive understanding of how effective these are in terms
of their accuracy and the time it takes for an attack VM to
successfully co-reside with a victim VM.

Reverse engineering the algorithm for determining the place-
ment of VMs empirically, as in [13] and [14], although hard, might
be useful in the short term. However, placement algorithms are
likely to dynamically change over time [14]. Because of this, one
can largely consider the placement algorithms to be opaque (and
possibly customized to users); instead of trying to reverse engineer
the process, we develop measures to determine co-residency, and
construct a model which provides rough estimates of the average

time taken for acheiving co-residency (regardless of the nuances
of placement). Further, cloud providers have ensured that many
co-residency checks proposed much earlier (e.g., [2], [15]) are no
longer feasible1. To the best of our knowledge, we are the first
to propose network timing based side channels for ascertaining
co-residency. Note that there are other network timing based
attacks previously studied (e.g., [16], [17], [18], [19]) but they
are quite different. For example, the authors in [16]) look at the
times between transmitted packets to infer the keystrokes of a
user. [18] and [17] use timing towards inferring which nodes
are communicating on a Tor network. [19] uses timing channels
towards website fingerprinting. While the idea of using time as a
side channel is common with these efforts, we look at the time
series in contacting two processes on a physical machine on the
cloud from external vantage observation points, to ascertain co-
residency. Thus, our solution is quite different (and thus novel)
from what has been previously considered.

Defending side-channel attacks: Cloud providers as well
as the research community is continuously looking for ways to
improve resource isolation which can help defend against side
channel attacks. Efforts such as [20] and [21] introduce random
delays while accessing a resource to thwart timing based side
channel attacks. [22] and [23] employ software level defense
mechanisms as countermeasures against cache based side channel
attacks; for example, the idea in [22] is to obfuscate the pro-
gram at the source code level to provide the illusion that many
extraneous program paths are executed. If an attacker conducts a
prime and probe attack (where he primes the cache and probes
for determining changes to cache sets) his observations will be
skewed. Although the current methods can defend against known
side channel attacks, it is unclear if there exist other type of attacks
that are unknown to the research community. Other vulnerabilities
could appear in the future due to advancements in computer
architecture and hypervisor technologies. Mitigating malicious co-
residency can significantly alleviate the attacker’s ability to launch
such attacks.

VM migration to mitigate side-channel attacks: VM migra-
tion has recently been considered to counter cloud-based side-
channel attacks targeting information leakage in [5]. In brief,
the authors of Nomad [5], model information leakage from side
channel attacks over time and determine how often migration is
needed. However, they assume that the attacker has successfully
co-resided with the victim. Nomad also assumes that such de-
cisions on migration to cope with side channels, are made by
the provider and not the users of the VMs. The users may not
be willing to accept the performance penalties (downtimes) that
inevitably occur when VMs are migrated for such purposes. We
make no assumptions on what the provider will do in terms of
placement of VMs.

Unlike in Nomad, we try to minimize the occurrence and
periods of successful malicious co-residency. We account for the
time that an attacker takes in order to successfully co-reside with
a victim; this can influence the costs associated with migrations
(reduce the frequency). The users can choose when to migrate
their VMs based on their risk averseness and the costs they are
willing to bear.

In a realistic scenario, where users are likely to configure
their own VM migration policies (e.g., enable, disable, choose

1. We have also experimentally verified that this is the case. For example, the
cloud cartography approach to locate victim processes in the cloud proposed
in [2] is no longer viable.
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periodicity etc.), not accounting for the fact that the attacker
takes time to first co-reside with the victim (as with Nomad) in
addition to the time taken for an information leakage attack, for
driving migrations will increase migration frequencies and thus
bandwidth/downtime costs (discussed later). We later show that
very frequent migrations could also adversely affect security when
the attacker simply stays put on a physical machine (since the
victim VM can potentially return to the very same machine).

3 THREAT MODEL AND ROADMAP

3.1 Threat Model
We assume that an attacker seeks to co-reside its VM on the same
physical machine as a certain targeted victim VM and co-reside
for as long as possible. First we consider a case where the attacker
launches a set of VMs, repeatedly if needed, and attempts to have
one of these attack VMs co-reside with a victim’s VM. We assume
that it has no knowledge or control over the policies followed by
the cloud provider for VM placement (as with Amazon’s EC2).
We call such an attacker an “reactive attacker”; this scenario
is reflective of what the attacker can do on today’s commercial
clouds.

Next, we consider the cases where (like any user) an attacker
can choose to migrate its VM (or stay fixed on a single physical
machine), if user driven migrations are allowed. We assume that
the provider does not unilaterally perform migrations (without user
requests) like in [5], since this may cause downtimes without
user consent (which some users may not want to experience).
An attacker VM could simply choose to stay put on its initial
physical machine assuming that the target VM (due to migration)
will be placed on the same (physical) machine eventually. We
call such an attacker a “static attacker”. Finally, we also consider
a possibility that an attacker may choose to migrate periodically
itself. We call such an attacker, a “periodic” attacker. In both of the
above cases, we assume that an attacker continuously checks for
co-residency (using one of the approaches discussed in Section 4),
since the victim could now at any point, migrate to the machine
on which its VM resides. Note that these attack strategies cannot
be implemented and tested today on Amazon’s EC2 (migrations
are not viable as of today); we test them on our in house cloud in
Section 7.

Once the attacker is able to verify with high accuracy that one
of his attack VMs has successfully co-resided with the victim’s
VM on the same physical machine, an attempt is made to launch
a previously proposed side-channel attack (described in Section 8)
to successfully create a leakage of information from the victim.
However, we do not explicitly focus on such side-channel attacks
themselves in this work; we provide a discussion on the impact of
our work on such attacks in Section 8. For simpilicity, we assume
that the number of virtual machines owned by the victim remains
unchanged, i.e. the number of virtual machines does not vary over
small time scales (hours or days). We also assume that after a
migration occurs, the attacker does not know “where the victim
process has been migrated.” We assume that it is not interested in
triggering other attacks (e.g., causing a DoS attack by inducing
repeated migrations).

3.2 Roadmap
The remainder of the paper is organized as follows. First, we
seek to showcase and understand attacks that target malicious co-
residency via an extensive measurement study on Amazon EC2

Model Virtual CPU CPU Credits / hour Mem (GiB) Storage
t2.micro 1 6 1 EBS
t2.small 1 12 2 EBS

t2.medium 2 24 4 EBS
t2.large 2 36 8 EBS

TABLE 1: Instance Type Comparison

(Section 4). This leads to results on how long it takes for an
attacker to co-reside with a victim and subsequently launch any
information leakage attack. In addition, we believe that it naturally
leads to the following two questions: (a) Given that one cannot
perform exhaustive sets of experiments, can we develop a model to
roughly characterize these co-residency times?, and (b) Given the
co-residency times and certain patterns that manifest themselves
due to the attack, how can one guide migration decisions that
are cost-effective ? We answer the first question by developing
a simple rough, yet reasonable model in Section 5. The second
question is then addressed via assessing risk and developing cost-
effective migration guidelines in Section 6. Finally, we evaluate
our guidelines in Section 7. We point out here that while the
measurement study in Section 4 were done on EC2, the evaluations
in Section 7 are done on an in house cloud since they cannot be
implemented today on a commercial cloud.

4 CHARACTERIZING CO-RESIDENCY VIA EXPERI-
MENTS

We perform extensive experiments on Amazon’s EC2 over a
period of 5 months, to obtain an understanding of (a) the accuracy
and (b) the time taken by an attacker to successfully (we define
what mean by success below) co-reside its VM with a targeted
victim VM (TCR), while using different types of side-channels to
verify co-residency. Specifically, we implement and test, multiple
previously proposed ways of verifying co-residency (co-residency
tests). In addition, we design new timing based co-residency tests
that are stealthy and yet, very effective. We reiterate here that
some of the previously proposed side-channel based tests to verify
co-residency (e.g., [2], [15]) do not work anymore (as verified by
our experiments) since cloud providers have taken steps to prevent
them [10].

Categories of co-residency tests: We divide co-residency tests
into two categories; controlled/internal and external. In internal co-
residency tests (ICT), we control both victim and attacker VMs.
These tests primarily demonstrate co-residency with high fidelity
(and can serve as ground truth) but cannot necessarily be used
by an external adversary. Specifically, we create contention on a
shared resource using the attacker VM and measure the changes
in access times to that resource experienced by the victim VM (as
compared to the access times experienced with no contention). We
assume that a co-residency test is successful if an associated ICT
test classifies the test as being successful.

In the external co-residency tests (ECT), we only control the
attacker VM. We exploit a service running on the victim VM
to try to create contention on a (possibly) shared resource. The
attack VM then compares the response times to the service with
and without contention. Here, we also propose the use of new
timing tests to decide whether two machines co-reside or not. The
accuracy of the ECTs (which represent the mode of operation of
an adversary in a real setting) is assessed by comparing the result
with that of a ICT. The time taken for successful external co-
residency tests is a critical metric that we are interested in. In all
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of these experiments we assume an active attacker as discussed in
Section 3.

General setup: We initiate 20 micro or 20 small instances
each, for a victim and an attacker account (for ground truth
validation). All the instances run Ubuntu 14.04 LTS [24]. We
conducted our experiments on three different datacenters (us-
west-2a, us-west-2b and us-west-2c). Four different side channels
that are exploitable to verify co-residency, reported in the past
three years, were implemented [13], [3], [15] and tested. A key
contribution we make is the design of new, very effective, timing-
based co-residency tests.

The victim VM hosts 3 services, each very different in nature;
thus, the co-residency tests in the three cases, for identical set
ups, take different times. The services are Taiga, ownCloud, and
MediaServer. Taiga is an open-source project manager software
that involves a mix of CPU, disk (frequent), and memory work-
loads. ownCloud is an open-source file hosting service (resembles
Dropbox) that involves memory and disk intensive workloads.
MediaServer is an open-source wiki-page server that involves a
mix of CPU, disk (rare), and memory workloads. We use different
type of VMs; their specifications are summarized in Table 1 (we
use the Amazon EC2 jargon [25]). Later in the section, we provide
further details on each specific experiment.

ICT experiments: In each experiment, as mentioned, the
attacker and the victim have 20 VMs each. We end up with 400
possible combinations of attack and victim VMs (20 × 20); thus,
400 co-residency tests will need to be performed for each con-
sidered shared resource. With four shared resources this translates
to 1600 tests2. A comprehensive study using this approach would
take a prohibitive amount of time, considering that the failure of
co-residency would incur termination and relaunching of attack
VMs. To speed up the process, we create a pre-configured VM
image that can be readily instantiated. Specifically, we create an
image of all your setup and programs and when we launch a new
VM, instead of using a brand new OS to launch our programs and
configure them, we simply use the image. Second, we recognize
that the failure of co-residency tests using certain shared resources,
can with high probability suggest that other tests (on other shared
resources) will also fail. Therefore, by ordering the tests, we
drastically reduce the number of tests (by eliminating tests that are
highly likely to fail). For example, the failure of the co-residency
test that considers the memory bus as the shared resource (bus
contention test) described in [13] (details later) will indicate that
the attack and the victim process do not share the same CPU.
Finally, for each attack VM, we perform a co-residency test with
regards to a shared resource, with all the victim VMs in one shot.
By using these reductions, we were able to reduce the time taken
per run to 20 minutes, on average. Thus, by running experiments
for 15 hours per day, we were able to test more than 50,000 pairs
of attack and victim VMs.

ECT experiments: We go through a similar process (with
all the optimizations outlined above) except that we can only
induce workloads on victim VMs by sending external requests
(e.g., to upload a new file onto the ownCloud server). Further, we
will allow all 20 attack VMs to perform the tests simultaneously.
If any of them detects the co-residency successfully, we further
cross-validate the result with a follow-up ICT experiment. If

2. We wish to point out here that these tests are primarily used as bench-
marks and cannot be actually used by an external attacker.

the validation holds true, the process is deemed as success and
stopped.

Launching and termination: For every failed attempt at co-
residency (the co-residency test fails with respect to a considered
shared resource), the attacker must terminate his VMs and then
re-launch them in an attempt to again successfully co-reside with
his target victim. The time taken to launch and terminate these
processes are denoted by tl and td, respectively. These times will
contribute to the overall time that an attacker will have expend,
in order to successfully co-reside with the victim VM. Using the
process described above, we experimentally quantify these times.

4.1 Implementation of prior co-residency tests
We implement and test previously proposed co-residency tests on
EC2. In these tests, an attacker creates contention on various
shared resources (e.g., cache, bus) and uses a side channel to
determine if his process co-resides with a victim process. The
time taken to perform a co-residency test is denoted by tc;
this time primarily depends on type of shared resource used to
determine co-residency, as well as the type of service running
on the victim VM. A successful co-residency test indicates with
high probability that the attack and the victim VM share the same
physical resources.

Bus contention based ICT and ECT: Bus contention tests
were designed and evaluated in [1] and [13].

ICT: In the ICT, the attacker VM allocates a chunk of memory
that is larger than the size of the last level cache (64 MB in our
experiments). Is then misaligns the memory access pointer by
adding an offset to it (two bytes). The issuing of an unaligned,
atomic access operation (such as a read, or the XADD operations
for x86 processors) [13] causes the locking of the memory bus.
The causes the victim VM to see a significant increase (around
3X) in the memory access time if both the VMs share the same
physical machine.

ECT: In the ECT, the attacker engineers a set of external
requests (such as HTTP or FTP) which cause the victim VM to
access the memory bus; the request sizes will have to be larger
than the last level cache (LLC) size [13]. Internally, the attack
VM locks the memory bus (similar to what is done in the ICT).
By comparing the response times in this case, with the response
times without the locking of the memory bus, the attacker is able to
determine if his VM co-resides with the victim VM (a significant
increase is seen if the VMs co-reside).

LLC based ICT: Next, we test if two VMs share the same
CPU by creating contention on the LLC [26]. If this causes an
increase in the LLC access time for the victim VM, we conclude
that both VMs share the same CPU. The LLC in our experiments
is the L3 cache; its size is 25.6 MB with a cache line size of 64
bytes and an associativity of 20. The page size is 4096 bytes.

The attacker VM allocates 1 or more GB of memory and
regularly reads and writes in multiple page size increments (to
ensure a page miss for the victim VM). The victim VM allocates
an L3 cache size (of 25.6 MB) and iteratively reads pages in order.
If the two VMs share the L3 cache, a significant increase (≈ 1.8
X) in the access time is observed by the victim VM.

ICT with L1 cache: Two VMs that share the same CPU do
not necessarily share the same core. We test if two VMs share
the came core via a contention based test on the L1 cache. The L1
cache size is 32 KB, its associativity = 8, and the page size is 4096
bytes. As in the previous test, the attack VM repeatedly evicts the
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L1 cache by requesting data that is not in the cache. The victim
process continuously tries to access the same data (e.g., a certain
data structure) repeatedly, and measures the access times. With
contention a 1.5-3X increase in the access time is experienced.
Note here that even if the two VMs share the same CPU (the LLC
test could yield a success), this test will fail if they do not share the
same core. If two VMs share the same core, an active side channel
attack can probe the contents of the L1 cache during execution
[27].

4.2 A new ICT
Storage based ICT: The test seeks to determine if two VMs share
the same disk. Although the idea of checking if a disk is shared is
not new [14], [13], to the best of our knowledge, we are the first
to design and implement an approach to determine co-residency
based on disk storage access in a cloud environment. We find
that this test does not inherently provide any advantage over the
previously proposed ICTs discussed above (as shown later), but
we present it nevertheless, for completeness. To create contention
for disk access, the attack VM accesses a relatively large file (>
6 GB). It repeatedly does this access while varying the block size
from 512 Bytes to 8 MB. The victim tries to perform a storage
operation; in our experiments, it copies a similar large file from
storage and we measure the average time taken. For each block
size used, we measure the average time taken by the victim for
copying the file from storage. The attacker’s goal is to cause an
increase in the average seek time (compared to when it does not
access the large file). For the Amazon EBS (Elastic Block Store)
storage, a minimum increase of 33% in the total transfer time is
observed when there is disk contention.

4.3 New timing based ECTs
Next, we propose a set of new, stealthy yet very effective timing-
based ECTs.

ECT based on RTT timing behaviors: Today, cloud
providers employ load balancers and multi-path routing to be able
to dynamically handle high traffic loads and denial of service
attacks [28]. However, it is reasonable to assume that packets
which are destined to VMs that reside on the same physical
machine are exposed to similar effects at a given time (same
paths), and experience similar delays along the route. Thus,
one might expect that while the behaviors change dynamically,
the delays experienced by packets that are destined to VMs on
the same physical machine exhibit consistent (similar) temporal
variations over short time scales (the packets to the attacker VM
and the victim VM are sent back to back). Note here that while
the congestion at routers can change over time, given that TCP
gradually responds to congestion variations, these can be expected
to happen over coarser (relatively larger) time scales. Given this
observation, we (playing the role of the attacker) utilize probes to
measure the delays to an attacker VM and victim VM to determine
whether they co-reside on the same physical machine. The probes
do not have to be explicit overt messages; as an example, they
could potentially be seemingly legitimate http requests to a victim
web server. We point out here that since it is an attacker who does
the probing, the additional load due to the same on the network is
of no concern to the attacker; from a detection standpoint it would
seem like legitimate load, and hard to disambiguate especially if
the probes are sent from various vantage points.

In order to ensure that the results are not biased by hypervisor
scheduling delays (typically the maximum time slice that a VM
can obtain before being switched out of context ≈ 10 msec) we
probe at coarse time granularities (i.e., the probing period is set to
≥ 100 msec). With this set up, we receive one response from each
of the two VMs under consideration (the attack and the victim
VM) per probe. If the two VMs are on the same physical machine
a delay observed between the responses from the VMs is much less
than the probing period; unless (in rare cases) where the physical
machine load rapidly changes, these delays are of the order of OS
scheduling delays. Otherwise, much higher variations are observed
in the delays (because of different routes and traffic on those
routes). In order to perform the comparisons, we normalize the
observed values with respect to the maximum observed response
times (to eliminate temporal variations in load across the paths
taken by the probes).

We measure the round trip times (RTTs) continuously (by
instantiating connections separated by randomly chosen periods)
from an outside observer (attacker) to the two VMs in question.
We then perform a time series analysis to determine whether the
timing profiles observed with respect to the two VMs are very
similar. We call this test the “behavioral timing test”.

To ensure that we can accurately compare the time profiles,
we instantiate the connections to the two VMs (almost) simul-
taneously. To measure the RTT, we primarily rely on the TCP
handshake. We also use ICMP messages when applicable. By
collecting a long enough RTT trace, we can accurately determine
if the two VMs are on the same physical machine or not. Further,
we can deduce if the VMs are connected to the same TOR (top of
the rack) switch. The intuition is that if the two VMs are co-located
on the same physical machine, they experience similar processing
delays (which depends on the workload of the machine). Indeed,
as shown later (Table 3), the results of this test are fairly accurate
as validated by comparison with our ground truth.

Let ~rtt(o, di) = [rtt(o, di, t1) . . . , rtt(o, di, tn)], denote
the two time series for the attack and victim VM. (i ∈ {1, 2},
where, the d1 is the attack VM and d2 is the victim VM); o
and n represent the observer and duration of the observation,
respectively. We use two commonly used metrics to measure the
distance between the two time series, viz., the Mean Square Error
(MSE) [29] and the Pearson Coefficient (PeC) [30].

The mean square error given by:

MSE(o, d1, d2) =
1

n

√√√√ n∑
i=1

(rtt(o, d1, ti)− rtt(o, d2, ti))2 (1)

Here, we also measure the MSE relative to a time-shifted versions
of the the vector; this is to account for the fact that in practice, the
connections to the two VMs cannot be established simultaneously
(one is time shifted slightly with respect to the other).

The PeC between the time series is given by,

PeC(o, d1, d2) =
COV ( ~rtt(o, d1), ~rtt(o, d2))

σ( ~rtt(o, d1))× σ( ~rtt(o, d2)).
(2)

COV is the covariance between the two time series.
In our experiments described in Section 4.4, the test declares

a success (the two VMs co-reside) if the MSE is < 0.15 and the
PeC is ≥ 0.8. Note that ideally, if there is an exact match between
the time series, the MSE will be 0 and the PeC will be 1; we
choose thresholds that are close to these ideal values.

Timing based ECT with multiple observers: In this test, the
attacker uses multiple observers (from different vantage points)
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Resource type # Avg. VMs # of hits Percentage ECT
Disk ICT 108000 3340 3% NA
Bus ICT 108000 22666 21% NA
CPU ICT 98000 19540 20% 16808
Core ICT 98000 8820 9% NA

TABLE 2: Hit rates with different ICTs and ECT (NA: Not
applicable)

and examines the RTTs between the observers and the VMs in
question (as in the previous test). The attacker only records the
minimum RTT observed between each observer and the target
VMs for a specific time span. These RTT values are quantized to
the nearest decile (i.e., a value of 46 is rounded to 50, while a value
of 41 is rounded to 40). A vector of these quantized RTT values are
constructed for both the attack and the victim VM. For example,
if there are three observers and ρj and ρ′j are the quantized
RTT values with respect to the attack and the victim VMs at
the jth observer, the vectors {ρ1, ρ2, ρ3} and {ρ′1, ρ′2, ρ′3} are
constructed. The similarity between these vectors is now computed
by means of a Hamming distance type measure. The two VMs are
considered to be on the same physical machines, if their these
distances coincide (similar to the network triangulation [31]). If
the two signatures are very similar (but don’t exactly match) it is
very likely that that the VMs are on the same physical machine.
(in our experiments described in Section 4.4, we assume that they
are similar if the fraction of elements that match is ≥ 0.8). The
accuracy of the approach depends on the number of observers used
and the distribution of observers inside and outside the datacenter.
Our general observation is that the accuracy improves with the
number of observers, and the diversity in their locations. While
we could ensure the diversity of observers outside the datacenter,
we cannot control the locations of those within. In an extreme
case, the results commiserate with those of the behavioral test
(only one observer). As the diversity of observers increase, we see
that the accuracy improves (and the variance is within 1 % of the
reported results). The accuracy also improves as we increase the
duration of the observations. We call this test the “signature based
timing test.”

ECT based on RTT timing behaviors from multiple van-
tage points: The principles of the first two timing tests described
above are used in conjunction to improve the accuracy of the co-
residency determination. This also decreases the time required to
get accurate results. In brief, multiple observers are again used;
however, each observer applies the first test on the behaviors of the
RTTs (analyzes the similarity between the time series) as opposed
to using the minimum RTT a signature (as in the second test).
If from most (80 % or higher) vantage points, the behaviors of
the time series obtained with respect to the attack and victim
VMs are deemed similar, the attacker assumes that its process
has successfully co-resided with its victim. We call this test the
“hybrid timing test.”

4.4 Experimental results
Next, we provide our experimental results on Amazon EC2 with
regards to (i) the accuracy and (ii) the time taken for successful co-
residency with the different side-channels to verify co-residency.

Launching and Termination times: Launch and termination
times are part of the overheads consumed by an attacker while
trying to achieve co-residency. They could differ from datacenter
to datacenter. Note that the attacker may have to try different sizes
of attack VMs to achieve co-residency since the cloud providers

placement policies may result in the placement of VMs of different
sizes on different physical machines (e.g., according to load) [32].

Fig 1 shows the minimum, maximum and average launch times
over five months. The average launch time is ≈ 1.5 minutes.
The termination times are longer in general than launch times
as shown in Fig 2. The average termination time is 2.5 minutes.
Upon closer examination, we find that VMs that are on a heavily
loaded physical machine (longer response times) take longer to
terminate. We also find that larger VMs take longer to terminate
(see Fig. 4); this is because the deallocation of resources takes
longer in such cases.

Hit rate of ICTs: We next quantify the hit rates of the ICT
tests on Amazon’s EC2. This refers to the percentage of times
that the ICT test flags a success across all our experiments.
We conducted on average, 3 experiments per hour. As described
earlier, in each experiment we launch 20 attack VMs and 20
victim VMs. Table 2 shows the hit rates with the various ICTs
discussed earlier. The results show that the disk is shared only 3%
of the time. From among this 3%, we find that approximately 86%
were sharing the same physical machine (the bus test was also a
success). As shown, in approximately 21% of the cases the attack
and victim VMs shared the same physical machine. A significant
percentage of these also shared the same CPU (> 90%); the LLC
cache test was a success. In only 9% of the cases an attack VM
shared a core with a victim VM (L1 cache test succeeded).

Accuracy of the ECTs: Next, we examine the accuracy of the
various ECTs described in the previous section. The results are
summarized in Tables 3-6. We report the results with 3 different
services. Each service was tested for 5 consecutive days. We
approximately conducted 50 runs per day. We re-launch the victim
VMs every 10 runs, while the attacker VMs were re-launched
every run. We used the bus contention based ICT to establish the
ground truth; in other words, that test was also conducted and the
result we obtained was considered the truth. This is because, first,
the work in [13] shows that this test has very high accuracy with
regards to determining the co-residency of two processes. Second,
the bus test is the only test for which we have both the ICT and
ECT tests. Finally, if the bus test is successful, as discussed above,
it is very likely that the LLC cache test will also be successful.

We examine the efficacy of each ECT by measuring the
number of true positives (TP), number of true negatives (TN),
number of false positives (FP) and number of false negatives
(FN). We compute the true positive rate (aka sensitivity [33]) to be

TP
TP+FN . Similarly, the true negative rate (aka specificity [33]) is
TN

FP+TN .
The results show that the bus based ECT and the hybrid

timing test exhibit similar (very high) sensitivity and specificity.
They are both more accurate than behavioral and signature based
timing tests. Note however that designing the requests for the bus
contention based ECT is complex. It needs to be tailored to the
type of service running on the victim VM. Furthermore, some
services do perform heavy memory transfers; if a victim VM hosts
such a service, (e.g., ownCloud) it is difficult for an adversary to
successfully carry out a bus based ECT. This demonstrates that for
some workloads, the bus contention ECT may not be effective; the
hybrid timing tests seem to work well with all the workloads we
considered.

We notice that for the ownCloud service, the sensitivity takes a
hit with the hybrid timing test as compared to the first two timing
tests. This is because these results have to do with observations in
RTTs assoiated with transfers from remote clients. If the remote



7

April May June July August
0

1

2

3

4

months

T
im

e
 (

m
in

tu
e
s
)

 

 

Minimum

Average

Maximum

Fig. 1: Launch times over
months

April May June July August
0

5

10

15

20

months

T
im

e
 (

m
in

tu
e

s
)

 

 

Minimum

Average

Maximum

Fig. 2: Termination times
over months

0 5 10 15 20 25
0

1

2

3

4

5

Hours

T
im

e
 (

m
in

tu
e
s
)

 

 

Launching Time

Termination Time

Fig. 3: Avg. launch and ter-
mination times over days

micro small medium large
0

1

2

3

4

Instance Type

T
im

e
 (

m
in

tu
e

s
)

 

 

Launching Time

Termination Time

Fig. 4: Avg. launch and ter-
mination times for different
VM sizes.

Application Sensitivity Specificity
Taiga 0.94 0.84

MediaServer 0.95 0.88
ownCloud 0.95 0.96

TABLE 3: Sensitivity and speci-
ficity with the behavioral test.

Application Sensitivity Specificity
Taiga 0.92 0.89

MediaServer 0.93 0.88
ownCloud 0.93 0.95

TABLE 4: Sensitivity and speci-
ficity with the signature test.

Application Sensitivity Specificity
Taiga 0.95 0.95

MediaServer 0.95 0.95
ownCloud 0.90 0.94

TABLE 5: Sensitivity and speci-
ficity with the hybrid test.

Application Sensitivity Specificity
Taiga 0.95 0.95

MediaServer 0.95 0.95
ownCloud 0.81 0.95

TABLE 6: Sensitivity and speci-
ficity with the Bus based ECT.
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access has greater variance in the observed transfer times (which
happens with increased external/internal observers), this can cause
the sensitivity to dip. This only manifests itself with ownCloud
because of the large file sizes that are fetched. However, we see
that the dip is not substantial. For Taiga and MediaServer, where
the transfer sizes are much smaller, the variations do not cause any
decrease in sensitivity.

A microscopic view: In Figs. 9 and 10, we show snapshots of
the normalized time series at a single observer (using the hybrid
timing based ECT), when we have a mismatch and a match,
respectively. As evident, with a match or hit, the difference in
the normalized response times obtained with respect to the victim
and the attack VM is much smaller than 0.1 for each sample. With
a mismatch, this can be as high as 0.6. In the rare cases with false
positives (the ICT yields a mismatch), we find that the normalized
RTT is slightly higher (≈ 0.2 for some of the sampled points); this
could be a result of the two VMs being close to each other (same
rack) but not on the same physical machine.

Properly configuring the ECT tests: The work in [13]
discusses how to properly configure the parameters for an effective
bus contention ECT (we follow the same approach). Instead we
focus on determining how to appropriately configure our new
behavioral and signature based timing tests in the next set of
experiments. The results reported here are from experiments done
over 30 days; we perform 30 runs per day.

Configuring the behavioral timing test: We vary both the total
number of samples taken (to construct the time series) and the
average time between samples. As seen in Fig. 5, an average
period of 200 msec yields the highest accuracy from among the

values we considered. While this value could change depending
on the dynamics inside the cloud (how often paths change etc.)
we find that roughly choosing this average time between probes
is enough; slightly higher or lower sampling rates do not cause
significant degradations in performance. Note here that since, the
path from the observer to the cloud provider remains fairly stable
all the packets experience similar delays on this part of the path;
the delays within the cloud are more dynamic. Fig. 6 shows the
sensitivity of the accuracy to the number of samples taken to
form the time series. We observe that going beyond 1000 samples
yields little improvement in the accuracy. With these values for
the average time between samples and the number of samples, it
takes around 200 seconds (3.5 minutes) to perform the behavioral
timing test. To decrease the false positives and negatives for the
test, the experiments are repeated thrice with at least a 2 - 5 minute
pause time, between the tests. Thus the total time taken is between
15 and 26 minutes per attempt.

Configuring the signature based timing test: We vary the
number of observers considered while creating a signature. As
seen in Fig. 7, the accuracy does significantly improve if we
increase the number of observers above 15. Beyond this, the
accuracy is pretty much stable and equal to 81%. To remove
fluctuations in RTTs resulting from traffic variations and intra-
cloud dynamics (paths on which traffic is routed may change
dynamically [34]), we need a larger set of samples in order to
obtain accurate signatures. We find that typically we need to
collect observations over 20 minutes for each run. However, using
the hybrid test where we essentially perform a behavioral RTT
test at each observer improves the accuracy without the need for a
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ECT Test Average 75% 85% 95%
Behavioral 110 72 45 21
Signature 135 93 53 26
Hybrid 120 78 45 23

Bus 105 76 65 33

TABLE 7: Average and percentiles (mins) of times taken for co-
residency.

longer observation period; conducting the same behavioral test as
before at 16 observers, we find that the accuracy improves to ≈
86 % (the time taken is less than 20 mins).

Experimentally computed times for co-residency: In Ta-
ble 7 we present the experimentally determined, average times
with the different ECTs. The times shown include the (a) the
launch time, (b) the time taken to determine co-residency (for
the tests described) and (c) the termination time. We also show the
percentile times taken for co-residency; for example, the column
that shows the 85th percentile depicts the maximum time taken
by the most effective (lowest time) 85 % of the tests. We note
that the average times in all cases are about 2 hours. We find that
75 % of the tests took more than 72-93 minutes depending on the
ECT in use. More than 95 % took > 20 minutes. The minimum
times taken to successfully determine co-residency could be small
depending on the test (as seen above). However, the attacker has
to really get lucky and must be able to colocate with the targeted
victim VM with very few launches of his VMs. We discuss risk
assessment and various policies on VM migration (when should a
VM be migrated to minimize the risk of long co-residency with
an attacker?) in the Section 6.

5 MODELING CO-RESIDENCY TIMES

Prior to successfully co-residing with a victim process, an attacker
may have to iteratively launch attack processes, check for co-
residency (perform the co-residency tests), and upon failure,
terminate the processes and relaunch the set of processes. Here,
we assume that the attacker has a single account on the cloud, and
goes through this procedure until he is able to successfully co-
reside with the victim. The time taken for successful co-residency
depends on (i) the number of VMs the victim has on the cloud
(a web provider may have multiple re plicas of his web server
running [35]) (ii) the number of attack processes launched in
each iteration and (iii) the cloud provider’s policy in placing a
customer’s VMs. In our experiments described earlier, we assumed
that the attacker is able to launch 20 VMs in an iteration and the
victim has 20 processes running on EC2. Note that Amazon’s EC2
limits the number of VMs one can launch with a single account to
20. The provider’s policy on VM placement here is unknown.

It is hard to consider all possible cases and perform experi-
ments to characterize the times taken for establishing co-residency.
Thus, we seek to develop a simple model that allows us to estimate
this time, based on the number of attack and victim VMs; we show
that while this model is not very precise, it provides good enough
(rough) estimates that can be used to guide migration decisions.
To keep things simple, we assume only t2-micro instances which
run on subset of the machines in the region under consideration.
As shown later, we do so for a meaningful comparison of the
results with the model with that via experiments (constrained
by the degree of experimentation we could perform). We expect
that (as the model and experiments indicate), the results can be
extrapolated for a larger number of machines.

If u is the victim, and the probability of successfully co-
residing an attack process with any of the m replica VMs the
victim is running, in a given attempt, is pc(u), the expected time
for successful co-residency is given by:

ECR[pc(u)] = (tl + td + tc)
J∑
j=1

j(1− pc(u))j−1pc(u) (3)

where, J is the maximum number of attempts the attacker makes
at co-residency. Since we assume a presistent attacker, we set J =
∞. With this it is easy to see that:

ECR[pc(u)] = (tl + td + tc)
1

pc(u)
(4)

Let pc(u,m) be the probability of successful co-residency
with the mth victim VM replica in an attempt and tc is the time
taken to perform the co-residency test. We assume that a victim’s
VM replica does not share the same physical machine with another
replica; conservatively, this maximizes the attacker’s chances since
he has a better chance of hitting a victim VM replica in each
attempt. When a user creates an instance on EC2, it is guaranteed a
certain CPU resource based on the type of instance (e.g., a certain
long term CPU allocation for a small instance is guaranteed).
Furthermore, it is well known that EC2 physical machines are not
operating at near 100 % utilization; in fact, every server typically
runs at fairly low utilizations [36]. As a consequence, we argue
that the likelihood of any of the machines being equally likely
to be chosen is a realistic assumption. In fact, our experiments
did not hinge on any assumption, and the results seem to roughly
correspond to what our model predicts.

With the above assumption, the probability of co-residing an
attack process with any of the replica VMs is given by:

pc(u) =
∑
m

pc(u,m). (5)
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It is hard to determine pc(u) without knowing the placement
policy of the provider. If one assumes a completely random
placement policy (meaning that a physical machine is chosen at
random for placement), this probability is pc(u,m) = 1

N , where,
N is the number of available physical machines.

If a plurality of the attacker’s VMs are placed on the same
physical machine, then he is at an inherent disadvantage (the
number of physical machines on which he can check for co-
residency in that attempt, is reduced). Thus, we conservatively (to
minimize the co-residency time) assume that the attack VMs are
always placed on different machines (as with the victim VMs).
This policy is not far from what is likely to happen in reality
(e.g., see [32]). For example, a provider may place the VMs of a
customer on different physical machines for reliability (robustness
to machine failures). If we assume that such a policy is in place,
it is easy to see that one can conservatively bound the probability
pc(u,m) by:

pc(u,m) =
1

N
+

1

N − 1
· · ·+ 1

N −A
≤ A
N −A

(6)

where, A is the number of attacker VMs. Thus, if there are L
victim VM replicas, pc(u) = L×A

N−A .
Evaluating our model for co-residency time estimation: Next,

we compare the co-residency estimates using our model, with that
from experiments on EC2. Figs. 11 and 12 depict the times taken
to co-reside with any of the victim VMs, where the victim has
deployed 8 and 4 VMs respectively. The number of attacker VMs
are varied (for the experiments, we have two accounts and can
have up to 40 VMs in total). The value of N can be estimated
based on the number of IP addresses made available on the
provider’s launch interface and the maximum number of VMs that
can be hosted per machine; we use N = 500 since EC2 provides
around 4000 available IP addresses and the Xen hypervisor allows
8 VMs per physical machine. The model takes as input, the
average (possibly offline) measurements of tl, td and tc with one
attack VM. We see that with different number of attack VMs,
we are able to get relative good (but rough) estimates of the co-
residency times with the model. This shows that the model can be
useful in predicting how long attackers with differing capabilities
will take, to successfully co-reside with a victim.

6 DETERMINING WHEN TO MIGRATE

Next, we seek to develop guidelines on when a VM should be
migrated. Towards this, we first propose a set of indicators that
capture “the risk of a VM co-residing with an adversarial VM.”
Note that without knowing the capabilities of an adversary it is
hard to quantify risk; thus, the risk indicators are based on what
can be directly measured either by the customer (user) or the
provider.

6.1 Risk indicators
To assess risk, we consider a set of measurable indicators, the
variations in which implicitly indicate an increase in risk. These
indicators are: (i) The time that a victim VM spends on a physical
machine relative to the time taken by an adversary to successfully
achieve co-residency. As evident, the longer the time spent on the
same physical machine, the more probable it is that an adversary
has successfully co-resided on the same machine. (ii) The level
of utilization of the memory bus on the physical host machine.
This is the same side channel used by an attacker using the bus

contention ECT to ascertain co-residency. From the perspective of
the victim, a heavy utilization of the bus can be the result of the
bus contention based ECT. It is quite possible that such heavy
utilization is because of benign congestion; we argue that even
then, migration would help in improving performance. Note that
with the timing based ECTs that we discover, the second risk
indicator is not useful; in other words, migration has to be based
on the time spent by the victim VM on the physical machine.

Time indicator: The first very simple risk indicator is the time
for which the VM has resided on the current physical machine and
is represented by τ = t− ti where, t is the current time, ti is the
time at which the VM was first placed on that physical machine.
If one assumes that the timing based ECTs are used, the time
indicator is the only metric that can be used to guide migration
decisions.

Heavy memory bus utilization indicator: A heavy utilization
of the memory bus may indicate that the bus contention based ECT
is underway. We sample the utilization of the bus periodically
at intervals ts. If this utilization, on machine m is greater than
a threshold for a specific sample (say j), we set a boolean
variable associated with that resource S(m, j) to 1 (it is set to
0 otherwise). A composite risk indicator V (m,K) is obtained by
jointly considering say K consecutive samples. Specifically,

V (m,K) =
k+K∑
j=k

S(m, j), (7)

for any k. If this risk indicator yields a value of K , then all K
consecutive samples indicated that the bus experienced a high
utilization; this would indicate that the VM is at risk of being
subjected to a bus contention ECT.

Threshold for determining heavy bus contention: Typically, for
specific platforms, there are specifications for the maximum values
associated with this heavy utilization indicator. For example, for
SDRAM, the specification says that the maximum memory access
time is 70 - 150 ns depending on the vendor [37]. One could set the
threshold to be a certain fraction of the specified maximum value
(e.g., the threshold could be 0.8 of the maximum specified time).
Clearly, the higher the threshold, the less likely it is that an alert is
issued (leading to a low true positive rate with regards to detecting
a threat); on the other hand, setting too low a threshold would incur
a higher cost (because of possibly frequent VM migrations). Thus,
this threshold could be set based on the user’s risk averseness
and the costs she is willing to bear. In our work, we conduct an
extensive empirical experiments and we set the threshold to a pre-
defined value (Th = 0.8 ) so as to keep the false positive rate
below 1 %. Similar thresholds are used with the bus contention
ECT [13]. We assume that this threshold will be fixed and other
parameters are tuned to determine when VMs are to be migrated
as discussed next.

6.2 Migration guidelines
Next, we try to develop guidelines for migration based on the risk
indicators. We assume that the provider does not unilaterally take
decisions to migrate a VM (since some users may be unwilling to
experience downtimes towards reducing risk). Instead, it monitors
the bus utilization at some preset time intervals ts (not controlled
by the user) and based on user preferences (with regards to certain
parameters as discussed later), migrates her VMs.

Our guidelines for performing migrations are characterized
using the flow chart in Fig. 13. A user’s virtual machine enters
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Fig. 13: Migration Guidelines

a safe state when it is placed on a physical machine. The value
of S(m, jts) on that physical machine m, is checked by the
provider at each sampling instance of jts (sampling is done every
ts time units i.e., j = 1, 2, . . . ). If this value is 1, the VM
enters the monitor state. If the VM remains in the monitoring
state for K consecutive monitoring instances, this implies that
V (m,K) = K and and it should be migrated. The machine
returns to the safe state if at any point while in the monitoring
state, the the value of S(m, (j + l)ts) (where l < K) becomes
zero (i.e., the utilization of the bus gets back below the chosen
threshold). If the VM remains on the physical machine (regardless
of whether how long it spends in the safe or the monitoring state)
for τ seconds a decision is made to migrate. We wish to point out
here, that there is an implicit assumption that Kts << τ .

For ease of discussion, as mentioned earlier, let us assume that
the threshold Th is fixed. The two parameters that define the user’s
cost and risk averseness are K and τ . If the values chosen for
these parameters are too small, the number of false positives with
respect to detecting a co-residency threat increases; unnecessary
high migration costs are experienced. On the other hand, if the
values chosen are too high, an attacker can succeed in its attempt to
co-reside and do so for long periods. In our experiments reported
in Section 7 we choose empirical values that provide a good trade-
off between the cost and risk averseness (as measured offline). It
is hard to come up with optimal values for these parameters; thus,
we empirically measure this (as a provider would do) and provide
a recommendation with regards to values that provide reasonable
cost versus security trade-offs.

Costs: In the best case, the user does not migrate for a period of
τ seconds. If the size of her VM is X MB, her bandwidth expense
in this case will be 8X

τ Mbps. She will experience a downtime
every τ seconds. In the worst case, she will continuously observe
bus contention, and will migrate every Kts seconds. Here, the
bandwidth cost will be 8X

Kts
; she will experience a downtime every

Kts seconds. In practice, if there is no attack or if there is a timing
based ECT, the former (best case) will hold true. If there is a bus-
contention based ECT, the times between the migration instances
will be somewhere in between (and not excluding) the best and
the worst case scenarios.

7 EVALUATIONS

In this section, we experimentally evaluate the VM migration
in terms of (a) reducing the times for which an attack VM co-

resides with a victim and (b) the incurred costs; the migrations are
based on the guidelines put together in Section 6.2. Unfortunately,
Amazon EC2 or other cloud providers do not yet offer a service
wherein a user can control (or request) when VM migrations are
performed; therefore, our evaluations are on an in house private
cloud.

Evaluation Scenarios: We consider the two best ECTs that
can be used by the attacker (the hybrid timing based ECT and the
bus contention ECT) to ascertain co-residency. We consider the
two risk indicators separately and jointly, to invoke migrations.

Our private cloud testbed: Our private cloud consists of 13
Servers (11 DELL and 2 HP), two Cisco 20-Port gigabit switches
and 9 DELL hosts. It can host up to 140 micro VMs or 70 small
VMs, simultaneously (equivalent to t2.micro and t2.small on EC2,
respectively). We run the KVM hypervisor on top of Ubuntu
14.04. On the VMs, we run Centos 7 and Ubuntu 15 images. We
deploy Apache CloudStack [6] to provision the VMs. We perform
live migration by using virt-manager (KVM + QEMU). We host
Taiga, ownCloud and Mediaserver on the VMs and use 9 hosts to
initiate requests to the deployed VMs (background traffic).

Although our testbed is much smaller than commercial clouds,
it suffices for a proof-of-concept implementation and showcasing
the effectiveness of the VM migration based on our guidelines. On
commercial clouds, it is our hope that VM migration will be even
more effective than what we show because of scale. However,
we acknowledge that our smaller scale cloud might not capture
factors that exist in a real cloud setting (such as route changes due
to intra-cloud dynamics); a detailed study of these at scale will be
considered in the future.

Evaluation results: Next, we present our results. Migration
costs are averages over 24 hour periods unless specified otherwise.
In the first set of results we consider the reactive attacker model
described in Section 3; this is what the attacker can do to-day on
commercial clouds. Subsequently we consider the cases where it
can make choices of whether or not to migrate (static and periodic
attackers).

Evaluations with a reactive attacker: First, we present our
evaluations with a reactive attacker.

Migration based on time of residency: First, we consider
migration based on only the time of residency (value of τ ). Here,
we do not trigger alerts from the heavy bus contention utilization
indicator. We consider the case where the hybrid timing based
ECT strategy is used by an reactive attacker3. We migrate a VM if
the time spent on a physical machine is equal to τ = β×f(TCR),
where f is some monotonically increasing function of the time
taken by the attacker to successfully co-reside with the victim. β
determines how conservative we are in migrating a VM; a smaller
of β invokes more frequent migrations and thus, incurs higher
cost. For simplicity, we consider that the function f provides the
mean value of TCR (based on the values from from Section 4 we
set f(TCR) = 105). Two values of β, which correspond to inter-
migration times τ of approximately 60 (β ≈ 0.6) and 120 mins
(β ≈ 1.1), are considered. The lower the β value indicates high
user averseness to risk, while the higher the β means a lower risk
averseness (and that cost is more important to the owner of the
victim VM). The victim VMs are either Taiga, Mediaserver and
ownCloud.

3. Since the bus contention utilization indicator is not used, the results are
very similar when the attacker used the bus contention ECT.
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Interval Bandwidth Downtime Efficiency
1 hour 25.6M 1.4s 0.008
2 hour 13.2M 0.8s 0.05

TABLE 8: Average cost and attack efficiency with proac-
tive migration (1 victim VM and 1 attack VMs).

Interval Bandwidth Downtime Efficiency
1 hour 25.6M 1.4s 0.03
2 hour 13.2M 0.8s 0.08

TABLE 9: Average cost and attack efficiency with proac-
tive migration (1 victim VM, 2 attack VMs).

Victim VMs Bandwidth Downtime Attack Efficiency
1 13M 0.75s 0.11
2 14M 0.73s 0.11

TABLE 10: Average cost and attack efficiency for migra-
tion based on heavy memory utilization (varying victim
VMs).

Victim VMs Bandwidth Downtime Attack Efficiency
1 16M 1.1s 0.03
2 16M 1.2s 0.028

TABLE 11: Average cost and attack efficiency for mi-
gration based on both residence time and heavy memory
utilization (Attack VMs = 2X Victim VMs).
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We conduct the experiments over a period of 15 days (5 days
per type of VM). The cost incurred by the victim is measured in
terms of (a) the downtime that it experiences and (b) the bandwidth
consumed. The bandwidth consumed corresponds to the memory
state (in MB) transferred during the live migration of the victim
VM. To capture the security provided, we compute the ratio of
the time for which the attack VM co-resides with the victim VM
to the total duration of the experiment; we call this the attack
efficiency. We have two victim VMs. We populate the machines
with 35 additional VMs which are randomly placed, in order to
reflect a real operational setting (the cloud has a utilization of
approximately 30 %). We consider two and four attacker VMs
(i.e., 1X and 2X the number of victim VMs). In this experiment
we assume an reactive attacker who performs the hybrid timing
based ECT to ascertain co-residency; with this approach, he can
re-launch his VMs 1.7 times an hour, on average.

We summarize the costs (downtimes and the traffic generated
by migration) and the attack efficiency in Tables 8 and 9 with
different numbers of attacker VMs. As expected, the traffic volume
is doubled if the migration periodicity doubles. The average
downtimes are also doubled. However, the attacker efficiency is
less than 1% if the VMs are migrated every hour, compared to 5
% if the period is increased to 2 hours. This is because the drop
in the attacker success rate is not linear with increased migration
frequency (it is better). We see that the costs in terms of downtimes
(< 2 s) and bandwidth (of the order of MB over 24 hours) are
reasonable.

Migration based on heavy memory utilization: In our next
experiments, we assume that the bus contention ECT is used
by an reactive attacker. We only migrate a VM if the heavy bus
contention risk indicator is triggered. Note here that if the attacker
uses the hybrid timing based ECT, the victim’s VM will never be
migrated in this case. We set the access time threshold to (100ns)
(about 0.8 of the maximum specified time on our platforms). The

value of K is set to 10. First, we set τ = ∞, i.e., we only
use the heavy memory access time risk indicator as a trigger.
Table 10 summarizes the results. The costs of migration decrease
significantly compared to the case where migration is proactively
performed based on the time indicator (recall results in Tables 8
and 9). However, since migration is only performed upon detecting
long memory access times, the attacker is able to co-reside with
the victim VM for slightly longer periods (in quite a few cases the
heavy utilization is not consistently above the chosen threshold);
thus, an increase in the attack efficiency is observed.

Jointly considering the time and heavy utilization indicators:
Next, we perform proactive migration once every τ = 2 hours
(high β); in addition we perform reactive migration if there is an
indication of heavy memory usage i.e., the heavy bus memory bus
utilization indicator issues an alert. The reactive attacker employs
the bus contention based ECT. Note here that if the attacker
were to use the hybrid timing based ECT, the heavy utilization
indicator will never kick in and the results will be identical to
that of where only the timing based indicator is used to trigger
migrations; we have verified that this is the case. The results are
in Table 11. We see that there are slight increases in the costs in
terms of downtimes and bandwidth compared to the case with
only proactive migrations with the same β (see Table 9, row
2). This is because, additional migrations are now invoked on
top of proactive migrations; however, the risk in terms of attack
efficiency is reduced by a factor of nearly 3. This suggests that the
effectiveness of our migration guidelines; combining the indicators
provides better protection with a modest increase in cost (for the
same β).

Sampling overheads of memory access utilization: Fig. 14
shows the overhead of monitoring memory access times with
different sampling rates. This overhead depends on factors such as
the type of application, the allocated resources, and the workload.
We perform experiments with ownCloud, varying the interval
between the memory probes, between 0.25 and 64 minutes. Each
probe test lasts for 15 seconds. Approximately 7% of the CPU
cycles were consumed even with the smallest probing interval. We
perform a similar experiment with Taiga. In Fig. 15, we show the
average response times to web requests while varying traffic load,
with a probing interval of 0.25 minutes. We see that the response
times are relatively unaffected. This demonstrates that clients can
monitor the risk indicators with relatively very little impact on
performance in the cases of the applications we consider.

Performance with different attacker models: In the next set of
experiments, we consider the three different attacker models that
we described in Section 3 viz., the reactive attacker, the periodic
attacker and the static attacker. We recall that an reactive attacker
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Fig. 16: Time taken by an
attacker to co-reside with
a victim VM (inter co-
residency time).

Fig. 17: Probability that the
co-residency time is > t
for an reactive attacker; at-
tacker uses hybrid timing
based ECT.

Fig. 18: Probability that the
co-residency time > t for a
static attacker; attacker uses
hybrid timing based ECT.

Fig. 19: Probability that the
co-residency time > t for
a periodic attacker; attacker
uses hybrid timing based
ECT.

terminates and relaunches its VMs if a co-residency test fails. A
periodic attacker simply chooses a period for migration (like a
victim VM who migrates based on the timing indicator). A static
attacker simply stays put on a single physical machine and awaits
the arrival or return of the victim VM (i.e., chooses not to be
migrated). As mentioned in Section 3, a periodic (static) attacker
continuously checks for co-residency since it is unaware of when
the victim VM is placed on its physical machine. Implicit in these
experiments is the assumption that migrations are allowed on the
cloud for all users (the attacker as well as the victim); the users
make decisions on whether to migrate or not. We first consider
the scenario where the attacker uses the hybrid timing based ECT.
Later we consider the bus contention ECT.

The attacker uses the hybrid timing based ECT: In Fig. 16,
we show the average time taken by an attacker to co-reside with
its victim VM for different values of τ ; we assume that the
periodic attacker migrates its VM at the same rate as the victim.
The figure captures how often an attacker co-resides with the
victim (but not how long he stays with the victim). We see that
frequent migrations cause the victim to come back to the same
physical machine occupied by a static or periodic attack VM often.
Infrequent migrations would cause the inter-coresidency times to
increase. In the case of an reactive attacker, the frequent migrations
hurt the time taken to get a co-residency hit (as one would expect).

Reducing the time taken to co-reside with the victim does
not necessarily translate to a longer co-residency time. Let us
represent the time for which the attack VM co-resides with the
victim be represented by Wa. In the next three plots, we present
the complementary CDF of Wa, i.e., the probability that Wa > t,
for the three attacker models, respectively. We immediately see
that frequent migrations translate to lower overall co-residency
times in all cases. The reactive attacker is hurt the most by frequent
migrations. With τ = 1/2 hour, or 1 hour, the migrations occur
even before it can successfully carry out a co-residency attempt
in many cases. Combined with the fact the fact that its average
time to achieve co-residency is high in these regimes (as seen in
Fig. 16), it is the least effective strategy for the attacker. The static
attacker gains time since it does not have to terminate and relaunch
his process; we find that if a victim VM, is placed on his machine,
the attacker stays with it for the period of the migration (which
is to the attacker’s advantage). The periodic attacker does better
than the reactive attacker; however, it does not do as well as the
static attacker since, once if the victim co-resides with it (moves
to the physical machine it is occupying), it may be migrated itself.
In summary, the above results suggest that if users are allowed to
migrate their VMs, staying put on the same physical machine is

SCA Avg. Time Shared Resource
Prime+Trigger+Probe [2] 341 Core
LLC Prime+Probe [26] 27 CPU

Deduplication [38] 45 Storage

TABLE 12: Average times (mins) to carry out side channel attacks.

the best strategy for an attacker. Performing frequent migrations
(to the extent permitted by cost) is the best strategy for the victim.

The attacker uses the Bus Contention ECT: In Figs. 20, 21 and
22, we show the complementary CDF of Wa when the attacker
uses the bus contention ECT. Our migration guidelines are in
place. The value of K is 10. We see that regardless of the attacker
strategy, a migration is invoked after Kts = 5 mins with high
probability since the high memory bus utilizaiton indicator is
triggered. Thus, the co-residency times are minimal. The value
of τ has little impact since migrations are triggered in response
to bus contention. The co-residency times are now much smaller
from the attacker perspective, compared to the case where it used
the bus contention based ECT. The results not only demonstrate
the efficacy of our migration guidelines with regards to minimizing
the co-residency periods again, but also demonstrate that the bus
contention ECT is much less effective than our hybrid timing based
ECT from the perspective of the attacker.

Bandwidth savings by accounting for time taken for co-
residency: Nomad [5], implicitly, triggers migrations only based
on the time taken for a successful information leakage attack. By
ignoring the time taken to achieve co-residency, Nomad invokes
migrations more frequently than necessary. In Fig. 24 we compare
the bandwidth costs with Nomad with that of our approach. We
consider three side channel attacks targeting information leakage
in conjunction (after co-residency) viz., Last Level cache (LLC)
[26], Dedup [38] and PrimeTrig [2]. On average, these attacks
take 27, 45, 341 mins to be successful respectively. Nomad is
assumed to invoke a migration after a duration just less than what
it takes for such an attack to succeed. With our approach we
migrate proactively with τ equal to the the sum of the times taken
for co-residency and the information leakage attack. The results
show that, by not accounting for the time taken for co-residency,
Nomad increases the bandwidth costs by 30 - 150% compared to
our approach.

8 DISCUSSION: IMPLICATIONS ON SIDE CHANNEL
ATTACKS TARGETING INFORMATION LEAKAGE

In our work, the primary metric of interest was the time for which
an adversarial VM co-resides with a victim VM (we tried to
minimize this time subject to some constraints on performance
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Fig. 20: Probability that the
co-residency time is > t for
an reactive attacker; attacker
uses bus contention ECT.

Fig. 21: Probability that the
co-residency time > t for a
static attacker; attacker uses
bus contention ECT.

Fig. 22: Probability that the
co-residency time > t for
a periodic attacker; attacker
uses bus contention ECT.
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son of the bandwidth costs
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costs). Reducing the co-residency time directly minimizes the
potency of other side channel attacks that target information
leakage; for such attacks to succeed an attacker will need to co-
reside with the victim for the duration of the attack. In this section,
we provide a discussion on how our work applies if one assumes
that such attacks are carried out after co-residency is achieved;
note that we only provide rough characterizations of the benefits
relating to such attacks here, and a more systematic study is left
for the future.

There are numerous side-channel attacks studied in the lit-
erature (see Section 2). In Table 12, we list three representative
prior attacks and the average times taken to carry out the attack
successfully (to achieve a desired extent of information leakage)
as reported in those papers; each side channel attack targets a
shared resource and uses a side-channel relating to that resource.
The details can be found in the respective citations. The two
things we wish to point out are the following. First, these attacks
assume that an attack VM has already co-resided with a victim
VM prior to lauching the attack. However, the attacker will first
need to co-reside with the victim and this can take significant
time, as discussed in Section 4. Second, the times taken for these
“information leakage” attacks could be shorter than the time taken
by an attacker to achieve co-residency on today’s cloud platforms
(comparing Table 7 with Table 12). Thus, if one were to use VM
migration as a countermeasure against such side-channel attacks
which target information leakage, one could potentially use less
frequent migrations if one were to account for the time taken
to achieve co-residency in addition to launching the information
leakage attack (since achieving co-residency is a pre-requisite for
the latter attack).

Bandwidth savings by accounting for time taken for co-
residency: Nomad [5], implicitly, only considers the time taken for
a successful information leakage attack, to invoke migrations. By
ignoring the time taken to achieve co-residency, Nomad invokes

migrations more frequently than necessary. To compute a rough
estimate of the additional costs due to more frequent migrations
with Nomad, we consider the three information leakage attacks
listed in Table 12 and assume that they take the times reported
to succeed. Nomad is assumed to invoke a migration just prior to
the attack succeeding. With our approach, we migrate proactively
with a value of τ equal to the sum of the average time taken for
co-residency (105 mins) and the time taken for the information
leakage attack as reported in the papers listed in Table 12. In Fig.
24, with this setup, we compare the bandwidth costs with Nomad
with that of our migration approach. The results show that, by not
accounting for the time taken for co-residency, Nomad increases
the bandwidth costs by 30 - 150% compared to our approach.
A more holistic implementation (with both co-residency and an
information leakage attack) to validate the gains in real scenarios,
is left for future work.

Decrease in information leakage rates: It is evident that VM
migration can decrease information leakage rates (also shown in
[5]). It has been shown that without any migration, after co-
residing with a victim, an attacker can extract a secret key of
length 2048 bits in 27 minutes (corresponding to a leakage rate of
1.26 bps). Our experiments show frequent VM migrations would
require an attacker to perform co-residency repeatedly to get this
information. Let us assume a strong attacker who can resume his
attack once he again co-resides with the victim. With proactive
migrations our experiments show that the attacker efficiency is ≈
1 %. This means that he spends about 24 × 60 × 0.01 ≈ 14
minutes per day with the victim; thus, it now takes nearly two
days to extract a secret key of the same length (a leakage rate of
5.7× 10−6 bps).

Note that the effectiveness of proactive migrations (as com-
puted above) are limited by our set up; we have only 13 physical
machines. On commercial clouds, where the number of machines
could be much higher, the process will be even more effective. In
addition, if the attacker cannot immediately resume his attack after
he co-resides with a victim VM at a later time, the information
leakage rate will be further reduced; in the extreme case if
the attacker has to restart his attack, the information cannot be
retrieved.

Generality across cloud platforms and instance hetero-
geneity: We perform experiments on Amazon EC2 since it is the
most popular cloud platform today [39]. Our belief is that our
results and model extend to other cloud platforms. This is on the
basis that most cloud providers operate their servers at very low
utilizations as discussed in [36]. We acknowledge that the model
does not account for heterogeneity in the types of instances that
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may be placed on the platform. We leave a detailed study of such
heterogeneity to future work (given that it will be a non-trivial
extension to this study).

9 CONCLUSIONS

In this paper, we consider an attacker who seeks to co-reside
his VM with a victim VM on the cloud. Achieving such co-
residency could allow the attacker to launch various side-channel
attacks that target information leakage. Our goals are to (a) get
a comprehensive understanding of the ways and the effectiveness
with which an attacker can achieve co-residency and (b) develop
migration guidelines for the victim VM that can help minimize its
co-residency time with an attacker VM, given constraints on per-
formance costs. Towards achieving (a) we consider both previous
side-channel attacks and design our own (more effective) attacks
towards ascertaining co-residency with a victim, and evaluate the
process of co-residency extensively on Amazon’s EC2. Based on
these experiments, we formulate a set of migration guidelines and
evaluate these extensively with different attacker strategies on our
in house cloud. We show that our guidelines can limit the attacker
efficiency (fraction of the time it co-resides with the victim) to
about 1 % with very modest bandwidth and downtime costs (MB
of bandwidth and seconds of downtime per day, per VM migrated).
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