
Proactive Restart as Cyber Maneuver for Android
Zhiyong Shan Iulian Neamtiu Zhiyun Qian

Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA, 92521
Email: {zhiyong,neamtiu,zhiyunq}@cs.ucr.edu

Don Torrieri
US Army Research Laboratory

Adelphi, MD 20783

Abstract—Moving-target defense is an effective strategy for
deflecting cyber attacks. The widespread use of smartphones in
the tactical field requires novel ways of securing smartphones
against an ever-increasing number of zero-day attacks. We
propose a new, proactive approach for securing smartphone
apps against certain classes of attacks. We leverage smartphone’s
native support for quick and lossless restarts to make application
restart a cyber maneuver meant to deflect and confuse attackers.
We propose a time-series entropy metric to quantify attack
resilience. We apply our approach to 12 popular Android apps
chosen from a variety of domains, including online banking and
shopping. Preliminary experiments with using proactive restarts
on these apps show that restart is a promising way of increasing
attack resilience for a certain class of side-channel attacks named
Activity Inference attacks.

I. INTRODUCTION

Moving-target defense can be either reactive (wait for the
attack to be detected, then take measures to stop, contain,
and mitigate the attack) or proactive (continuously change
the attack surface to prevent attacks in the first place —
this strategy is also known as cyber maneuver (CM) [15]).
Given the diversity of modern attacks and the lack of effective
detection mechanisms [9], reactive approaches are becoming
less and less viable as defense strategies. In contrast, proactive
approaches such as cyber maneuver, in which the defender
is continually changing the attack surface to deflect potential
attacks and make the attacker’s job harder, are particularly
suited for defending against known and unknown (zero-day)
attacks. However, CM comes at cost, e.g., in terms of time
and resources, because the system is maneuvering even in the
absence of attacks. Hence achieving effective CM involves
balancing the cost of maneuvering with the benefit of reducing
attack risk [11].

Smartphones are used more and more in the tactical field,
e.g., through the Nett Warrior [2] or Android Tactical Assault
Kit (ATAK) [1] initiatives. However, with increased smart-
phone use, the potential for smartphones being the target of
attacks also increases. Smartphones used in the tactical field
might lack a highly available, trusted channel for downloading
and applying security patches which further compounds the
problem and suggests that a live, on-the-phone, proactive
security approach is needed.

In this paper we propose a novel CM mechanism that makes
headway toward achieving proactive security for smartphones
via a simple yet effective proactive restart approach. Our key
insight is that on smartphones, the high-level application state

is naturally preserved across application restarts during which
the low-level operating system (OS) state of the application
is cleaned up, and most attacks target the OS state. Hence,
because app restart is natural for the application but disruptive
for the attacker, proactive restarts de facto implement CM,
protecting the application without significantly degrading its
functionality.

On smartphone platforms such as Android and iOS, ap-
plications (“apps”) are subject to frequent pause/resume (or
stop/restart) operations. For example, whenever the user
switches to another app, turns the screen off, changes screen
orientation, or the phone is running low on memory, the
smartphone OS will pause or stop the current app (unless the
app is providing a background service); conversely, when the
user turns the screen on, or switches back to the original app,
the app is resumed or restarted. Hence these pause/resume
or stop/restart operations are a core, “first class” function-
ality of smartphone OSs. To provide this first-class support,
smartphone OSs automate many state management tasks, e.g.,
quickly and automatically saving and restoring graphical user
interface (GUI) state across restarts, as well as invoking user-
defined callbacks for saving and restoring app state. This is in
stark contrast to desktop or server programs, where programs
are effectively “running forever”; hence state save/state restore
operations are ad-hoc and OSs offer little support for them.
Given smartphones’ first-class support for quick and lossless
restart, our key insight is to use restart as an CM strategy with
modest costs.

The Android platform and apps have been subjected to a
variety of security attacks [9], and a variety of defenses have
been proposed. Many classes of attacks rely on observing
the victim app for a period of time, to infer its behavior
or learn operational parameters that facilitate launching the
attack. For example, in an Activity Inference attack [8], a
malicious app M running in the background can infer the
current screen of a victim app B by monitoring B’s runtime
parameters, as exposed in the /proc filesystem. However, if
B’s parameters are unavailable, obfuscated, or random, whole
classes of attacks will be rendered ineffective.

Drawing on these observations, we propose a new ap-
proach for protecting Android apps via proactive restarts: we
proactively trigger pause/resume operations to confuse and
protect against attacks. As mentioned previously, on Android,
pause/resume or stop/restart operations are quick and non-

Level Cause
1: Pause activity Activity becomes (partially) covered;

Turn off screen
2: Stop activity Switch to another app; Start a new

activity in the same app; Receive a
phone call; Press ‘Home’ button

3: Destroy activity Press ‘Back’ button; Kill app

TABLE I: Android restart levels.

intrusive, given the native platform support for pause/resume
and stop/restart. Consequently, proactive restarts are fast and
unobtrusive to the user, but disruptive at the OS level; this
disruption confuses the attacker, as the process parameters
change; now the attacker has a harder time inferring appli-
cation behavior, and the partial information the attacker has
gathered about a running process is stale or even useless, e.g.,
when the old app process is killed and a new process is started.

In Section II we first provide details on pause/resume and
stop/restart operations on the Android platform (Section II-A).
Next (Section II-B) we discuss a recently discovered class
of side-channel attacks against Android apps named Activity
Inference attacks, where malicious apps can infer the screen
contents of a victim app and then preempt the victim app
as well as masquerade as the victim app. If the victim app
maneuvers such that this side-channel information is distorted
or unavailable – as we do – an attack is less likely to succeed.

In Section III we provide a concrete example, the popular
Newegg app, of how an Activity Inference attack proceeds and
how our approach can hinder such attacks.

In Section IV we discuss our implementation. We use An-
droid’s native restart capabilities, as well as app management
services, to implement our proactive restart scheme.

In Section V we evaluate our approach on 12 popular
Android apps. Using a time series entropy metric we show
that our scheme is effective, as it increases entropy by 85%
on average, which means the behavior of a victim app is harder
to predict. We found that our scheme is efficient, as it imposes
an average transition time overhead of 601 msec.

In summary, our main contributions are:
1) A novel, proactive approach for cyber maneuver based

on the insight that smartphone app restarts are frequent
and lossless but perturb OS state.

2) A formulation of attack resilience using time series
entropy.

3) An evaluation of the proposed approach on 12 popular
Android apps, quantifying the effectiveness vs. efficiency
trade-off.

II. BACKGROUND

We now present background information on proactive secu-
rity, as well as the resume/restart mechanism on Android.

A. Android Restart
The Android smartphone platform consists of apps, usually

written in Java, running on top of Dalvik, a Java virtual
machine, which in turn runs on top of a smartphone-specific

Linux kernel. Android apps, due to the nature of the platform,
are centered around a GUI; an app’s GUI consists of separate
“Activities”, where an activity roughly corresponds to a screen
in a desktop program’s GUI. As a result of user interaction
or outside events, an app transitions among activities; for
example, in the Newegg online shopping app, if the user is
in the Main activity and clicks the ‘My Account’ menu item,
the app transitions to the Login activity (see Figure 1).

Smartphones (unlike desktop or server systems) have lim-
ited resources. When the system is low on memory, or the
user turns the screen off, or switches to a different app, the
current app is automatically paused or even killed; a small
percentage of apps that provide background services remain
running, albeit in a restricted mode. When the user returns to
the app, the app is resumed or restarted. Hence, smartphone
apps and OSs are designed from the ground up to support
pause/resume operations smoothly and efficiently.

In Android, our target platform, there are three main levels
of restart. We present these levels in Table I: the level is on
the left, and the cause is on the right. A restart cycle has
little impact on the app and app state: the OS automatically
saves and restores GUI state. However, at the OS level, a
restart cycle (especially at level 3 — destroy app) is very
disruptive, as the process is killed. When the app restarts, it
restarts with different OS state, e.g., process identifier (PID),
memory mapping, process counters from /proc files, etc.

Since restart is such a common and efficient operation on
smartphones, and is gracefully tolerated by apps while being
disruptive for the OS, our key insight is to use proactive
restarts to change the attack surface hence offering a cyber-
maneuver capability.

B. Activity Inference Attacks
Activity inference [8] represents a class of side-channel

attacks where a malicious background application M can
stealthily infer an activity transition occurring in a foreground
benign app B. Further, M can precisely pinpoint which activ-
ity B is transitioning into, in real time. The attack is strong as
it does not require any special permission. In fact, there is no
vulnerability really being exploited, since all the information
gathered by the malware M is publicly-available information
including /proc files, e.g., /proc/[pid]/statm.1

The fundamental weakness, exploited by such attacks, is
that the information exposed through such channels happens
to correlate well with B’s activity transition behaviors. For
instance, when an activity transition occurs in the foreground,
the application process allocates screen buffer for the new
activity as shared memory with a fixed size (proportional to
the screen size) and then deallocates the buffer of the previous
activity. Such unique memory consumption patterns can be
easily captured through the /proc side channel. Furthermore,
each destination activity has a different initial behavior, e.g.,
some activity’s onCreate() callback may load an advertisement

1Access control on /proc is a trade-off between functionality and security.
Since many utilities require accessing /proc, it is generally undesirable to
deny access to it, except in some hardened OSes such as GRSecurity/PaX [3].

(a) Original time series

(b) Main activity (c) Time series with our approach (d) Login activity

Fig. 1: Source activity (left), time series of /proc/[pid]/statm (center) and destination activity (right).

and therefore cause a new network connection to be created.
Through other side channels, such initial behaviors are char-
acterized to distinguish the destination activity.

The Activity inference attack has many consequences, one
of which is that once the background malware M infers
which foreground activity B is transitioning into, it can inject
a phishing activity into the foreground to preempt B. The
user will then be fooled into interacting with the malware M
instead of the original app B.

Our scheme aims to address this fundamental weakness by
using proactive restart to produce changes in OS state that are
harder to predict, hence undermining the attacker’s assumption
that the side channel is reliable.

III. EXAMPLE

We now present an example that motivates, as well as
illustrates, our approach. Consider the Newegg Mobile app.
An attacker might use an Activity Inference attack to try to
determine which activity Newegg Mobile is in, and which
activity it is transitioning to, so that the attacker can inject
its own fake activity to try to phish secrets.

Let us suppose that Newegg Mobile is in the Main activity
(Figure 1b) and is preparing to transition to the Login activity
(Figure 1d). An Activity Inference attack relies on observ-
ing side-channel information, i.e., shared memory values in
/proc/pid/statm; for an unprotected app, the time series
of shared memory is presented in Figure 1a. The transition
event is clearly distinguishable in the time series, as it is a
single event. If the attacker detects this event quickly, then the
attacker can “pop up” a fake activity that looks very similar
to Login, and trick the user into inputting data into the fake
activity — if this input data is sensitive information, such as a
username/password combination (as is the case here), a credit
card number, or a bank account number, the attack succeeds.

However, since our approach injects restart events, the
time series of shared memory values, shown in Figure 1c, is
confusing for the attacker: due to the perturbation introduced
by restart, depending on where we choose to restart, there
can be multiple time series with multiple events (Figure 1c,
red and green curves, which represent strategies S3 and S4
defined in Section IV). In fact, our approach can deliberately
insert restart events into the current activity just to confuse the
attacker into believing there is an activity transition occurring,
when in fact there is no such transition (Figure 1c, black curve,
which represents strategy S2 from Section IV).

Hence our proactive approach confuses the attacker into
not knowing if, and when, the app is transitioning between
activities.

IV. IMPLEMENTATION

We now describe our testbed and implementation.
Environment: The smartphone we used for experiments

was an LG Nexus 5 running Android version 4.4.4, Linux
kernel version 3.4.0, on a four-core ARMv7 CPU@2.2 GHz.

Restart Implementation: In Figure 2 we show our im-
plementation. In Android, applications use the services of the
Android Framework (AF) and run on top of the Dalvik virtual
machine, which in turn runs on top of a Linux kernel. The
AF has a component named Activity Manager (AM) which is
in charge of orchestrating app execution, including transition
between activities. For simplicity, we only depict one running
app, but in practice Android runs multiple apps concurrently.
Let us assume that the app contains two activities, A and B,
and due to an input event, e.g., the user pressing a button,
the app wants to transition from A to B. In the standard
implementation of Android, the activity transition will follow
the “old pathway” (shown in gray color on top), that is, it
will transition directly from A to B. In our implementation,
the transition follows new pathways (shown in blue color)

Linux	
 kernel	

Dalvik	
 VM	

Android	
 Framework	

Applica8on	

Ac8vity	
 Manager	

Ac8vity	

A	

Ac8vity	

B	

OLD	
 pathway	

NEW	
 pathways	

Fig. 2: Overview of our implementation.

where there is an intervening restart, e.g., restart A prior to
the transition, or restart B after the transition. Moreover, our
approach supports a third new pathway where A is restarted
even when no transition is necessary, to confuse the attacker.

We achieve this by using AM services: we use Android’s
adb shell to send messages to the AM, so that activity
transitions follow the new pathways. In this paper we use
restart level 2 (Section II-A); that is, we stop and restart the
activity. Extending the approach to use restart levels 1 or 3 is
straightforward.

Restart Strategy: We experimented with four restart
strategies, labeled S1–S4, that govern how the system should
proceed when transitioning from activity A to activity B:
S1: The “old” approach, without restart, where we just tran-

sition from activity A to activity B.
S2: A restart approach without transition (just restart A).
S3: Our main proposed restart approach: restart A, then tran-

sition from A to B.
S4: An alternative restart approach: transition from A to B

then restart B.

V. EVALUATION

We now present our evaluation; first, we provide an
overview of the apps and app selection process; then we
discuss the experimental methodology and the results.
A. Examined apps

For evaluation we chose 24 activity transitions in 12 An-
droid apps. We used several criteria when selecting the apps
to ensure a representative sample: apps had to be popular,
spanning free and paid categories (built-in and third-party
categories); and have a wide range of sizes. In Table II we
present the apps: name, popularity (number of installs per
Google Play), and size. As shown, 9 apps are free and 2
are paid (indicated by the $$ sign). Of the 9 free apps, 5
are third-party apps available on Google Play and 4 are built-
in apps that come preinstalled with the phone. The built-in

Applica'ons	

Linux	
 	

kernel	
 	
 /proc/pid1… /proc/pid2/…

Dalvik	
 VM	

Android	
 Framework	
 M

on
ito

r	

pr
oc
es
s	

Time	
 series	

ADB	

Fig. 3: Overview of our data collection process.

App Popularity Size
(# installs) (KB)

Chase Mobile 10,000,000+ 10,000
Newegg Mobile 1,000,000+ 9,900
Browser (builtin) 2,536
GBC Emulator ($$) 10,000+ 367
OI File Manager 5,000,000+ 973
Gallery3d (builtin) 5,122
VideoEditor (builtin) 5,243
Calendar (builtin) 1,751
DeskClock (builtin) 2,311
1MobileMarket 1,000,000+ 6,717
Convertor Pro ($$) 10,000+ 806
No-frills CPU Control 1,000,000+ 1,100

TABLE II: Test apps characteristics.

apps are particularly valuable and need to be protected for two
reasons: (1) since they come from a trusted source, the vendor,
they have higher privilege than third-party apps and hence
exploiting a vulnerability in such an app can inflict significant
damage; and (2) preinstalled apps cannot be easily removed
by regular users since the phone needs to be “rooted” for the
app to be removed [16]. Apps have a range of sizes, from
medium (367 KB) to large (10 MB). Four of the third-party
apps are very popular, having in excess of 1 million installs.
Moreover, two of them — Chase Mobile and Newegg Mobile
— are security-critical since they are used for online banking
and online shopping; a security attack against them can expose
the user’s bank account information or credit card numbers.

B. Data collection

The data collection process is shown in Figure 3. The test
phone is connected to a laptop via the Android Debugging
Bridge (ADB). We triggered restarts using ADB shell com-
mands issued from the laptop. We wrote a monitor process — a
native Linux process, rather than VM-based app — to monitor
app execution, taking a sample every 8 milliseconds and
collecting side-channel information. In particular, the monitor
process samples the third entry in /proc/pid/statm of an
application under test, and outputs a sequence of samples that
constitute the time series. We then use time series analysis, as
will be explained shortly.

App Activity Transitions Permutation Entropy Transition Time (msec)
S1 S2 S3 S4 S1 S2 S3 S4

Chase Mobile Home → PrivacyOptions 0.332 0.361 0.683 0.729 544 248 1,496 864
Home → ContactUs 0.454 0.524 0.683 0.349 688 360 1,432 1,312
Home → FindBranch 0.332 0.235 0.786 0.332 664 248 1,640 784

Newegg Mobile Main → ShoppingCart 0.256 0.406 0.696 0.129 1,088 904 1,752 1,088
Main → WishListItem 0.361 0.332 0.707 0.372 1,520 88 2,120 1,520
Main → Login 0.361 0.377 0.682 0.361 1,400 928 2,008 1,432
Main → OrderHistory 0.457 0.358 0.681 0.364 1,464 112 2,040 1,208
Main → MyPersonalHomeCust 0.358 0.332 0.722 0.358 1,360 72 1,920 1,328

Browser BrowserActivity → BrowserPrefsPg 0.332 0.332 0.595 0.657 136 24 648 672
GBC Emulator ($$) MainActivity → EmulatorSettings 0.595 0.332 0.595 0.595 344 136 1,040 352
OI File Manager FileManager → Preference 0.332 0.352 0.595 0.405 136 328 656 656

FileManager → BookmarkList 0.372 0.332 0.635 0.657 40 248 656 672
Gallery3d app.Gallery → stngs.GallerySttgs 0.522 0.391 0.931 0.489 136 88 984 160
VideoEditor ProjectsActivity → VideoEditorActivity 0.333 0.403 0.711 0.333 128 144 688 688
Calendar AllInOneActivity → CalendarSttgs 0.332 0.344 0.620 0.332 2,912 256 3,536 3,672

AllInOneActivity → EditEvent 0.355 0.344 0.724 0.332 584 192 2,080 848
AllInOneActivity → EventInfo 0.332 0.347 0.637 0.687 568 120 776 872

DeskClock DeskClock → SettingsActivity 0.361 0.332 0.661 0.689 1,312 320 1,960 648
DeskClock → worldclock.Cities 0.372 0.332 0.726 0.701 256 312 752 1,936

1MobileMarket MainActivity → MyAppsInstalledActivity 0.129 0.333 0.651 0.801 1,280 1,296 1,792 2,064
MainActivity → SettingsActivity 0.333 0.333 0.633 0.333 1,312 192 560 2,048

Convertor Pro ($$) ProConvertActivity → Settings 0.361 0.332 0.595 0.457 1,432 424 2,104 2,072
No-frills CPU Control Main → Preferences 0.352 0.332 0.763 0.332 136 128 688 144

Main → About 0.332 0.332 0.332 0.355 128 8 664 128
Average 0.361 0.351 0.669 0.465 815 299 1,416 1,132
% compared with S1 -3% +85% +29% -63% +74% +39%

TABLE III: Evaluation results: activity transitions, time series entropy and transition time for each of the S1–S4 strategies.

C. Effectiveness
We now quantify the effectiveness of our approach: we use

time series complexity as a measure of effectiveness.
Time series complexity: Recall that attacks rely

on predictability of app behavior as reflected in the
/proc/pid/statm time series values: if the time series has
high predictability (aka low complexity), the attack has a high
chance of success. If the time series has low predictability (aka
high complexity), the attacker will have a hard time inferring
app behavior.

To measure time series complexity, we use the well-known
permutation entropy (PE) metric [5] normalized so that
0 ≤ PE ≤ 1. Here 0 represents no entropy, while 1 represents
a random time series. Hence higher PE values are more
desirable.

Time series results: Columns 3–7 in Table III show
the results of the entropy measures. The main comparison is
between strategy S1, i.e., the default Android implementation,
and S3 (our main approach). Note how the PE is consistently
higher in S3 than in S1. In the last row, we show the average
values across all activities. Note how PE increases from 0.361
on average (S1) to 0.669 (S3) – an 85% increase, which
demonstrates that our proactive restart approach is effective at
introducing randomness in the time series and consequently
is effective at making the attacker’s job harder. Strategies S2
and S4 are less effective if they are used in isolation (though
S4 has a 29% higher PE compared with S1).
D. Efficiency

We now quantify the efficiency of our approach: are transi-
tions taking longer with restart, and if so, how much longer?

The last four columns in Table III show the transition
time, from the time the transition was initiated, to when it
has completed (including restart time) for each of the four
strategies. Compared with S1, S3 increases transition time by
601 msec, i.e., a 74% increase. This exposes the cost-benefit
trade-off: we pay the price of increasing transition time for
the benefit of increasing attack resilience. Even though our
implementation is not optimized, we believe that the added
601 msec are an acceptable overhead, especially when security
is of high priority. Strategy S2 takes less time than S1 since
no transition is involved. Strategy S4 increases transition time
by 317 msec, a 39% increase compared with S1.

VI. RELATED WORK

Application Restarts. Application restarts have been used
in the past to remedy transient faults. Perkins et al. [12]
used a reactive approach, named ClearView, that monitors an
application’s execution to learn application invariants, detect
bugs or attacks, and upon detection automatically construct
and apply a patch to heal the application. ClearView has been
applied to Firefox. Ten exploits were presented to ClearView;
upon repeated presentation, ClearView learned to identify each
exploit and construct a patch against it. Our work is distantly
related: our approach is proactive and attack-agnostic, as we
do not perform monitoring, detection or patching, whereas
ClearView uses sophisticated attack and bug-specific reactive
techniques for invariant detection and patch construction.

Sidiroglou et al. [14] developed an approach named AS-
SURE that employs rescue points to recover from unantici-
pated failures in desktop/server Linux applications. Candea et

al. [7] have proposed “microreboots” (rebooting small com-
ponents instead of entire applications) as a recovery technique
for Internet services. Our own prior work [4] has used online
patch construction and application restart to provide self-
healing capabilities — apps recovering from certain classes of
transient and permanent faults — in Android apps. However,
that approach was reactive, rather than proactive, and its goal
was fault recovery rather than changing the attack surface.

We are not aware of any work that uses restart as a cyber
maneuver.

Android Side Channels Attacks and Defenses. Much
work has been done on studying side channels. Proc file sys-
tems have been used for side-channel attacks. Zhang et al. [17]
found that the ESP/EIP value can be used to infer keystrokes.
Qian et al. [13] have used “sequence-number-dependent”
packet counter side channels to infer TCP sequence number. In
Memento [10], the memory footprints were found to correlate
with the web page the user is visiting. Zhou et al. [19] found
3 Android/Linux public resources to leak private information
about location, disease, etc.. Chen et al. [8] proposed Activity
inference attacks that can be applicable to all Android apps.

There are few effective defenses against the types of side-
channel attacks. Lately, Zhang et al. have proposed to pause all
suspicious background processes to stop them from gathering
any data about the foreground app [18]. Such defense could be
effective; however, it comes with a functionality cost — many
background apps will not be able to function as designed.
Another defense against the GUI state-manipulation attacks
proposed by Bianchi et al. tries to provide explicit and secure
indicators to keep the user informed about which app runs
in the foreground at all times [6]. Such defense is tailored to
attacks similar to Activity inference. In contrast, we believe
application restart can be used as a general cyber maneuver
against many types of side-channel attacks.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a cyber maneuver for smartphone se-
curity: proactively restarting an app to make it harder for
attackers to infer app behavior. Since certain side-channel
attacks rely on predicting app behavior from OS time series
information, to quantify the effectiveness of proactive restart,
we use time series predictability. Experiments on 12 popular
Android apps, using three proactive restart strategies have
revealed that our approach is both effective at reducing side-
channel time series predictability (hence increasing attacker’s
burden) and efficient, imposing an acceptable overhead.

We plan to extend this work in two main directions. First,
since in our current approach we control the process from a
laptop, we plan to eliminate this need and have the proactive
restarts run automatically and completely on the smartphone.
Second, we plan to measure the effectiveness of our approach
on other kinds of attacks besides Activity Inference.

ACKNOWLEDGMENT

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views

and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] App could allow troops to call in airstrikes, October 2013.
http://www.militarytimes.com/article/20131016/NEWS04/310160005/
App-could-allow-troops-call-airstrikes.

[2] Army lists top 12 items in fiscal year 2016 budget request, April
2015. http://www.army.mil/article/145946/Army lists top 12 items
in fiscal year 2016 budget request/.

[3] Grsecurity, August 2015. https://grsecurity.net/.
[4] M. T. Azim, I. Neamtiu, and L. M. Marvel. Towards self-healing

smartphone software via automated patching. In Proceedings of the
29th ACM/IEEE international conference on Automated software engi-
neering, pages 623–628. ACM, 2014.

[5] C. Bandt and B. Pompe. Permutation entropy: a natural complexity
measure for time series. Physical review letters, 88(17):174102, 2002.

[6] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna. What the App is That? Deception and Countermeasures in the
Android User Interface. In IEEE Symposium on Security and Privacy,
2015.

[7] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microre-
boot: A technique for cheap recovery. pages 31–44.

[8] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without
actually seeing it: UI state inference and novel android attacks. In
Proceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014., pages 1037–1052, 2014.

[9] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. Gaur, M. Conti, and
M. Rajarajan. Android security: A survey of issues, malware penetration,
and defenses. Communications Surveys Tutorials, IEEE, 17(2):998–
1022, Secondquarter 2015.

[10] S. Jana and V. Shmatikov. Memento: Learning Secrets from Process
Footprints. In IEEE Symposium on Security and Privacy, pages 143–
157, 2012.

[11] P. McDaniel, T. Jaeger, T. F. La Porta, N. Papernot, R. J. Walls,
A. Kott, L. Marvel, A. Swami, P. Mohapatra, S. V. Krishnamurthy, and
I. Neamtiu. Security and science of agility. In Proceedings of the First
ACM Workshop on Moving Target Defense, MTD ’14, pages 13–19,
New York, NY, USA, 2014. ACM.

[12] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-
F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 87–102,
New York, NY, USA, 2009. ACM.

[13] Z. Qian, Z. M. Mao, and Y. Xie. Collaborative tcp sequence number
inference attack: how to crack sequence number under a second. In
CCS, pages 593–604, 2012.

[14] S. Sidiroglou, O. Laadan, C. R. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis. Assure: Automatic software self-healing using rescue points.
In ASPLOS’09, pages 37–48.

[15] D. Torrieri. Cyber maneuvers and maneuver keys. Proceedings of the
2014 Military Communications Conference, 2014.

[16] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Permission evolution
in the android ecosystem. In Proceedings of the 28th Annual Computer
Security Applications Conference, pages 31–40, December 2012.

[17] K. Zhang and X. Wang. Peeping Tom in the Neighborhood: Keystroke
Eavesdropping on Multi-User Systems. In USENIX Security Symposium,
pages 17–32, 2009.

[18] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang. Leave Me
Alone: App-level Protection Against Runtime Information Gathering on
Android. In IEEE Symposium on Security and Privacy, 2015.

[19] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt. Identity, Location, Disease and More:
Inferring Your Secrets from Android Public Resources. In CCS, pages
1017–1028, 2013.

