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Abstract—HTTPS has become a vital component of the WWW
ecosystem. However, today’s application-layer middleboxes in
the cloud are largely “blind” to HTTPS traffic. We propose a
novel system infrastructural solution, called CloudEye, that allows
middleboxes to selectively manipulate HTTPS traffic. A key
design philosophy of CloudEye is to hide all the complexity from
client and server applications (thus being transparent to them)
and to have middlebox-related functions managed by a dedicated
OS service. CloudEye provides control of what information the
middlebox can access through new techniques such as HTTPS
tags and shadow connections, without changing the TLS/SSL
or HTTP protocol. CloudEye is secure and easy to use. We
implemented its prototype on Linux/Android, and demonstrated
its low overhead and rich use cases on off-the-shelf mobile devices
and cloud servers.

I. INTRODUCTION

HTTPS is the secure version of HTTP. It consists of HTTP

over a TCP connection encrypted by Transport Layer Security

(TLS) or Secure Sockets Layer (SSL)1. HTTPS traffic is

growing at an unprecedented rate. It accounts for 40% of the

overall Internet traffic [32], and a recent report estimates its

growth to be 40% every six months [1]. This is partly attributed

to increased concern about Internet privacy. Also, new web

protocols such as HTTP/2 [21] and QUIC [11] use encryption

by default or mandatorily.

Meanwhile, middleboxes play a crucial role in the Internet.

They are ubiquitous: they are widely used in enterprise net-

works [38] and all major cellular networks [45]. Middleboxes

are diverse: there are not only network-layer middleboxes

such as NAT, but also application-layer middleboxes such

as Intrusion Detection System (IDS), web caches, virus

scanner, and web page optimizer. Middleboxes are also

useful: functions such as caching, IDS, URL filtering, and

compression [41] are inherently needed to be, or more effective

if carried out on a middlebox, as opposed to being performed

on endhosts with limited storage and computation power.

The trend of “HTTPS everywhere” facilitates privacy and

security for the WWW. It however makes application-layer

middleboxes (proxies) difficult or impossible to operate given

that they need to inspect or modify the traffic. Currently, the

most widely adopted approach of in-network manipulation

of HTTPS traffic is to use a man-in-the-middle (MITM)

1We use “TLS” to refer to TLS and SSL unless otherwise noted.

proxy [8], [12]2, which splits an end-to-end TLS session into

two sessions. This approach is indeed used in practice. A

recent large-scale measurement [34] found that about 1 in

250 TLS connections is proxied (i.e., using MITM), and the

vast majority of MITM cases are for legitimate purposes (in

particular, used by corporate networks). Such a vanilla MITM

approach would enable a middlebox to perform its function

over TLS (HTTPS), but it completely breaks the end-to-end

security by giving the proxy full control of inspecting and

modifying all traffic in an HTTPS session.

Privacy-preserving TLS traffic inspection is needed by

corporations, governments, law enforcement, etc. Recently, the

industry (AT&T, Cisco, Google, etc.) has proposed various

schemes such as Explicit Trusted Proxy [3], TLS Proxy

Server Extension [14], and Explicit Proxies for HTTP/2.0 [2].

These proposals to a certain extent improve the interaction

between endhosts and MITM proxies (e.g., allowing a client

to explicitly authenticate a proxy, as to be detailed in §II), but

none has addressed the fundamental limitation of the “all-or-

nothing” access paradigm of MITM proxies.

Also recently, researchers proposed a protocol named Multi-

context TLS (mcTLS) [33]. It breaks TLS’s “all-or-nothing”

security model by allowing endpoints to explicitly control

what parts of the data in a TLS session can be read or

written by middleboxes. Its basic idea is to grant different

encryption contexts i.e., symmetric encryption and MAC keys

to middleboxes to achieve permission and access control.

mcTLS is a complex protocol requiring changing all entities
in the HTTPS ecosystem: the protocols and their APIs, the

client and server applications, and the middleboxes. Moreover,

mcTLS is not “plug-and-play”. It exposes the complexity of

(from developers’ perspective) creating encryption contexts,

and (from servers’ perspective) managing contexts with

middleboxes deployed by different ISPs. It even remains

unclear how the complex interface of mcTLS should look like.

Even the authors of [33] admit that “designing a satisfactory

interface atop mcTLS is a project in and of itself”.

This paper attempts to address the problem of HTTPS

traffic manipulation at middleboxes. This is in particular an

issue in the enterprise BYOD (Bring Your Own Device)

context. Many companies today allow employees to use their

personal devices (e.g., smartphones and laptops) to access

2We use “middlebox” and “proxy” interchangeably in this paper.978-1-5090-6501-1/17/$31.00 c© 2017 IEEE



privileged company data and web applications. To ensure

security and performance, companies have strong incentives

to deploy dedicated middleboxes to perform tasks such as

virus detection, compression, and URL filtering [34], and

may even make it mandatory that users’ traffic is inspected

by such middleboxes. Meanwhile, employers also desire to

respect employees’ privacy and to reduce the workload of their

middleboxes by not inspecting everything. We thus propose

a novel system infrastructural solution, called CloudEye, that

allows middleboxes to selectively manipulate HTTPS traffic

without changing client or server applications. CloudEye has

the following features.

• Ready to deploy. CloudEye is deployed only at client

hosts as an operating system (OS) service, as well as on

middleboxes. One key philosophy of CloudEye is to hide

all the complexity from applications (thus being transparent

to them) and have middlebox-related functions managed

centralized at the system layer. In addition, CloudEye does

not change anything on the server side, and leaves the

decision to the client-side policy regarding what data should

be examined by the middlebox. Moreover, CloudEye does
not change the TLS protocol, as doing so can be tricky and

can lead to new security vulnerabilities (numerous exploited

vulnerabilities told us designing and implementing a security

protocol right is notoriously difficult). All above features are

desirable to corporate network operators as the deployment

will be dramatically simplified. Then CloudEye immediately

works for all servers that speak TLS.

• Access control. Different from enterprise mobility manage-

ment (EMM [27]) and mobile device management (MDM [6])

that provide access controls on what users can and cannot do

on the device, CloudEye specifies what information within an

HTTPS session a client exposes to the in-network middlebox.

For example, the client can selectively allow the middlebox

to inspect a subset of HTTP transactions within the same
TLS session; the client can expose only certain information

in HTTP requests, such as URL and host names, to the

middlebox; the client can also give permission of scanning

only requests or only responses (or even part of them) to

the middlebox. To achieve the above goals, we introduce

novel primitives such as HTTPS tags and shadow HTTPS

connections as to be detailed in §III. Note a limitation of

CloudEye is it cannot provide access control that is as fine-

grained as mcTLS does. But this stems from the inherent

tradeoff between the server transparency requirement and the

granularity of access control. From a practical point of view,

oftentimes the systems with the best tradeoff get deployed

eventually. We thus believe CloudEye strikes the right tradeoff.

• Easy to configure and use. CloudEye is a practical software

framework. Companies can roll out CloudEye using standard

feature sets such as EMM that are capable of securely

setting up system software (e.g., VPN) on BYOD devices.

BYOD users cannot alter the software and its policies without

knowing the password set by the employer. IT departments

can then pre-configure the middlebox access control policies

on employees’ BYOD devices as exemplified in Figure 1.

(1) Domains always visible to middleboxes:
*.mycompany.com.

(2) Domains never visible to middleboxes:
facebook.com, twitter.com, youtube.com.

(3) Exposed HTTP header fields: URI (first 32 bytes),

Hostname, user-agent.

(4) Object types allowing middleboxes DPI: *.exe,

*.msi, *.dmg, *.apk, *.zip, *.tar.gz.

(5) Other objects types: do not allow middlebox DPI.

Fig. 1: An example access control policy for middlebox.

• Security and Performance. CloudEye is in general as secure

as existing HTTPS and TLS protocols. The added system

support and introduced attack surface will be minimal (§IV).

We have implemented a CloudEye prototype on commodity

Linux/Android systems. Experiments indicate that CloudEye
incurs very small runtime overhead even on low-end mobile

devices. We also demonstrate through case studies how real

middlebox functions can be easily built on CloudEye (§V).

II. RELATED WORK

Besides mcTLS [33], we describe other related work here.

The de-facto approach of examining HTTPS traffic is to use a

man-in-the-middle (MITM) proxy [8], [12]. The client needs

to be configured to trust the in-network proxy’s certificate. The

MITM approach is easy to set up, and is used by systems such

as Meddle [37], Beyond the Radio [44], and APLOMB [39].

However, it breaks the end-to-end security of TLS by giving

the proxy full control of inspecting and modifying the traffic

that may carry users’ sensitive data such as passwords.

TLS traffic manipulation at middleboxes becomes a hot

topic due to the increasing popularity of HTTPS. A recent

IETF draft [3] introduces an X.509 extension to distinguish

an MITM proxy with a regular TLS server. This allows the

client to become aware of the proxy and thus to explicitly

authenticate it. Cisco also proposes a TLS Proxy Server

Extension [14] that allows the client to know (via the proxy)

servers’ certificate and cipher suite information, so that the

client can reject TLS sessions with servers that it does not

trust. However, using either extension, the proxy still has full

access to all traffic over a TLS session. Another proposal from

Google [2] allows the client to pass TLS session keys to the

proxy in a separate secure channel. The proxy is not MITM,

but can (only) use the session key to decrypt the TLS traffic.

This approach gives the client more control of what it wants

the proxy to see. But similar to [3] and [14], the proxy still

can inspect everything within the same TLS session. It also

requires modifying the client application.

Recently, researchers propose to perform Deep Packet

Inspection (DPI) directly over encrypted TLS traffic [40],

by leveraging the concept of searchable encryption [42].

Although the direction is promising, this approach is not very

practical due to its computation complexity. For DPI involving

thousands of signatures, establishing an HTTPS session may

take several minutes.
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CloudEye.

Fig. 3: Multiplexing-based transport-layer

infrastructure.

Fig. 4: Pipe message format with the

common header shaded.

III. THE CLOUDEYE DESIGN

We propose an architecture called CloudEye, a system

solution that supports practical HTTPS traffic manipulation at

middleboxes. CloudEye provides the following key features.

• CloudEye enables a middlebox to perform many functions on

HTTPS traffic without decrypting it. To realize this, CloudEye
introduces a new primitive called tags that are automatically

attached to HTTPS traffic based on pre-defined rules. Tags give

“least privileges” to middleboxes that can manipulate HTTPS

by inspecting tags instead of decrypting the traffic.

• For middlebox functions involving deep packet inspection

(DPI) that do require decrypting the traffic, CloudEye
provides a novel approach allowing a middlebox to selectively
examine certain HTTP transactions within a persistent HTTPS

connection without servers’ support. To realize this, the

client host creates a shadow HTTPS connection over which

the middlebox is a man-in-the-middle, and then selectively

redirects HTTP transactions that the middlebox is allowed to

examine to the shadow connection. This idea can further be

generalized to allow the middlebox to inspect only part of an

HTTPS transaction (§VII).

• CloudEye does not require changes to the TLS protocol, and

it requires no modification to the client and server applications.

To realize this, CloudEye is provided as a client-side OS

service that can be transparently applied to any application.

Such transparency significantly facilitates the deployment of

CloudEye, which can be deployed via standard application

and OS update. It also eliminates the burden of developers

who do not want to (and should not) tailor their applications

based on functions provided by a particular middlebox inside

a particular ISP or corporate network. As we will show, the

OS service can be easily configured to support all popular

middlebox functionalities. At a high level, our solution pushes

the control and some network functionality back to the client

side. We believe this is a desirable tradeoff and matches the

recent trend to push network functionalities (e.g., SDN) back

to the client [20], [29].

CloudEye consists of four components shown in Figure 2.

At the bottom is a lightweight transport-layer wrapper that

transparently intercepts and encapsulates application traffic

into customized tunnels (§III-A). Built upon them, CloudEye’s

key innovations, HTTPS tags (§III-B) and shadow connections

(§III-C) are supported. CloudEye provides an interface for

specifying the access control policies (§III-E).

A. The Transport-layer Infrastructure

We first describe the transport-layer infrastructure of

CloudEye. As depicted in Figure 3, it consists of two key

components: a local stub (LS) and a middlebox (MB). The

LS resides on the client BYOD device, and the MB is

deployed in the corporate network. Deployed as a system-

level service, the LS is the key to realizing the transparency

requirement, making CloudEye be able to “plug-and-play” for

all applications. The LS and MB split an end-to-end TCP

connection into three segments: (i) a local connection between

client applications and the LS, (ii) one or more pipes between

the LS and MB, and (iii) a remote connection between the

MB and the remote server. The pipes serve as a transport-layer

wrapper between the LS and MB. Therefore pipes are below

the SSL/TLS layer and have nothing to do with encryption.

Pipes allow LS and MB to communicate using a customized

protocol, to enable features of HTTPS tags and shadow

connections to be described later. There are many ways to

realize pipes. For example, one can use existing proxying

protocols such as SOCKS5 [30]. In our current prototype,

we modified and extended the TM3 proxying protocol [35]

previously developed by us. TM3 performs transport-layer

multiplexing by encapsulating application TCP data (both user

payload and control messages such as SYN and FIN) into

customized frames called pipe messages, which are carried

by TCP connections (served as pipes) between the LS and

MB. This is conceptually similar to multiplexing performed

by some web protocols such as HTTP/2, which multiplexes

web objects instead of application TCP connections.

Pipes are bidirectional and long-lived, and they are by

default shared by all applications via multiplexing. They

therefore facilitate centralized traffic management at the LS.

The user-side policy determines which applications’ traffic

will go through CloudEye. The pipe message formats are

shown in Figure 4. The Data, SYN, SYNACK, and FIN

messages encapsulate user payload, TCP SYN, SYN-ACK,

and FIN/RST, respectively. The connID field distinguishes dif-

ferent user TCP connections (since we are doing multiplexing).

Since pipe messages created from one TCP connection can

be concurrently delivered by multiple pipes in an arbitrary

order, each pipe message of the same TCP connection needs

a sequence number that increases per message. The Control
message is used by the LS and MB to exchange control-plane

information. Most fields in Figure 4 are self-explanatory. The

“tags” fields will be described shortly.
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B. HTTPS Tags: Manipulating HTTPS Traffic without
Decryption at Middlebox

In CloudEye, a very important function of the LS is to

inspect HTTPS traffic. Instead of using an in-network MITM

proxy that breaks the end-to-end security of HTTPS, we

deploy the MITM proxy on the client host. As shown in

Figure 5, the LS intercepts and accepts a TLS handshake from

a client application. It then establishes a new TLS session

with the remote server. Note that, however, the MB is not an

MITM so it cannot decrypt the TLS traffic. By moving the

MITM to the client host, the end-to-end security provided by

TLS is still preserved (assuming the LS is not compromised,

see §IV for discussions of security aspects of CloudEye). Note

that client-side MITM has also been leveraged by certain anti-

virus products such as Kaspersky for securing web browsing,

while the key innovation of CloudEye is its new primitives

for selective and flexible HTTPS traffic manipulation to be

described next. Another concern is on-device MITM may incur

high overheads due to encryption and decryption. We quantify

this in §V and demonstrate this approach is entirely feasible

even on low-end mobile devices.

If the MB cannot decrypt TLS traffic, how can it perform

middlebox functions? Our key observation is, performing

many middlebox functions does not require decrypting the

traffic. Instead, the MB only needs to know certain properties

of the traffic. For example, in order to prioritize the delivery

of business over non-business traffic, the MB only needs to

know whether the traffic is business-related or not – just one-

bit information. We found that many middlebox functions can

be performed in a similar way, as to be shown in §VI.

CloudEye uses tags to deliver characteristics of HTTPS

traffic to MB. As shown in Figure 4, each pipe message

can carry tags of up to 64KB, although we expect for most

tags, their sizes will be far smaller than that. As an example,

consider a middlebox that performs URL filtering. The client

can put a URL into a tag, which is examined by the MB to

determine whether the URL points to a malicious page. Note

multiple tags can be contained in a single pipe message, and

it is entirely normal that a message does not contain a tag.

Sensitive tags such as URLs will be encrypted between LS

and MB, as to be discussed in §IV. Since the traffic volume

of tags is very small, the encryption overhead is expected to

be negligible.

A question to be addressed by CloudEye is who should
generate the tags, and how. One option is to let applications

directly pass tags to the LS. Doing so, however, requires

modifying apps’ source code. This also makes it difficult to

precisely attach a tag to a particular pipe message, which is not

visible to the application layer. To overcome these limitations,

in CloudEye, tags are automatically generated by the LS.

Specifically, the LS examines decrypted TLS traffic (recall that

the LS is MITM so it has to perform decryption), and matches

them against predefined rules (translated from user-specified

policies, see §III-E). Consider the two examples below.

Rule 1: if (http.request.host contains
"mycompany") t1←1;

Rule 2: if (http.request) t2←http.host +
"/" + http.uri;
t1 and t2 are tag names. In Rule 1, if the data of a pipe

message belongs to an HTTP request header and the host
field contains “mycompany”, then t1, whose value is set to

1, is added to the tag field. In Rule 2, if the data belongs to an

HTTP request header, then its requested URL (hostname+URI)

is put into the tag field of t2. Also note if an HTTP header

spans across multiple pipe messages, only the first message

will be tagged. The mappings between tag names and their

semantics can be either statically configured or dynamically

negotiated between the LS and MB by exchanging the Control
messages when the pipes are set up.

Clearly, the LS can only tag uplink traffic containing HTTP

requests (this leads to very small overhead of tag generation as

most traffic is downlink). We however make two observations

here. First, HTTP requests already contain vital information

(URL, host name, cookie, user-agent, user submitted data,

etc.) that can be leveraged by the MB to perform a wide

range of middlebox functions. For example, URL is used by

many commercial systems such as VirusTotal [16] and Google

Safe Browsing API [4] to detect malicious web content. In

CloudEye, a URL can be inserted into a tag. If the URL hits the

blacklist, the MB will reset the connection or send a warning

back to the client.

Our second observation is, by leveraging HTTP’s re-

quest/response traffic patterns, response traffic associated with

a request can be identified without decrypting the traffic (new

HTTP protocols such as HTTP/2 make this slightly more

complex due to multiplexing, see §III-D). The MB can then

manipulate the (encrypted) response traffic at the transport

layer. For example, for traffic prioritization, the tag is the

HTTP transaction’s priority, based on which the MB will

prioritize the corresponding response traffic without decrypting

it. We give more examples in §VI.

C. Shadow Connection: Selectively Decrypting HTTPS Traffic

As described in §III-B, the MB can perform many functions

by examining tags attached to HTTP requests. The MB can

also associate tagged requests with responses, and manipulate

HTTP response traffic at the transport layer. However,

for middlebox functions using DPI, such as virus scan,

compression, and web page optimization, the MB has to

perform decryption.

CloudEye provides a way to allow MB to selectively decrypt

HTTPS transactions. For example, the client can make the MB
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be able to only decrypt .js and .css files and compress

them. Our proposed solution is shown in Figure 6. The basic

idea is to let the MB serve as both an in-network MITM proxy

and a transport-layer proxy. The LS transparently redirects

a subset of transactions (per the client-side policy) of an

application HTTPS session to the in-network MITM proxy.

These HTTPS transactions can therefore be decrypted and

manipulated by the MB.

As described in §III-A, the LS intercepts HTTPS sessions

from applications. For each incoming HTTPS session, the LS

establishes a corresponding connection (encapsulated in pipes)

to the MB, which then relays it to the server, as denoted by

“default conn.” in Figure 6. Since HTTP/1.1 and HTTP/2

use persistent connection, each local TCP connection (and

therefore its HTTPS session) usually carries multiple HTTP

transactions. The new thing here is, as an MITM, the LS

can also transparently establish a shadow connection (also

encapsulated in pipes) with the MB, when needed. The shadow

connection is relayed to the server by the MB as well.

For a default connection, the MB acts as a transport-

layer proxy, so the MB can only manipulate the traffic at

the transport layer using tags as described in §III-B. For a

shadow connection, however, the MB acts as a TLS MITM

proxy, and can therefore decrypt and modify the HTTPS

transactions. By default, only the default connection is used,

but the client side can set up policies (similar to the tag

policies) specifying which HTTP transactions are directed to

the shadow connection as exemplified below. Note a shadow

connection is established in a “lazy” manner, i.e., only when

a rule is triggered, to save resources.

if (http.reqeust.uri endwith ".exe")
send_to_shadow_connection;

As described above, shadow connections strategically

perform what we call “HTTP session splitting” i.e., directing

a subset of objects within an HTTP session to a different

(shadow) connection. This can result in a discrepancy between

the client’s and server’s views: the client application thinks it

only issues one TCP connection, while the server thinks there

are two. This does not affect the correctness of our scheme

due to the statelessness nature of HTTP(S) transactions. In

fact, HTTP session splitting and merging are already implicitly

used by today’s off-the-shelf HTTP(S) proxies, which may

create more (or less) connections to the server (compared to

those created by the client) based on their own connection

management algorithms when forwarding the traffic. Note

that HTTP session splitting does not affect the request-

response causality whose logic occurs at the client/server

applications: the reception of Request (Response) X triggers

the transmission of Response (Request) Y. Also note that the

MB serves as both an MITM proxy (for shadow connections)

and a TCP proxy (for default connections). Therefore, from

the server’s perspective, both types of connections will have

the same source IP address so the server believes they are

indeed from the same client.

D. Handling HTTP/2 Transactions

So far we assume CloudEye runs below HTTP/1.1, the

state-of-the-art HTTP protocol. Recently, new web protocols

such as HTTP/2 [21] and QUIC [11] have been proposed.

In particular, as the next-generation web protocol, HTTP/2

has been standardized in 2015. HTTP/2 encapsulates HTTP

transactions into streams each carrying one HTTP transaction,

and multiple streams can be multiplexed over one TCP

connection. In HTTP/2, TLS-based encryption is enabled

by default. Due to multiplexing, HTTP/2 allows multiple

concurrent outstanding requests over one TCP connection,

causing possibly out-of-order responses.

We first note that shadow connections (§III-C) work for

both HTTP/1.1 and HTTP/2, because they can be decrypted

by the MB. However, using tags (§III-B) in HTTP/2 may

encounter difficulties. Let us consider three scenarios. First,

for transactions without a tag, since the MB just blindly

forwards them, they can still be multiplexed over the same

connection. Second, for all transactions with the same tag,

they usually can also be multiplexed. This is because the

MB applies the same function (e.g., traffic blocking and

prioritization) on them so there is no need to separate

them. Third, consider transactions with different tags that are

originally multiplexed in a connection between the application

and the LS. Due to multiplexing, these transactions may be

intertwined together (sometimes even in the same TLS record),

making it impossible to precisely associate a request with its

response without decrypting the traffic, a basic requirement for

using tags. We propose a simple solution to handle this case.

The LS transparently creates additional HTTP/2 connections

to the server (this is allowed by the HTTP/2 specification [21]).

These additional connections are replicas of the default

connection shown in Figure 6 in that the MB cannot decrypt

them. The LS then re-distribute the (originally multiplexed)

transactions with different tags to these connections in a way

that on each connection, only one outstanding request per-

unique-tag is allowed. In this way, we essentially “emulate”

HTTP/1.1’s traffic pattern on HTTP/2 i.e., using concurrent

connections each carrying HTTP/2 transactions sequentially
for a particular tag. This also works for other multiplexing

protocols such as QUIC.

The above scheme also strategically leverages HTTP session

splitting described in §III-C3. It essentially makes HTTP/2

behave similarly to HTTP/1.1 for transactions with different

tags. A question here is, does doing so eliminate the perfor-

mance benefits brought by HTTP/2’s multiplexing? No! Recall

3An HTTP/2 proxy also implicitly uses HTTP session splitting: it blindly
forwards traffic between a single HTTP/2 connection (client–proxy) and
multiple HTTP/1.1 connections (proxy–server).



that CloudEye’s transport architecture (§III-A) has already

performed multiplexing at the transport layer between the LS

and MB, i.e., the last mile that is usually the performance

bottleneck. This eliminates the need for multiplexing at the

application layer. In fact, our prior study [35] has shown

that strategic multiplexing at the transport layer actually

outperforms the multiplexing scheme of HTTP/2 (SPDY).

This justifies why we choose a multiplexing-based transport-

layer infrastructure. Note that HTTP/2’s other features such as

binary frames and header compression are still retained on the

replica connections created by the LS.

E. Middlebox Access Control Policies

Deployed as an OS service, CloudEye is transparent to the

application layer. Its efficacy thus relies on the client-side

access control policies. We expect enterprise IT departments

to distribute several default policies for users to use. Some

basic policies such as URL filtering may be enforced by the IT

whereas some policies such as content-based scanning (DPI)

can be optionally opted-in by employees. A policy may look

like Figure 1 (written in the natural language). The policy is

then automatically translated into low-level rules of tags and

shadow connections as exemplified in §III-B and §III-C. The

policy of CloudEye can also change depending on whether the

BYOD device is connected to the corporate network (either

physically or via a VPN).

IV. SECURITY ANALYSIS

CloudEye introduces new opportunities for deploying more

intelligent services at middleboxes by exposing to them tags

and/or a chosen subset of the HTTPS contents. To facilitate

the discussion CloudEye’s security aspect, let us first consider

a VPN client, which is now a standard feature in any modern

operating system. A VPN client is already a (Layer 2/3) MITM

in that it is responsible for intercepting any outgoing traffic,

encrypting them using the public key of the VPN server, and

decrypting any incoming traffic from the VPN server. We thus

do not consider intercepting traffic a fundamental security

hazard as it is a standard feature in modern OSes and is

already widely used by today’s BYOD devices. One potential

issue is CloudEye may introduce additional attack surface and

privacy concerns. However, we argue that compared to a VPN

client, the proposed LS has marginally more complexity: the

logic of tags and shadow connections are simple and easy to

reason, and the information carried by tags is no more sensitive

compared to the regular HTTPS traffic. Also note that the pipes

are transport-layer data channels and thus have no visibility of

the sensitive data.

Despite the above, we do want to discuss any new attacks

that the full-fledged MITM may cause. First, an attacker may

compromise the MITM feature to maliciously intercept all

traffic locally. This requires an attacker to compromise the LS,

a newly introduced system service. This is indeed possible,

but is nothing fundamental to our solution itself, as a VPN

client can introduce similar security vulnerabilities as well.

Even a conventional TLS library may be hijacked by an

adversary [24]. Second, private keys used by the LS are stored

locally on the device. An attacker can potentially extract the

key and use it to perform network-level MITM attacks, as

the corresponding public key and certificate are trusted by the

device. While possible, this is as difficult as compromising

the LS. We can also store the private key on secure hardware

(e.g., TPM [18]) to minimize the chance of having it be stolen.

Third, managing the private keys can be tricky. If different

devices all share the same private key, leaking it on one device

will affect other devices, a common pitfall in doing OS-level

man-in-the-middle as reported by [7]. In contrast, our solution

requires a unique root certificate (and private key) for any LS

on a new BYOD device. Therefore, the leak of its private key

can affect only a single device.

Even though unlikely, it is theoretically possible that an

employee (i.e., a malignant BYOD user) intentionally tries to

evade the monitoring of MB. Fortunately, there are already OS

features such as Android enterprise features [26] that are used

to support the Enterprise Mobility Management (EMM [27])

and Mobile Device Management (MDM) functionalities,

where a user cannot alter the policy without knowing the

password set by the employer.

The functions at the MB are inherited mostly from those at

existing middleboxes such as compression, intrusion detection,

and URL filtering. There could be concerns where the LS may

collude with the MB and route all traffic through the shadow

connection to make it visible to the MB. To prevent this issue,

one can make the LS implementation open-sourced and have

it verified publicly to ensure that there is no backdoor. It is

further possible to remotely attest [31] the LS to ensure that

there is no tampering of its code. We consider such malicious

intent to be highly unlikely as once detected, the reputation of

the vendors and the enterprise ISP will be hammered.

Assuming neither the LS nor MB is compromised, the

confidentiality and integrity guarantee of CloudEye would be

the same as they are in standard HTTPS, as CloudEye in

no way reduces the strength of the underlying cryptographic

system (recall CloudEye itself does not modify TLS or

HTTPS). One potential issue arises from the tags inserted into

pipe messages. Even though tags are always encrypted, their

sizes can still leak information. This itself leaks only a small

amount of information and can be mitigated through padding.

V. IMPLEMENTATION & PERFORMANCE EVALUATION

We have built a prototype of CloudEye on Linux and

Android. We developed the transport-layer wrapper protocol

(§III-A) by realizing and extending the TM3 proxying proto-

col. Based on that, we then implemented a TLS protocol stack

using OpenSSL’s cryptographic functions as building blocks.

We also implemented tags (§III-B) and shadow connection

support (§III-C), as well as a dynamic certificate generator.

Our implementation efforts involve about 8,000 lines of C/C++

code. Similar to existing TLS libraries, all of CloudEye’s

components run at user level except for a lightweight kernel

module that intercepts application connections and forwards

them to the LS. This component can be replaced with a custom
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local VPN module which we leave as future work. There are

several limitations of our currently prototype. It only supports

TLS/1.0 [23] with a limited number of cipher suites using

the RSA handshake. Also, it supports only HTTP/1.1. We are

working on adding HTTP/2 support to CloudEye. Furthermore,

the access control policies are currently hardcoded. Designing

and implementing a full-fledged policy language demonstrated

in §III-E is our planned work.

A. Performance Evaluation

Our CloudEye prototype allows us to answer an important

question: what is CloudEye’s performance and incurred

overhead on commodity devices? The overhead mostly comes

from the MITM proxy at the LS, which performs additional

TLS handshake, encryption, and decryption. To understand

the “upper bound” of CloudEye’s performance impact, we

have deployed the LS on an off-the-shelf low-end smartphone

(Samsung Galaxy S III running Android 4.0.4). The MB runs

on a commodity Ubuntu server with Linux kernel version 3.19.

The phone and the MB are connected with high-speed Wi-Fi

(>30Mbps TCP throughput with <3ms RTT). The MB and

servers are either co-located (when using our own servers)

or connected over wired networks that are usually well-

provisioned (when using real servers). This setting ensures that

the local computation dominates the performance overhead.

In all experiments below, every uplink pipe message carries a

one-byte dummy tag unless otherwise noted.

Web browsing. We use the Chrome browser on Android

to load six popular websites’ landing pages (mobile version,

cold cache, all using HTTPS), whose sizes range from 200KB

to 1MB. The path quality (bandwidth, latency, and loss)

between the MB and the web servers are measured to be

good. Figure 7 measures each page’s page load time (PLT)

across 20 measurements. For each website, we consider four

configurations. “Default” is the baseline where CloudEye
is not used. “LS+MB” corresponds to the scenario where

CloudEye is only performing transport-layer forwarding i.e.,
no TLS encryption/decryption is performed. “LS w/MITM +

MB” is the HTTPS tag case where the MITM is enabled

only at the LS. “LS w/MITM + MB w/MITM” represents

the configuration of shadow connections where both the LS

and MB are performing MITM and all traffic is forwarded

through the shadow connection. As shown in Figure 7, all

four configurations yield very similar PLT. Enabling MITM

on the LS slightly increases the PLT by no more than 6%

due to the additional crypto-heavy TLS handshakes. Also

using LS slightly outperforms the default scenario, because the

multiplexing scheme employed by LS is known to improve the

web performance [35]. To ensure the above results are not due

to the MB–server link becoming the bottleneck, we also repeat

the experiments by replicating the pages and hosting them on

our own web server that is co-located with the MB (using the

Google Web Page Replay tool [5]). We observe qualitatively

similar results.
Large file download. We measure the download time for

a 32MB file hosted on an Apache web server co-located

with the MB. As shown in Figure 8, the three configurations

(no CloudEye, transport-layer forwarding only, and LS-side

MITM) show no qualitative difference of download time, with

the average TCP throughput being at around 35Mbps.
CPU utilization. We measure the additional CPU overhead

incurred by MITM at the LS (the overhead of transport-layer

forwarding is negligible) at different download throughput

controlled by Dummynet [13]. As shown in Figure 9, the

CPU overhead is non-trivial but small: 2.5%, 6.7%, and 10.5%

when downloading at 10, 20, and 30Mbps, respectively. They

also translate into very small energy footprint, as the energy

incurred by 10% of CPU utilization is much lower than that

incurred by the wireless radio at a high data transmission

rate [22]. Note CloudEye does not incur any computation

overhead when there is no network traffic.
Protocol overhead. We measured the bandwidth overhead

caused by the transport-layer wrapper protocol by running

more than 10 diverse Android apps over CloudEye. Since

the protocol headers are very small (Figure 4), their incurred

protocol overhead is less than 1%. Recall we assume every

uplink pipe message contains a 1-byte dummy tag. Clearly,

the protocol overhead will increase when the tags carry more

information. However, we expect the overhead still to be small

because tags are only applied to uplink traffic (HTTP requests)

whose volume is much smaller than downlink traffic. The

protocol overhead of shadow connections is even lower.

VI. CASE STUDIES OF MIDDLEBOX FUNCTIONS

CloudEye enables a wide range of middlebox functions.

Some of them only need tags (e.g., traffic prioritization,

URL-based malware detection, traffic shaping, multipath
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transport [10]) while some need shadow connections (e.g.,
compression [41], intrusion detection, DPI-based virus scan,

web page optimizer [45]) as the MB has to selectively decrypt

the traffic. Next we conduct three case studies.

A. Selective Inspection by IDS

Consider an Intrusion Detection System (IDS) that performs

malware detection over HTTPS in an enterprise network. One

obvious solution is to run IDS at an MITM proxy. This

however results in poor privacy where user cookies and even

passwords will be fully disclosed to the MB unnecessarily.

To protect users’ privacy, we leverage CloudEye’s tags and

shadow connections to allow an in-network MB to selectively

perform intrusion detection over HTTPS. To strike a balance

among security, privacy, and performance, we designed an

adaptive scheme of performing two-step scan: all requests

(except those on the whitelist) will undergo a lightweight

URL-based scan, and suspicious contents will be deeply

scanned by exposing their payload if allowed by access control

policies. As shown in Figure 10, the request URL is inserted

as a tag so the MB can consult the reputation database on the

likelihood of the content from the URL being malicious. Many

reputation-based systems are discussed in the literature [36],

[28] and are offered as commercial services [4], [16]. We used

the VirusTotal public API [16] in our implementation. Doing

such URL-based “pre-filtering” helps reduce the workload of

the IDS service. If a URL is deemed to be suspicious by the

MB, a control message will be sent to the LS indicating the

need to decrypt the response to inspect the object payload.

If the access control policy allows, the LS will resend the

request through the shadow connection so the MB will be

able to see both the request and response in cleartext. Finally,

the MB will buffer the response and release it only after

determining that the object is not malicious based on the DPI-

based scan. During the above process, the MB can decrypt

only the relevant information (i.e., the suspicious transaction

and nothing else) per the client policy, satisfying the goal

of exposing the least amount of information. In addition, the

whole process is transparent to both the client application and

the server. Note although the LS sends the same request twice

(one through the default and the other through the shadow

connection), the first request is intercepted and discarded by

the MB so the server only receives the second request.

B. Selective Compression

We implemented a middlebox function that compresses web

contents selectively. Based on access control policies, the LS

uses the MB as either an MITM proxy (for HTTP sessions

with objects to be compressed by the MB) or a TCP proxy (for

HTTP sessions whose objects are not allowed to be inspected

by the MB). If an HTTP session contains both types of objects,

shadow connections will be used to separate them.

A design decision we need to make is to select the compres-

sion algorithm. A traditional HTTP compression middlebox

(i.e., an HTTP(S) proxy) performs object-level compression.

Doing so however cannot capture the cross-object redundancy

such as the same non-cacheable object being downloaded

multiple times. In CloudEye, pipes, which cover the last

mile that is usually the performance bottleneck, provides

more flexibility in the compression algorithm selection. Here

we apply cache-based redundancy elimination (RE) [43]. To

compress downlink traffic, the MB-side RE algorithm replaces

byte sequences that have appeared in previously observed

packets (pipe messages in our case) with pointers. The

byte sequence to pointer mappings are stored in fingerprint
caches that are synchronized between the MB and LS. Then

the LS-side RE restores the original byte sequences using

the fingerprint cache. Note that RE is a general network-

layer packet stream compression scheme that can be applied

to any traffic. In our implementation, we direct to-be-

compressed traffic to a dedicated pipe and apply the MODP

RE algorithm [43]4.

We use MODP-enabled CloudEye to visit eight popular

HTTPS websites (mobile version, cold cache) to measure their

compression ratios (CR), defined as the volume of compressed

traffic divided by the volume of traffic sent by the original

servers. Note encryption/decryption has little impact on the

traffic volume. For each website, we obtained three traces

(each about 5 minutes) by visiting it using the built-in browser

of the SGS3 phone as normal users (e.g., checking credit

4Parameters: cache size = 128K, sampling rate = 1:8. Adjusting these does
not qualitatively change the results.



card deals and logging onto the bank account for a bank

website). The reported CR is the average across the three

traces. The results are shown in Figure 11. Surprisingly, the

CR ranges from as low as 45% to 88%, indicating significant

traffic redundancy for many popular mobile HTTPS websites.

This is attributed to several reasons: (1) the HTTP object-level

compression is under-utilized; (2) many cacheable objects are

configured to be non-cacheable or to have short expiration

time, leading to cross-object redundancy; (3) the session-level

compression supported by TLS is rarely used. Deploying the

compression service can effectively reduce the transmission

time when the last-mile wireless link has poor quality.

C. Energy-efficient Traffic Shaping

HTTP(S) has become a general-purpose protocol used

in many scenarios such as smartphone apps and push

notifications. Here we consider delaying delay-tolerant HTTPS

responses and transferring them in bundles. It is well known

that this helps reduce the mobile device energy consumption

in wireless networks. For example, in cellular networks, due to

their radio resource management policy, the most efficient way

to transfer data is to group multiple transfers into one single

burst (or as few bursts as possible). Doing so saves the radio

energy, as fewer bursts reduce frequent radio on/off switches

and the total “tail time”, a timeout for shutting down the radio

interface after data transmission/reception [19]. Also, batching

non-urgent notifications makes smartphones less distracting

during working hours, as it is known that smartphones may

significantly reduce the workplace productivity [17]. The

employer can provide some incentives to let employees sign

up such a service.

CloudEye allows the MB to perform the above traffic

shaping on encrypted data. To illustrate this, we developed

a middlebox function shown in Figure 12. The idea is to

batch multiple delay-tolerant transfers under the constraint

of meeting user-specified deadlines, and to piggyback delay-

tolerant transfers with delay-sensitive transfers. Specifically,

the LS can attach a timespan T as a tag to an HTTPS

request. T specifies the maximum duration by which the

response (e.g., an email notification or weather update) can

be delayed. A request without a tag is assumed to have

T=0. Upon the reception of a request with tag T at time

t0, the MB will immediately send the request to the server,

but will hold off sending the (encrypted) response to the

client until either the deadline (T + t0) is reached, or the

deadline of another transfer is reached so the response can

be piggybacked (i.e., delivered together) with that transfer.

In the example illustrated in Figure 12, the client first sends

an HTTPS request with tag T=5 minutes to register a push

notification. When an (encrypted) notification arrives, it is

first buffered at the MB. Later, it is piggybacked with a

delay-sensitive response (carried by another TCP connection)

with T=0 that arrives within 5 minutes. The above middlebox

function and its tag can further be modified to allow multiple

delay-tolerant transfers with different T to be delivered over

the same connection.

We deploy the above middlebox function on an Amazon

EC2 server (as the MB) and an SGS3 smartphone. The

phone is hooked to a Monsoon power monitor [9] measuring

the energy consumption in two scenarios: (1) the scenario

in Figure 12, and (2) an unoptimized scenario where the

push transfer and the delay-sensitive transfer are delivered

separately. Both transfers (less than 1KB) are delivered over a

commercial U.S. cellular carrier under normal signal strength.

The overall device energy consumption of the above two

scenarios are 830 uAh and 1737 uAh, respectively (589 uAh

and 1227 uAh respectively for cellular radio energy). The

results imply the effectiveness of the traffic shaping approach.

VII. DISCUSSIONS

Access Control at a Finer Granularity. Despite allow-

ing selective HTTPS traffic manipulation at middleboxes,

CloudEye does not provide access control that is as fine-

grained as mcTLS does. But as described in §I, there is an

inherent tradeoff between the server transparency requirement

and the granularity of access control. Nevertheless, we do ask

ourselves the following question: without modifying servers,

can we achieve even finer-grained access control than what

shadow connections currently offer (selectively examining

HTTP transactions within an HTTPS session)? The answer

is yes. Below lists some of the possibilities.

• Tags can be used to expose small portions of an HTTP

request, such as URL. We already discussed this in §III-B.

• After a default TLS session is established, the LS can give

the TLS session key to the MB (through an encrypted tag).

Since uplink and downlink streams use different session keys,

giving only the uplink (downlink) session key to the MB

allows the MB to only inspect HTTPS requests (responses).

• In the above method, when the LS does not want MB to

inspect the TLS traffic from a certain point on, the LS can

issue a renegotiation request (a standard feature supported by

TLS) to renegotiate new session keys. This allows the MB to

selectively inspect, for example, certain HTTP responses but

not their requests.

We realize that the above approaches may incur some

overheads, such as the delay caused by TLS renegotiation.

We are studying and evaluating them in our on-going work.

Client Authentication and HPKP. Client authentication

allows the server to authenticate a client during a TLS

handshake. The client-side private key and its associated

certificate can be either static or dynamically generated [15].

HTTP Public Key Pinning (HPKP) provides a mechanism

allowing a client to only accept a list of certificates “pinned”

by the server [25]. CloudEye’s shadow connections do not

support client-side authentication or HPKP unless the client

gives its private key to the MB. Note this is a limitation of

any MITM approach. Also note these two mechanisms are

very rarely used in practice and not supported by all browsers.

Connection Management Overhead. Recall in §III-C that

shadow connections (using the MB as MITM) are created on

demand by the LS. This works fine when the MB inspects

a small fraction of objects. But if the MB needs to inspect



most objects, then a lot of shadow connections will be created,

leading to high connection management overhead at the server

side. In this case, we can swap the meanings of “shadow” and

“default” connections (i.e., by default the LS creates MITM

connections and forks non-MITM connections on demand).

The worst case happens when every connection contains some
(but not all) objects to be inspected by the MB so for each

original connection, the LS needs to create two connections

anyway. But this is unlikely to happen in practice.

VIII. CONCLUDING REMARKS

Enterprise network operators need ready-to-deploy solutions

to selectively manipulate HTTPS traffic at their middleboxes.

CloudEye addresses this challenge by offloading an essential

part of access control and middlebox function management to

endhosts as OS services, and by introducing new primitives

such as HTTPS tags and shadow connections to allow flexible

access control. Through CloudEye, enterprise IT can explicitly

control what the middlebox can see by defining high-level

access control policies. We believe CloudEye strikes the right

tradeoff among the access control granularity, transparency,

usability, and performance, while maintaining the security

provided by HTTPS.
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