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Abstract—We study optimal monitor placement for network
intrusion detection in networks with persistent attackers. The
problem is modeled as a stochastic game in which the attacker
attempts to control targets by delivering malicious packets to
the targets while the defender attempts to detect such attempts.
The state of the game is determined by the target end-systems
in the network, each of which can be in either a healthy or a
compromised state. Compromised targets are controlled by the
attacker and may be used to inject malicious packets into the
network to attack healthy targets. In addition, a random re-
imaging process is deployed on all targets to regain control of
compromised targets. We find the game value and the equilibrium
strategies for both players under different assumptions on the
knowledge of the state at the defender.

I. INTRODUCTION

With the increase in the number and sophistication of attacks
on modern networked systems, network security systems have
become a crucial part of any modern network. One important
element in network security is an Intrusion Detection System
(IDS). IDS employs monitors to collect data which it can
analyze to detect intrusive behavior in a network. Based on
the data collected and the location of the monitors, IDSs can
be classified as either host-based (operating system based)
or network-based. Network-based IDS (NIDS) works by an-
alyzing network traffic and data packets as they traverse the
network.

Recently, game theory has been used in the study of many
network security problems including intrusion detection [1].
Game theory is a mathematical framework to study situations
of conflict between multiple agents and thus can be used to
analyze attacker behaviors and to develop defense strategies
that are based on a formal decision making process. In network
security problems, two-player games are usually considered
between an attacker and a defender. In [2], a zero-sum game is
considered in which the attacker (intruder) chooses routes for
the malicious packets while the defender chooses a sampling
strategy to maximize the chances of detection under sampling
budget constraints. This work was later generalized in [3]
and [4], where the attack is split into multiple packets that
can traverse different routes and detection is successful if a
minimum number of the attack packets is detected. In [5], the
attacker uses multiple entry points to attack multiple targets
of varying importance.

The aforementioned works focused on single-shot games
where the network topology is static with no uncertainties. In
[6], a monitor placement problem is studied in a dynamic net-
work setting in which routing tables may change randomly or
sensors may be in faulty non-detecting states. These dynamics
are captured by a Markov process that is known to the players
and hence the model used is a stochastic game with complete
information. In [7], a similar game is considered, however,
the transition from one state to the next is also a function
of the attacker’s actions. In addition, the authors also studied
the case where the transition probabilities may not be known
to the players in advance. In both [6] and [7], value-iteration
algorithms were used to find solutions to the game.

More recent works on network security study advanced
persistent threats (APT). In [8], a timing game was introduced
where the attacker and the defender compete for the control of
a network asset (e.g., a server) for the longest possible time. In
this model, called the FlipIt game, the attacker compromises
the system periodically, and the attacks are stealthy, i.e., the
compromise is not immediately detected. It is shown that
among non-adaptive strategies, a periodic move strategy is
optimal for both the defender and the attacker. In [9], the
FlipIt game was extended to introduce an insider threat and
a three-player game model was studied. In [10], a multiple
server model is considered and a simulation based solution
approach is adopted.

In this paper, we use stochastic games to study a network
monitor placement problem as in [6]. However, we consider a
more general scenario in which the actions of the attacker and
the defender partially control the transitions of the states of
the game. In addition, the rewards achieved by the players
at each stage may vary according to the current state. As
in [5], we consider a model in which the attacker can use
multiple entry points to launch the attack (e.g., botnets).
However, in our game, the set of entry points is not static,
but varies dynamically according to the state. The state of
the game in our model is determined by whether targets are
healthy or compromised at a given stage. Whenever a target is
compromised, we assume that the attacker may use it to launch
attacks (send malicious packets) to healthy targets. A moving
target defense process [10] is employed to regain control of
compromised targets. This process, along with the players’
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Fig. 1. Example network graph with two target nodes T1 and T2. Attacker
chooses a target system and injects packets at G. Defender chooses an edge
to deploy the monitor.

actions, specifies the stochastic process underlying the game.
Our contributions are summarized as follows. First, we

present a novel model to study monitor placement in a
network where compromised target systems can be used to
launch attacks. To the best of our knowledge, this is the first
work to consider a game theoretic solution for NIDS monitor
placement for persistent attackers. Next, we characterize the
equilibrium of the stochastic game for both when state infor-
mation is (i) known or (ii) unknown at the defender. Finally, we
present simulation results to compare the performance of the
derived policies with other heuristic policies for the defender
and the attacker.

The rest of this paper is organized as follows. In Section II,
we introduce our system model, notation, and assumptions.
Next, we present the analysis and equilibrium results in
Section III. Then, we discuss simulation results in Section IV.
Finally, we conclude the paper by discussing future directions
in Section V.

II. SYSTEM MODEL

In this section, we first introduce the network setup; then
we present the details of our game model.

A. Network Setup

We consider an undirected graph G = (V, E) with |V| =
N nodes and |E| = E edges. Let VT ⊂ V be the set of
target nodes of size M . These nodes represent systems that
the attacker wishes to compromise and control (e.g., servers,
subnetworks).

The attacker injects malicious packets into the network and
aims to compromise as many targets as possible. Without loss
of generality, we assume that malicious packets are injected
at point G. In addition, a compromised target might also be
used by the attacker to inject malicious packets. A packet route
between two nodes vi, vj is given by fk(vi, vj) ⊂ E , where
k represents the index of the route, if multiple routes exist.

Route fk(vi, vj) is the set of edges that connect nodes vi and
vj on route k. For instance, in the example network in Fig. 1,
we have f1(G,T1) = {a} and f2(G,T1) = {e, b}.

An intrusion detection system monitors the links of G to
detect and discard malicious packets. A monitor could be
either a software application activated at an interface of an
intermediate router (e.g., node I in Fig. 1, or a dedicated
middle box that is installed on a certain link and is activated
according to the monitoring policy chosen by the defender.
Since packet inspection processing may cause latency, mon-
itoring is constrained by a given budget and the system has
to choose which links to monitor and how often to sample
packets. In other words, monitoring resources are limited and
thus not all links can be monitored at all times. The question is:
Which links should be monitored such that malicious packets
detection is maximized.

B. Game Model

The problem is modeled as a two-player zero-sum finite
stochastic game [11], [12] between the attacker and the de-
fender (intrusion detection system). We denote the game as Γ.
Players have diametrically opposing objectives, and thus the
reward for one player is the cost for the other. In addition,
each player has a finite set of actions. Moreover, the game is
played repeatedly in stages, where each stage is similar to a
single shot game. At every stage, the game is defined by a
state chosen from a finite set of states. The game moves from
one state to the next based on the current state and the actions
of the players. The details of the state model are described in
the next subsection.

We assume that time is discrete. Both G and VT are
assumed to be common knowledge. At every stage of the
game, the attacker decides the route, and hence the target, for
its malicious packers from its action set Aa. On the other hand,
the defender chooses links on which to deploy monitors, where
the action set is Ad ⊂ E . We assume the defender has only one
monitor to deploy. However, our model and the results can be
easily generalized when more than one monitor is available.
For the given network in Fig. 1, Aa = {a, eb, ec, d, bc, cb}
and Ad = {a, b, c, d, e}. A strategy profile is a pair of actions,
one for each player (e.g., (eb, e)). Note that, in this example,
routes bc (cb) can be used by the attacker to send malicious
packets when T1 (T2) is compromised.

C. State and Rewards Model

In our model, a given target node t is either in a healthy state
(st = H) or in a compromised state (st = C). The collection
of states of all target nodes determines the state of the game
S ∈ S at a given stage.

We focus on persistent attackers, where the attacker’s ob-
jective is to keep control of compromised targets as long as
possible by launching stealthy attacks as in [8]. We consider
the case in which targets (e.g., servers) are re-imaged (recon-
figured) repeatedly. Whenever a target node is re-imaged, its
control is immediately regained by the network administrator.
The competition for control of network assets between the



network administrator and persistent and stealthy attackers and
periodic re-imaging strategies were first considered in [8]. In
our work, this process is a given in the game, and it partially
determines the stochastic transition process of the game from
one state to the next.

In particular, we assume that at each stage, the network
administrator randomly selects and re-images a target node t
with probability pt, such that

∑T
t=1 pt = 1. A similar strategy

was also considered in [10], where pt = 1/M , i.e., one node is
selected uniformly at every stage. This constraint models the
scenario when the cost to re-image all nodes in every period is
high, for example, when network operation is severely affected
whenever servers are down for re-imaging. Our model could
be readily extended to the case when multiple targets are
selected for re-imaging at every stage. However, for simplicity
of exposition, we consider the case when exactly one target is
re-imaged during each stage.

The state of the game changes from one stage to the next
according to the state transition function δ : S×Aa×Ad×S →
[0, 1]. For concreteness, in the rest of the paper we consider
general network topologies with a constraint of having two
target nodes. The model and the results can be extended to
the more general case in a straightforward way.

Note that depending on the state, the actions available
to the attacker can be different. Consider for example the
network graph in Fig. 1. If the state of the game is such that
sT1 = C and sT2 = H, then the action bc is available to the
attacker while the action cb is not, since T2 cannot be used
to launch attacks at this stage. This represents a game with
varying action sets which is difficult to analyze. To simplify
the analysis we consider an equivalent game model in which
all possible actions are available to the attacker at every stage.
However, the rewards for different strategies vary according
to the state of the game. Specifically, with a slight abuse of
notation, we define the reward of the attacker at a given stage
of the game as Ra(fk, i, sk). Here, fk is the attacker’s chosen
route, i is the defender’s chosen link to deploy the monitor,
and sk is the state of the origin node on route fk. If the attack
originates from G, then sG = C by definition. The reward
function for the attacker Ra : Aa ×Ad × S → R is given as
follows.

Ra(fk, i, sk) =


−1; if i ∈ fk, sk = C
+1; if i /∈ fk, sk = C
−W ; if sk = H,

(1)

where W > 1 is some large number. The first two cases
in (1) correspond to malicious packet detection and miss
detection cases, respectively. The third case corresponds to
unavailable attack actions, which costs the attacker a value
W . Note that in our game, the reward for the defender is
Rd(·) = −Ra(·). In addition, in the third case in (1), the
reward for the defender has the same value for all defender
actions and thus is irrelevant to the defender strategy. This
model generalizes the model considered in [6] by including

TABLE I
STATE TRANSITIONS AND CORRESPONDING REWARDS.

Current
State
sts−t

Strategy Profile Prob.
Next
State
sts−t

Ra

HH
f(x, y) ∀x 6= G 1 HH −W
i ∈ f(G, y) 1 HH −1

i /∈ f(G, y)
pt HH

+1
p̄t CH

CH

i ∈ f(x, y), x ∈ {G, t}, y 6= t
pt HH −1
p̄t CH

i /∈ f(x, y), x ∈ {G, t}, y 6= t
pt HC

+1
p̄t CH

f(x, y), x /∈ {G, t} or y = t
pt HH −W
p̄t CH

costs that vary with the game state1. Our model can also be
easily generalized to consider targets with different weights.

In table I, the state transitions as well as the corresponding
rewards for a general network with two targets are presented.
Actions categories of the defender and the attacker are listed
in the second column. The last column represents the reward
values for the attacker. The notation −t refers to targets other
than t and p̄ = 1−p. The defender chooses some link i ∈ Ad
while the attacker chooses a route f(x, y) ∈ Aa. The outcome
is specified by the presence (or absence) of the monitor on
the attack route as well as the validity of the source and target
nodes. Note that the state S = CC is not included since we
assume one target server will be re-imaged every stage. Our
model can be extended to the scenario in which monitors are
imperfect with a positive miss detection probability, like in the
model in [6], by adding more states to account for cases when
the detector is faulty.

First consider the case when the current state is S = HH.
If x 6= G, then no malicious packets are sent and thus the
new state is also S = HH with probability 1 and defender
(attacker) gets a reward (cost) of W . On the other hand, if it
happens that i ∈ f(x, y) while x = G (i.e., malicious packet
detected), then the new state will be S = HH and the attacker
pays a unit cost. The malicious packet is missed when the
monitor is deployed such that i /∈ f(x, y) while x = G. Here,
the attacker gets a reward of 1. If target t is not re-imaged at
that stage, which happens with probability p̄t, the new state
will be S = CH.

Next, consider the case when the current state is S = CH.
When the attacker chooses f(x, y) with x ∈ {G, t} while the
defender chooses i /∈ f(x, y), the transition to the next state is
determined by which target is chosen to be re-imaged at the
current state and the attacker’s chosen target y. If the attacker
chooses y 6= t, i.e., not the compromised target in the current
state, and t is re-imaged at the current stage, then the states
of both targets are flipped.

Finally, we assume that all target nodes are healthy at the
first stage of the game, i.e., sv = H,∀v ∈ VT , and we assume

1By modifying the attacker reward value in the third case of (1) to 0, we
can give the attacker the option to not send malicious packets at a given stage
of the game.



this information is common knowledge. At a given stage,
players choose their actions, and then a target is randomly
selected for re-imaging. Then, players receive their reward and
the game moves to the next stage with a new state.

III. RESULTS AND EQUILIBRIUM ANALYSIS

In this section, we study strategies for the attacker and
the defender and characterize the equilibrium of the game
Γ(Ad,Aa,S, δ, Ra, γ), described in Section II. In our model,
we consider an infinite horizon in which the game is played
repeatedly in stages, and the reward at future stages is dis-
counted by a factor γ ∈ [0, 1). More concretely, the objective
of each player is to solve

arg max
πi∈∆(Ai)

E

 ∞∑
j=0

γjRij(πi, π−i, Sj)

 , (2)

where πi is the policy for player i ∈ {a, d}, which defines a
mixed strategy distribution over the sets Ad and Aa, Rij is the
reward received by player i at stage j, and π−i is the strategy
for the player other than player i. In (2), the expectation is
with respect to the state transition function δ and the random
variables πi∀i.

As a benchmark, we start with the scenario in which the
defender has full state information at each stage of the game.
Then, we study the case when the defender does not know the
state of the game.

A. Full State Knowledge

Here, the defender is informed about the state of all the
targets at each stage of the game. Since the attacker also knows
the state of all targets, and these facts are common knowledge,
the game is a stochastic game with complete information. In
this case, the value of the game and the optimal policies can
be derived using value-iteration algorithms [12]. Below we
present the value-iteration algorithm and then apply it to the
example scenario in Fig. 1.

The value-iteration algorithm proceeds by solving the fol-
lowing pair of equations iteratively until convergence.

Vd(S) = max
πd∈∆(Ad)

min
a∈Aa

∑
d∈Ad

Qd(a, d, S)πd, (3)

Qd(a, d, S) = Rd(a, d, S) + γ
∑
S′

δ(S, a, d, S′)Vd(S
′), (4)

where Vd(S) is the value of the game for the defender, i.e.,
the total expected discounted reward starting at state S and
πd is the mixed strategy of the defender over Ad. Vd(S) and
Qd(a, d, S) can be arbitrarily initialized and the convergence
to a unique equilibrium can be shown [1].

When the algorithm converges, the optimal policy for the
defender will be the solution of (3). For a given state S, the

problem in (3) can be reformulated as a linear program as
follows.

max
Vd,πd

Vd(S) (5)

s.t.
∑
d∈Ad

Qd(a, d, S)πd ≥ Vd(S), ∀a ∈ Aa, (6)∑
d∈Ad

πd = 1, πd ≥ 0 ∀d ∈ Ad. (7)

Next, we apply the value iteration algorithm to the example
network in Fig. 1 to find the equilibrium of the game Γ. We
assume that the re-imaging process selects targets uniformly
at random. Thus, we have p1 = p2 = 0.5. We also con-
sider a discount factor γ = 0.5. Now, the state transitions
and rewards matrices are completely specified. In this game,
|Ad| = 5, |Aa| = 6 and |S| = 3. By solving (3) and
(4), the (rewards) value of the game for the defender is
(−0.5263,−0.1052,−0.1052) for the states (HH, CH,HC).
Moreover, the optimal monitor placement strategy for the de-
fender and the optimal attack strategy are given, respectively,
as follows. 

a b c d e

HH 1
3 0 0 1

3
1
3

CH 0 0 1
2

1
2 0

HC 1
2

1
2 0 0 0




a eb ec d bc cb

HH 1
3

1
6

1
6

1
3 0 0

CH 0 0 1
4

1
2

1
4 0

HC 1
2

1
4 0 0 0 1

4


Each element in the matrices above represents the proba-

bility the defender (attacker) will choose a given link (attack
path), specified by the column, at a given state, specified by
the row. Multiple observations on this result are noteworthy.
First, since the topology and the rewards are symmetric about
the two targets, the value of the game (i.e., the cost for the
defender) is symmetric for the two states where one of the
targets is compromised. In addition, we note that the cost
to the defender is lower in either of the compromised states
compared to the healthy state. This is due to the fact that the
detection task in this specific topology is easier when one
of the targets is compromised since the IDS has to cover
fewer links with the same monitoring resources. Note also
that the allocation is adaptive to the state. When both targets
are healthy, routes eb, ec can be both monitored on link e,
hence the uniform allocation on a, e, d is optimal. However,
when one of the targets is compromised, monitoring links b
or c becomes critical for detection of malicious packets that
can originate from either G or the compromised target.

B. No State Knowledge

A more realistic scenario for the network intrusion detection
game Γ is when the defender does not have full information
about the state of all the target nodes at every stage of the
game. In particular, in stealthy and persistent attacks, the
compromised systems might not be immediately detected [8].



In this case, the game can be modeled as a stochastic game
with incomplete information (also called partially observable
stochastic game POSG), in which players have limited or no
knowledge about the state of the game. While some works
have presented solutions to special cases of POSG (e.g., [13]),
the characterization of equilibrium and the development of
algorithms to compute optimal strategies in general settings
remain open problems, and an area of active research [14].

In this subsection, we assume that the defender has no
knowledge of the state of the game at each stage. We will
further assume that the defender will not use observations
about the attacker’s actions, such as detected packets in
previous stages, to improve its strategy. On the other hand, we
assume the attacker has full state knowledge at each stage of
the game. In particular, the attacker knows when a target gets
compromised and thus may use it to inject malicious packets.
In addition, the attacker knows when it loses control of a target
whenever it is re-imaged. We call this version of the game Γn.

Since the defender cannot adapt to the changes in network
states, it is easy to see that the optimal monitor allocation
strategy is stationary and independent of the state transitions.
In this case, similar to a static zero-sum game, the defender can
compute a maxmin strategy that guarantees a certain payoff
regardless of the strategy of the opponent. However, in this
stochastic setting, the attacker can adapt its strategy to the
changing state of the network. Thus, in the rest of this section,
we fix the defender’s policy to a maxmin strategy over all
possible attacker strategies and across different network states.
In particular, the strategy for the defender is the solution of
the following optimization problem.

max
πd∈∆(Ad)

min
a∈Aa,S∈S

∑
d∈Ad

Rd(a, d, S)πd, (8)

which is equivalent to the following linear program.

max
Vd,πd

Vd (9)

s.t.
∑
d∈Ad

Rd(a, d, S)πd ≥ Vd, ∀a ∈ Aa, S ∈ S, (10)∑
d∈Ad

πd = 1, πd ≥ 0 ∀d ∈ Ad. (11)

Contrary to (6), the number of constraints in (10) is
|Aa| × |S|. Let the solution to (9)-(11) be given by π∗d . Note
that π∗d always exists. The defender’s policy is stationary
and is independent of state S ∈ S . When the defender
strategy is common knowledge, the attacker can compute
the defender’s mixed strategy π∗d . Given this strategy for
the defender, we can define a new state transition function
δ̄ : S × Aa × S → ∆(S), such that δ̄ is the expectation
of δ with respect to defender’s mixed strategy π∗d over the
defender’s action set Ad. In addition, the expected reward
matrices for the attacker R̄a : Aa × S → R can also be
computed. It is then evident that the optimal attacker strategy
would be the solution of the Markov Decision Process (MDP)
defined by Aa,S, δ̄, R̄a and γ. Suppose the optimal solution

to the attacker’s MDP is a∗(S) for S ∈ S. Then, we have the
following result.

Proposition 1: For the game Γn with the defender policy
π∗d , the optimal attacker policy is a∗(S). Moreover, the pair
(a∗(S), π∗d) form an equilibrium of Γn.

Proof: Given the fixed strategy π∗d , the best response of
the attacker is the solution to the MDP(Aa,S, δ̄, R̄a, γ). Since
the defender is unaware of the game state and the attacker’s
moves, the maxmin strategy is optimal [12], i.e., is the best
response. The result follows.

Solution methods to MDPs also include value-iteration as
in (3), (4). However, one important difference compared to
stochastic games is that MDPs have stationary and deter-
ministic solutions [15]. In other words, at a given state S,
the optimal policy is a pure strategy, as opposed to mixed
strategies in the case of stochastic games.

Finally, we solve Γn for the scenario considered in Section
III-A. By solving (9), we find π∗d = ( 2

7 ,
1
7 ,

1
7 ,

2
7 ,

1
7 ) for

actions (a, b, c, d, e) while a∗(S) = (ec, bc, cb) for the states
(HH, CH,HC). For the attacker, the (reward) value for the
game is 0.8571 for all states. The value for the single-shot
zero-sum game for the defender is rd = −0.42855. The total
expected reward for the attacker is

∑∞
j=0 γ

jrd = rd
1−γ =

−0.8571. We note that the value of the game is the same for all
states, due the strategy of the defender. In addition, compared
to the result in Section III-A, the cost for the defender is higher
due to the limited knowledge of the state. In the next section,
we compare the performance of the derived strategies to other
heuristic strategies through simulations.

Before concluding this section, we discuss the complexity
of the value-iteration algorithm used to solve our problem. In
[16], complexity analysis of the value-iteration algorithm is
presented for solving MDPs. It was shown that running time
for each iteration is O(|S|2|Aa|2) per iteration. The number
of iterations is also shown to be polynomial in γ/(1 − γ).
The algorithm in Section III-A is more complex where the
size of the state space is |Aa × Ad| and a linear program is
solved in each iteration. However, since the solution of the
game considered is stationary, each player can compute the
optimal strategy offline before the game starts.

IV. SIMULATION RESULTS

In this section, we compare the performance of the NIDS
monitor allocation strategies derived in Section III to other
heuristic allocation strategies using simulations. Specifically,
we measure the detection rate of malicious packets for the
different strategies. We consider the network topology in Fig.
1 and consider the model parameter values in the examples
presented in Section III.

For the defender strategies, we consider the optimal strate-
gies when the state is known (KOPT) and unknown (NOPT),
and a uniform allocation strategy (UNIF) in which the monitor
allocation is chosen uniformly over all links. On the other
hand, it is assumed that the attacker always knows the state of
the targets. The attacker will select attack routes according to
one of the following strategies: optimal attack strategy when
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Fig. 2. The top row shows detection rates for the topology in Fig. 1
for different attack and defense strategies. The bottom row shows packet
distribution over routes for KOPT (left bars) and NOPT (right bars).

the defender has state knowledge (KOPT), optimal strategy
when the defender has no state knowledge (NOPT), optimal
strategy when the defender is employing uniform monitor
allocation (UOPT) and a uniform strategy that selects available
attack routes (based on state) uniformly at random (UNIF).

In the top row of Fig. 2, the detection rates are shown for
different strategy pairs. First, consider the scenario when the
defender has knowledge of the state, and this fact is common
knowledge. On the left graph, the attacker’s strategy is fixed to
KOPT. The upper bound on performance is achieved when the
defender employs KOPT, achieving detection rate of 42.85%.
When the attacker employs KOPT while the defender has no
state knowledge and adopts NOPT or UNIF, the performance
drops by at least 32%. Next, consider the case when the
defender has no state knowledge and this fact is common
knowledge. Here, the optimal detection rate is achieved when
the defender plays NOPT. If the defender employs a UNIF
strategy, however, the performance varies largely according
to the attacker’s strategy. Specifically, for a naive attacker,
playing NOPT or UNIF improves the detection rate for the
defender. However, a rational attacker optimizes its strategy
given a uniform defense strategy, leading to the least possible
detection rate on the right graph.

Finally, the distribution of the malicious packet injection on
each link and the fraction of detected attacks are shown in
bottom row of Fig. 2 for both optimal strategy pairs. The left
bars represent KOPT while the right bars represent NOPT. For
KOPT, it can be seen that the majority of injected packets still
originate from the source, and that detection performance on
the different paths is similar. However, in NOPT, most of the
attacks originate from the compromised targets (paths bc, cb),
while some paths are not used, consistent with our derivation
in Section III. Due to the attack policy that selects the path
ec when S = HH, T2 is compromised more often and hence
more malicious packets are sent on cb compared to other paths.

V. CONCLUSION

We studied a monitor placement problem where attackers
may control targets and use them to initiate attacks. Our model
comprised a moving target defense system that randomly re-
images nodes to ensure they are in a healthy state. We modeled
the problem as a zero-sum stochastic game and we studied
equilibrium strategies for the attacker and defender under
different assumptions on state knowledge.

Based on the model and results in this paper, one can
envision multiple avenues for future research. First, it will
be interesting to study whether detected packets can be used
to infer more information about the state of the game at the
defender. Moreover, the defender can use knowledge of the
identity of the re-imaged target to reduce the unknown state
space. Second, it is interesting to study non-zero sum games
where the cost for false alarms, for example, is considered.
Finally, we will investigate a defender system in which joint
strategy of monitor allocation and server re-imaging is used.
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