Experiences of Landing Machine Learning onto
Market-Scale Mobile Malware Detection

Liangyi Gong!, Zhenhua Li'*, Feng Qian?, Zifan Zhang'-
Qi Alfred Chen*, Zhiyun Qian®, Hao Lin!, Yunhao Liu'-

ITsinghua University
4University of California, Irvine

Abstract

App markets, being crucial and critical for today’s mobile
ecosystem, have also become a natural malware delivery chan-
nel since they actually “lend credibility” to malicious apps.
In the past decade, machine learning (ML) techniques have
been explored for automated, robust malware detection. Un-
fortunately, to date, we have yet to see an ML-based malware
detection solution deployed at market scales. To better under-
stand the real-world challenges, we conduct a collaborative
study with a major Android app market (T-Market) offering us
large-scale ground-truth data. Our study shows that the key to
successfully developing such systems is manifold, including
feature selection/engineering, app analysis speed, developer
engagement, and model evolution. Failure in any of the above
aspects would lead to the “wooden barrel effect” of the en-
tire system. We discuss our careful design choices as well
as our first-hand deployment experiences in building such
an ML-powered malware detection system. We implement
our design and examine its effectiveness in the T-Market for
over one year, using a single commodity server to vet ~10K
apps every day. The evaluation results show that this design
achieves an overall precision of 98% and recall of 96% with
an average per-app scan time of 1.3 minutes.

CCS Concepts: * Security and privacy — Mobile platform
security; Malware and its mitigation.

ACM Reference Format:

Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang, Qi Alfred Chen,
Zhiyun Qian, Hao Lin, Yunhao Liu. 2020. Experiences of Landing
Machine Learning onto Market-Scale Mobile Malware Detection .
In Fifteenth European Conference on Computer Systems (EuroSys
’20), April 27-30, 2020, Heraklion, Greece. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3342195.3387530

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6882-7/20/04. .. $15.00
https://doi.org/10.1145/3342195.3387530

2University of Minnesota, Twin Cities
5University of California, Riverside

3Tencent Co. LTD
®Michigan State University

1 Introduction

App markets such as Google Play and Amazon AppStore
play an important role in today’s mobile ecosystem, through
which the majority of mobile apps are published, updated,
and distributed to users. On the flip side, the markets have
also become a convenient channel to spread malware. Even
worse, most attackers prefer to use the channel due to the fact
that when an app is published in a well-known app market, it
“lends credibility” to the app. Additionally, mobile devices are
often pre-configured to allow apps to be installed from only
app markets by default [50]. Hence, automated market-scale
malware detection is necessary by all major commercial app
markets today [18].

In the past decade, machine learning (ML) techniques have
been widely explored for malware detections, since they do
not rely on specific rules so that they are considered more
automated and robust. There exist a plethora of ML-based
techniques in the literature, from simple fingerprint-based
antivirus checking [50], static code inspection [7], to sophisti-
cated dynamic behavior analysis [42]. Unfortunately, we have
not yet seen any report on the effectiveness of such solutions
when they are applied at a market scale.

In this paper, we present our experiences on building and
deploying an ML-powered solution. Together with a major
Android app market, i.e., Tencent App Market! or T-Market
for short, we are able to obtain full access to the large-scale
ground-truth data of apps (both published and rejected) and
their corresponding labels. By comprehensively analyzing the
data and existing ML-based malware detection solutions, we
show that the key challenges lie in multiple aspects: feature
selection, feature engineering, app analysis speed, developer
engagement, and ML model evolution over time.

More importantly, we note that failure in any of the above
aspects would lead to the “wooden barrel effect” [40] (and
thus vain endeavors). For example, feature selection affects
not only the detection accuracy but also the time it takes to
analyze an app (both of which have stringent requirements
on a market-scale solution). Further, feature engineering de-
termines the detection robustness and the difficulty of model
evolution. Additionally, both detection accuracy and speed
impact developers’ engagement in app submissions, which is
crucial to the prosperity of a commercial app market.

Uhttps://sj.qq.com/myapp/

https://doi.org/10.1145/3342195.3387530
https://doi.org/10.1145/3342195.3387530

In order to build a desirable ML-powered malware de-
tection system at market scales, we choose to focus on a
lightweight and scalable feature extraction design: API-
centric dynamic analysis, which monitors Android API in-
vocations at an app’s runtime to achieve high analysis speed.
Given that Android SDK APIs provide almost all functions
for a typical app, they remain the de facto feature choice in
nearly all previous studies [2, 31, 33, 39]. Indeed, our study
shows that in many cases, using more complex features does
not bring a noticeably higher detection accuracy [1, 42, 46].

Next, we take a principled, data-driven approach for
the concrete selection of (API) features, noticing that the
current Android SDK provides >50,000 APIs. The rationale
is threefold. First, the number of selected APIs has unnegli-
gible impact on the dynamic analysis time (up to 50x differ-
ence). Second, compared to monitoring all S0K APIs, strate-
gically monitoring a smaller number of APIs yields a better
detection accuracy, possibly due to the reduced likelihood
of over-fitting. Third, APIs identified from different sources
complement each other; judiciously combining them helps
considerably improve the detection accuracy. Based on the
above considerations, we select a total number of 426 key
APIs as ML features, and employ the lightweight random
forest ML algorithm (among a variety of ML algorithms),
which provides the best detection accuracy (96.8% precision
and 93.7% recall) in our large-scale dataset from T-Market.

To further improve the detection accuracy, we take an
adversary’s perspective to identify hidden features. The
limitation of purely relying on Android APIs for malware de-
tection is that, to achieve the functionality of certain APIs, an
attacker can bypass the API invocations and use other mech-
anisms such as Java reflection and intents (Android’s IPC
mechanism). From our dataset, we observe both mechanisms
have been employed by malicious apps to hide their certain
features. To account for this, we also capture the requested
permissions and the used intents in dynamic analysis. The
captured “indirect” features are then combined with the API
invocation features to obtain a more complete picture of an
app’s runtime behavior. After applying this enhancement, the
detection precision and recall are further improved to 98.6%
and 96.7% over our dataset.

Having derived the desired features, we shift our focus
to improving the runtime performance of app analysis. We
architect the app emulation system to efficiently run on
powerful x86 servers (§5.1). To boost the runtime perfor-
mance, we run the native x86 port of Android OS [21] and
translate apps’ native code from ARM to x86 (using the state-
of-the-art dynamic binary translation framework developed
by Intel [22]). Compared to the full-system binary translation
of ARM-based Android OS and apps (using Google’s QEMU-
based Android emulator), we can achieve 70% reduction of
app execution time. The system also becomes more reliable
through app crash detection and emulator fallback.

False positives and negatives are generally inevitable for
ML-based systems. In APICHECKER, false positive apps
(as complained by developers) and false negative apps (as
reported by end users) are both manually analyzed but in
distinct manners. We choose to actively avoid the former (on
a daily basis), as it significantly increases the burden of man-
ual intervention to address developers’ complaints. Usually,
~90% of the flagged malicious apps are updated apps that
can be quickly vetted based on their previous versions, so
the totally required manual inspection is practically afford-
able. In contrast, we can hardly avoid the latter and thus only
conduct manual analysis upon user reports. Fortunately, we
observe that the existence of a small number of false nega-
tive apps in fact has little effect on the regular operation
of T-Market. Manual inspection shows that 87% of the sam-
pled false negative apps barely use the key APIs we select to
monitor, and thus have fairly simple functionalities without
posing a great security threat to end users.

We embodied all above efforts into a real-world system
called APICHECKER, and it has been operational at T-Market
since Mar. 2018. Running on a single commodity server, it
can vet ~10K newly submitted apps every day. APICHECKER
takes 1.3 minutes on average to scan a submitted app, which
is generally acceptable to the developers (considering that the
typical per-app scan time is ~5 minutes in Google Play [26]).
The overall achieved precision and recall have been above
98% and 96% since its first deployment, owing to our au-
tomatically updating the ML model with new apps and
novel Android SDK APIs (if any) on a monthly basis (§5.3).
As the model evolves, the number of selected key APIs only
slightly fluctuates between 425 and 432.

Overall, this study showcases several key design decisions
we make towards implementing, deploying, and operating a
production market-scale mobile malware detection system. To
our knowledge, this is the first study at such a large-scale. At
a high level, our experiences indicate that machine learning,
despite being a powerful building block for mobile security,
should be strategically applied by considering multiple dimen-
sions of accuracy, performance, generalizability, long-term
robustness, and deployability. Because of these considera-
tions, for example, we make a judicious decision of not using
deep learning for APICHECKER but random forest, which
achieves a comparable classification accuracy while owning
other advantages of minor training time, lightweight opera-
tions, and good interpretability. We also demonstrate a sys-
tematic approach for feature construction, a procedure that is
perhaps more important than the ML model selection itself in
the context of automated security analysis.

Dataset and tool release. The list of our selected 426 key
framework APIs is available at https://apichecker.githu
b.io/. We will also release our analysis logs, as well as our
implemented efficient emulator, to the research community
once we get approvals from T-Market.

https://apichecker.github.io/
https://apichecker.github.io/

Ethical consideration. All analysis tasks in this study com-
ply with the agreement established between T-Market and
the developers who publish their apps to T-Market. To pro-
tect developers’ privacy, when referring to individual apps as
examples or case studies, we anonymize their names.

2 Background and Motivation

In this section, we first introduce the basics of Android app
development for a better understanding of mobile malware de-
tection. Then, we describe the malware defense mechanisms
employed by T-Market and other app markets, as well as the
associated challenges.

Android app development basics. Android is an open-
source operating system based on the Linux kernel and ARM
architecture. An Android app is usually written in Java, com-
piled into Dex (Dalvik Executable) bytecode, and then com-
pressed and deployed as an Android Package (APK) archive.
Specifically, an APK file contains the configuration file, the
compiled code, and some other files. In particular, the config-
uration file AndroidManifest .xml stores the meta-data
(e.g., package name, permissions requested, Android com-
ponents declaration and dependencies), and the compiled
code classes.dex contains the information of API us-
age. An app runs in its own Dalvik or ART (Android Run-
time) virtual machine instance, and the virtual machine in-
stance runs as a Linux process with a unique UNIX user
ID and some group IDs corresponding to the permissions,
so that the access for an app to system resources is strictly
limited. An app must request permissions to sensitive user
data and certain system features in the Android configuration
file (AndroidManifest .xml). Such a security model in
Android ensures that each app is running in a sandbox.

For Android app development, rich APIs are provided by
the Android framework (which contains the entire feature set
of the Android OS) to enable an app’s interactions with other
apps and with the system. In order to ensure the integrity of
an app, the app needs to request permissions in its configu-
ration file for sensitive user data and certain system features.
Only when these permissions are granted by the system (and
sometimes even the users) can the corresponding code (and
APIs) be executed. In addition, inter-process communications
(IPCs) in Android are implemented by a mechanism called
Binder, which are employed to perform remote procedure
calls (RPCs) from one Java process to another; this mecha-
nism also enables framework APIs to interact with Android
system services. A developer just needs to pass a message-
like object, such as an Intent, to fulfill an IPC through certain
APIs. Through the above mechanisms, most functions of the
Android system are exposed to developers. On the flip side,
although an app runs in a sandbox, the richness of APIs has
been exploited by attackers to develop malicious apps, which
pose a persistent threat to the Android ecosystem.

Current market-level defense mechanisms and challenges.
In today’s app markets, malicious apps use various means
(e.g., repackaging and update attack) to disguise themselves
as benign [25], induce users to download and install from the
app markets, and thus conduct malicious behaviors that are
difficult to detect. To combat such threats, Google launched
its proprietary “Bouncer” system [26] in 2012 to scan apps
uploaded to Google Play, reducing the number of malicious
apps on the platform by 40%. However, due to the existence
of a great many third-party app markets without such malware
detection, malicious apps still managed to spread.

In order to deeply and practically explore the issue, in this
paper we collaborate with T-Market, a third-party app market
that has released over 6M apps since its launch in 2012, with
over 30M APKs being downloaded by 20M users every day.
To protect its users, T-Market reviews both new and updated
apps submitted from developers on a daily basis.

To accurately determine the malice of hosted apps, T-
Market introduced in 2014 a sophisticated app review process
mainly consisting of 1) fingerprint-based antivirus checking,
2) expert-informed API inspection, and 3) user-report-driven
manual examination. First, antivirus checking inspects apps
against virus fingerprints [50] from antivirus service compa-
nies including Symantec, Kaspersky, Norton, McAfee, erc. ,
and those collected by T-Market itself. Second, API inspec-
tion identifies malicious apps by monitoring the invocations
of a group of selected APIs in the app code. These APIs are
selected by security experts based on their experiences, where
the intuition is that certain invocation patterns (combinations
and orders) of these APIs imply potential security threats [1].
Third, after these two steps, there are still false positives and
false negatives. T-Market currently relies on developers to
report false positives, and end users to report false negatives.
For these reported cases, manual inspection is then performed
to determine the malice.

In this detection process, the fingerprint-based antivirus
checking can only detect known malware samples. Thus, the
most critical defense task, detecting zero-day malware, mainly
relies on the API inspection and manual inspection steps [20].
As manual inspection is slow (it may take a couple of days to
analyze an app), T-Market is highly interested in improving
the API inspection step and achieving a comparable perfor-
mance as the “Bouncer” system. In particular, it wishes to
know whether today’s popular ML techniques are capable
of achieving the target, which are commonly expected to be
more automated and robust since they do not rely on specific
rules (coming from security experts).

3 Related Work

For Android app development, rich APIs are provided by
the Android framework to enable an app’s interactions with
other apps and with the system. This section reviews prior
API-based malware detection solutions using ML techniques,

APSIS;:Z;;“’“ Related Work | Analysis Method A“;Ly:ﬁ;me #U’zfjs : tﬁé’i‘;fi Precision, Recall
Statistical Sharma et al. [35] static -- 35 1,600 91.2%, 97.5%
Correlations [Droid APIMiner [1] static 25 sec 169 ~20K --
Restrictive Stovyaway [15] stat?c -- 1,259 964 --
Permissions DroidMat [43] static -- -- 1,738 96.7%, 87.4%
Yang et al. [46] dynamic 1080 sec 19 ~27K 92.8%, 84.9%
RiskRanker [20] static 41 sec -- ~118K --
Sensitive DroidCat [9] semi-dynamic 354 sec 27 ~34K 97.5%, 97.3%
Operations IntelliDroid [42] static + dynamic 138.4 sec 228 2,326 --
Droid-Sec [49] static + dynamic -- 64 250 --
DroidDolphin [44] dynamic 1020 sec 25 64K 90%, 82%
Hybrid DREBIN [6] static 10 sec -- ~128K --
APICHECKER dynamic 78 sec 426 ~500K | 98.6%, 96.7%

Table 1. Representative Android malware researches that detect malicious apps by studying a selected set of potentially useful

framework APIs. “- - means unknown.

in terms of both static and dynamic approaches of gathering
an app’s API usage information. We also compare existing
solutions with our work from different perspectives.

Static analysis. The static API usage information can be di-
rectly extracted from an app’s APK. After that, machine learn-
ing or rule-based methods can be applied to determine the
malice of apps. For instance, Sharma et al. [35] extract from
1,600 apps 35 APIs that are correlated with the malice of apps,
and combine Naive Bayesian and kNN classifiers to achieve
91.2% precision and 97.5% recall for malware detection.
Other representative work includes DroidAPIMiner [1], Stow-
away [15], DroidMat [43], Droid—Sec [49], RiskRanker [20],
and DREBIN [6].

DroidAPIMiner [1] extracts critical APIs according to their
usage frequencies, and compares the performance of four
machine learning classifiers where kNN achieves the best
performance with 99% accuracy and 2.2% false positive rate.
In terms of analysis speed, it requires 25 seconds on average
to classify an APK file. Stowaway [15] is an automated static
analysis tool that extracts from 964 apps 1,259 APIs with
restrictive permission, based on which a “permission map”
is built for apps’ over-privilege detection. The same strategy
is also adopted by DroidMat [43] to determine the malice of
1,738 apps. DroidMat [43] employs the k-means algorithm to
enhance the malware classification model (KNN).

RiskRanker [20] performs a two-order risk analysis to as-
sess 118K apps (taking around 41 seconds per app), and
eventually reports 3,281 risky apps by identifying certain
rules of seemingly innocent API uses that may well be in-
dicators of malware. Further, Droid-Sec [49] proposes an
ML-based method that utilizes 64 sensitive APIs extracted
from static analysis and 18 behaviors from dynamic analysis
of 250 Android apps for malware detection. It also presents a
comparison between the deep learning model and other five

classic machine learning models, and achieves the highest
accuracy of 96.0% using the deep belief network.

Adopting a hybrid strategy, DREBIN [6] gathers numer-
ous features from 129K apps, including permission-restricted
APIs, suspicious APIs (that may relate to sensitive opera-
tions), requested permissions, network addresses, and so on.
It then takes 10 seconds on average to collect features on a
real device, and identifies certain patterns of input features
with the support vector machines (SVM) classifier. DREBIN
does not report the gathered APIs or the detection accuracy.

Dynamic analysis. Owing to its immunity to code obfusca-
tion and dynamic code loading, dynamic analysis can provide
a deeper and more complete view of apps’ behaviors. For
instance, Yang et al. [46] develop a dynamic app behavior
inspection platform by examining the run-time use of 19 APIs
that are restricted by three special types of permissions with
regard to obtaining device/system information, accessing the
network, and charging from the user’s account; they examine
each app for around 18 minutes and use a SVM model to
achieve 92.8% precision and 84.9% recall. There exist a wide
range of similar dynamic analysis systems in the literature,
such as DroidDolphin [44], IntelliDroid [42], TaintDroid [14],
and DroidCat [9].

DroidDolphin [44] builds a dynamic analysis framework
based on big data analysis and the SVM machine learning
algorithm by checking the use of 25 APIs and 13 types of sen-
sitive operations of an app in around 17 minutes, and achieves
90% precision and 82% recall. IntelliDroid [42] extracts from
2,326 apps specific API call paths and sensitive event-chains
with respect to 228 “targeted” APIs that may facilitate sen-
sitive operations identified by TaintDroid [14]. Based on the
extracted information, it detects malware through dynamic
analysis in an average of 138.4 seconds per app. Moreover,
DroidCat [9] leverages 122 behavioral features (including
manually picked APIs, inter-component communication, and

potentially risky sources/sinks) together with a random forest
classification model, achieving as high as 97.5% precision
and 97.3% recall. For each app, the average time consumption
for feature computation and testing is 354 seconds. Unfor-
tunately, it is unable to deal with the case of dynamic code
loading, thus substantially degrading its generality.

Given that dynamic analysis often requires considerable
time, some studies employ methods to reduce the detection
time, such as only inspecting the ~370 Linux system calls
underlying the S0K APIs to cut the time cost [38]. These
methods are typically quite ad-hoc, and oftentimes sacrifice
the detection accuracy due to the loss of APIs’ expressiveness
of apps’ semantics.

Comparison with our work. Despite adopting a similar
API-centric analysis approach, our work differs from existing
studies in several aspects: First, the scale of our measure-
ment study (in terms of the number of studied apps) is much
larger. Second, we bring innovations to API selection, and
identify hidden features to further boost the accuracy. Third,
we optimize the dynamic execution (emulation) infrastructure
to significantly reduce the app analysis time and meanwhile
guarantee the runtime reliability. Fourth, we manage to com-
mercially deploy our system and timely update the ML model.
In a nutshell, our work provides the first practical and com-
prehensive solution to ML-based malware detection at market
scales with commercial deployment results reported.

4 Collaborative Study

In this section, we take a principled big-data-driven approach
to study the ML-powered malware detection, using a ground-
truth dataset (§4.1) of ~500K apps from T-Market. Moreover,
we build an API-centric dynamic analysis engine (§4.2) to
hook API invocations at an app’s runtime and examine dif-
ferent classification models. After that, we report the basic
study results in §4.3, which effectively guide us on the feature
selection (§4.4) and feature engineering (§4.5).

4.1 App Dataset

Our dataset contains 501,971 new and updated apps submitted
to T-Market in 10 months (from March to December 2017).
Note that ~85% of the apps in our dataset are updated apps
initially submitted to T-Market as early as in 2014. Moreover,
APKs with the same package name but different MDS5 hash
codes are taken as different apps. In particular, T-Market
provides a malice label (Malicious or Benign) for each app
by a rather sophisticated and effective app review process,
as introduced in §2. These labels are obtained with at least
four state-of-the-art fingerprint-based antivirus checking?,
empirical API inspection, and manual examination triggered

2In detail, the false positive rate claimed by each antivirus checking engines
is less than 5%. When they all label an app as malicious, T-Market takes the
app as malicious; else, T-Market manually examines the app. Consequently,
the falsely-labeled apps in our training set should not exceed (1 — 95%)*.

by developers and users’ feedback. Consequently, despite
containing a trivial portion of falsely-labeled apps, our dataset
is generally able to provide credible, unbiased ground truth.
In total, there are 463,273 benign apps and 38,698 malicious
apps in the dataset; the malicious apps are not released to
users but quarantined in T-Market’s database.

4.2 Dynamic Analysis Engine

In order to intercept and log the run-time invocations of frame-
work APIs, we construct a dynamic analysis engine based on
Google’s official Android emulator [5], as well as the Xposed
hooking framework [32] which can intercept a target API
before it is actually invoked. Meanwhile, we explore each app
using the Monkey Ul exerciser [4] that can generate UI event
streams at both application and system levels. In addition,
we apply nine mainstream machine learning algorithms as
listed in Table 2. They include Naive Bayes (NB), CART
decision tree, logistic regression (LR), k-nearest neighbor
(kNN), support vector machine (SVM), gradient boosting
decision tree (GBDT), artifical neural network (ANN), deep
neural network (DNN), and random forest (RF). We select
them because they have been utilized in existing studies and
systems [1, 6, 9, 35, 43, 44, 46, 49]. We apply them to the
collected logs to derive an appropriate classification model for
determining the malice of apps. Here a key design decision is
to use provably mature program analysis (i.e., a well-received
tool chain for app behavior analysis, with respect to app emu-
lation [5], API hooking [37], and UI testing [3]) and machine
learning techniques as our building blocks, since our engine
will be part of the commercial system, and it is supposed to
accommodate all apps hosted by the app market.

App emulation environment. We deploy Google’s Android
emulators on a cluster of (16) commodity x86 servers (HP
ProLiant DL-380 running Ubuntu 16.04 LTS 64-bit), each
of which is equipped with a 5x4-core Xeon CPU @ 2.50
GHz and 256-GB DDR memory. On each server, we run
16 emulators on 16 cores concurrently and the remaining 4
cores are used for task scheduling, status monitoring, and
information logging. Then, the ~500K apps are parallelly run
on the emulators with the Android debug bridge (adb) tool.
Specifically, for each app, we sequentially execute adb com-
mands to automatically install the app, run the Monkey Ul
exerciser, record the running logs, uninstall the app, and clear
up the residual data. We measure the overall emulation time
of an app using only the execution time of Monkey. Moreover,
using Xposed we can not only intercept the invocations of
target APIs (and record their names and parameters), but also
implement the callback interface to perform additional op-
erations (e.g., hooking a certain Activity, and tampering
with the return values to bypass user login or simulate a real
device’s behaviors), to facilitate the emulation.

During the emulation, we notice that some malicious apps
attempt to recognize whether they are running on emulators so

100 102 1 ; :
= | Max=58 (min)
80 8 o 0.8 | Max = 64.6 (M) 0.8 [pean=2.7 (win)
IS . h edian = 2.2 (min)
= Mean = 42.3 (M) 1 Min = 0.57 (min)
< i =]
& 60 -8 & w08 T m?d'f";s_;g,\'z M) w08 Max = 106.2 (min)
o e B o in = 15.8 (M) g ' Mean = 53.6 (min)
= 40 P 4 E» 04 | 0.4 { Median = 53.1 (min)
-7 w . Min = 14.7 (min)
Phe o '
20 .7 — ~Emulation Time] | > g 02 r 02 —Track All APls
- —RAC [! - - Track No AP
0 0 < 0 L L L 0 T L L R R
0 3 6 9 1215 0 10 20 30 40 50 60 70 0 20 40 60 80 100 120

Number of Monkey Events (K)

Number of API Invocations (million)

Emulation Time (minute)

Figure 1. Relationship among # Monkey Figure 2. CDF of the number of APl in- Figure 3. Time consumption for tracking

events, RAC, and emulation time.

as to suppress their malicious activities. They usually examine
the static configurations of the Android system, the dynamic
time intervals of user inputs, and the sensor data of the user
device to identify the existence of emulators. To prevent such
detections, we make fourfold improvements to our emulators
as follows:

o First, we change the default configurations of emulators,
including their identities (IMETI and IMSTI), PRODUCT/
MODEL types, and network properties (e.g., the TCP infor-
mation maintained in /proc/net/tcp).

e Second, we tune the execution parameters throttle and
pct-touch of Monkey, which respectively control the
input interval and the percentage of touch events in all
inputs, to make the generated UI events look more realis-
tic. Specifically, throttle is set to 500 ms (the average
interval of human inputs), and pct—touch is set within
50%~80% according to the app type, since touch events
usually dominate common users’ daily inputs.

e Third, we replay traces of sensor data (e.g., accelerometer,
gyroscope) collected from a number of real smartphones
on our emulators to improve their authenticity [19].

¢ Finally, we obfuscate the relevant libraries of Xposed and
change the return values of certain methods (for instance,
getInstalledApplications) of the very important
PackageManager class, so that the studied apps can
hardly detect the existence of Xposed.

In order to quantify the effect of our enhanced emulation
environment, we construct a controlled experiment with the
same sample set of apps running on top of real Android
devices (Google Nexus 6), the original emulator, and our en-
hanced emulator. Specifically, we run an unbiased subset (1%)
of our dataset (the ~500K apps) in the three environments.
We observe that on the original emulator only 86.6% of apps
invoke the same number of APIs as (they invoke) on the real
Android devices, while on our enhanced emulator as many as
98.6% of apps invoke the same number of APIs as on the real
Android devices. The remainder (1.4%) invoke fewer APIs
due to their requirement of real-time data from special sensors

vocations when emulating one app.

all APIs and no API.

(e.g., microphone), which currently cannot be generated by
our emulation environment. This demonstrates the efficacy of
our improvements to the app emulation environment.

UI exploration methodology. Our dynamic analysis engine
needs to achieve a high UI coverage to emulate as many user
activities as possible. Initially, we used Activity cover-
age as the main metric of UI coverage [27], as each Android
app specifies its possible Activity objects in its config-
uration file (AndroidManifest .xml). Nonetheless, this
metric is overly pessimistic because it takes into account some
Activities that are not actually referenced by the code.

Hence, to figure out the ratio of specified Activities
that are actually referenced by an Android app, we write a
script to automatically scan the configuration file and the
code of each non-obfuscated APK in our dataset. The scan-
ning results indicate that on average, only 88% of speci-
fied Activities are actually referenced. Furthermore, we
define a more accurate metric, Referred Activity Coverage
(RAC), to quantify the UI coverage. RAC is the ratio between
the number of detected (actually used) Activities dur-
ing an app’s emulation and the number of app’s referenced
Activities.

The actually used Activities during an app’s emula-
tion can be detected by Xposed [32]. Quantitatively, we find
that executing ~100K Monkey events can achieve almost 86%
RAC on average — executing more Monkey events can hardly
increase the RAC. However, it requires 2,142 seconds (35.7
minutes) on average to execute 100K Monkey events. Such a
long emulation time is unacceptably long to both app store
operators and developers in practice (considering that Google
Bouncer only requires less than 5 minutes to analyze each
app submission [26]). To address this problem, we need to
carefully balance the effectiveness (in terms of RAC) and the
efficiency (in terms of emulation time).

Figure 1 shows the average RAC achieved with increasing
number of Monkey events. In detail, we notice that as the
emulation time increases, the average RAC quickly increases

80

SRC

60

5K APIs

Time (minute)
N
o

<« 1K APIs

<«— 800 APIs

Ranking of API (K)

:) 0.2)
e 20t
-0. 01 |
9 0 1 1 1

"o 10 20 30 40 50 0 200 400
Ranking of API

600 800 1000 0 10 20 30 40 50

Number of Tracked API (K)

Figure 4. Ranking of the ~50K frame- Figure 5. Top-1K APIs (that are not sel- Figure 6. Time consumption for tracking

work APIs in terms of their SRCs.

to 76.5% within 126 seconds on average. Afterwards, the in-
crease is rather flat — even spending ~250 seconds to generate
10K Monkey events merely increases the RAC by 1.5% on
average. As a result, we choose to run the emulation for 126
seconds (= 2.1 minutes, corresponding to SK Monkey events),
so as to achieve a decent RAC (76.5%). In other words, we
choose to sacrifice a small fraction (9.5%) of RAC to reduce
a large fraction (94%) of the emulation time compared to
executing 100K Monkey events.

In addition, Figure 2 depicts how many API invocations
occur during the emulation of one app. In general, SK Monkey
events trigger tens of millions of API invocations, i.e., one
Monkey event triggers an average of 8,460 API invocations,
indicating the intensive usage of APIs when an Android app
is running. Furthermore, as illustrated in Figure 3, when we
run an app without tracking any APIs, the time consumption
is only 2.1 minutes on average. But when we track the usage
of all the ~50K APIs, the time consumption significantly in-
creases to an average of 53.6 minutes due to the overhead of
intercepting the huge number of API calls. Obviously, track-
ing all APIs would be time-wise infeasible. We investigate
how to judiciously select a subset of APIs in §4.4.

Machine learning classification model. Like most existing
work as surveyed in §3, we adopt machine learning to classify
an app as malware or non-malware. During the emulation of
each app from our dataset, the invocation data of the tracked
APIs (API calls’ names and parameters) is logged. We em-
ploy One-Hot encoding to convert the log to a feature vector
comprising a total of n bits, where n is the total number of our
tracked APIs. Each bit corresponds to a tracked API — if the
API is invoked, the corresponding bit is set as 1; otherwise
it is 0. All the feature vectors of our studied apps are used as
the training and test sets (which are of course disjoint).
There are three key metrics to evaluate a machine learning
model: precision, recall, and training time. The precision

and recall are defined as: precision = % and recall =
%, where true positive (TP) denotes the number of apps

correctly classified as malware, while false positive (FP) and

dom invoked) in terms of |SRC]|.

top-n correlated APIs.

false negative (FN) indicate the number of apps mistakenly
identified as malicious and benign, respectively [29].

Following common practices, we calculate the precision
and recall to evaluate the malware detection. In total, we use
scikit-learn [23] to realize nine mainstream machine learning
models (c¢f. §4.2). In our experiments, the hyperparameters of
each model are configured based on our domain knowledge.

Further, when evaluating an ML model, we adopt 10-fold
cross-validation to mitigate possible data leakage [24] in the
training and testing stages. Here data leakage means that the
training set gains access to the test set, i.e., identical or similar
data exist in both sets, thus leading to exaggerated evaluation
results. Compared to a single random train/test split, 10-fold
cross-validation enables us to obtain less biased results by
training and testing the model with several different train/test
splits. Meanwhile, for each iteration of the cross-validation,
we remove duplicate feature vectors in the training and test
sets from the test set. Additionally, we examine the percentage
of cloned apps (i.e., apps having the same package names
but different MDS5 hash codes, which could also lead to data
leakage) in the training and test sets, and find it to be fairly
small (<1%). The concrete model configurations are released
at https://apichecker.github.io/.

4.3 Understanding Tradeoffs for API Selection

We use the above dynamic analysis engine to evaluate the
tradeoff between API (feature) selection and malware detec-
tion time/detection accuracy. First, we rank all the ~5S0K APIs
by their correlations with the malice of apps [30]. Next, we
acquire a series of insights with regard to the analysis time,
ML-based classification model, malware detection accuracy,
and API selection strategies.

APIs’ correlations with the malice of apps. The correla-
tion between an API and the malice of apps is an objective
metric of statistical measurements [35]. In this paper, we uti-
lize the Spearman’s rank correlation coefficient (SRC [30])
to evaluate the statistical correlation. Using our dynamic anal-
ysis results, we calculate the SRC value of each API with
the malice of apps, and all the extracted APIs are ranked by

https://apichecker.github.io/

\ Precision (50K / 426) \ Recall (50K / 426) \ Training Time (50K / 426)

Models
Naive Bayes [35] 60.4% / 64.1%
Logistic Regression [49] 81.2% / 89.9%
SVM [6, 44, 46] 87.9% 1 96.2%
GBDT 88.4% /96.2%
kNN [35, 43] 86.5% /95.3%
CART [1] 87.6% 1 94.3%
ANN [49] 90.8% / 96.0%
DNN 91.5% 1 96.4%
Random Forest [9] 91.6% / 96.8%

59.6% / 63.6% 3.6 min/ 1.7 sec
70.3% / 72.4% 10.4 min / 4.5 sec
71.6% / 80.1% ~27K min / 13K sec
74.3% [/ 77.9% 364 min / 174 sec
83.7% 1 93.3% ~1.8K min / 821 sec
84.3% /93.7% 11.6 min / 5.8 sec
89.9% /93.4% ~1.2K min / 563 sec
90.9% / 93.7% ~1.9K min / 944 sec
90.2% / 93.7% 29.1 min/ 14.4 sec

Table 2. Performance and overhead of different classification models when we track 50K vs. 426 key APIs.

their SRC values in descending order in Figure 4. We find
there are 247 APIs whose SRC > 0.2, and 2,536 APIs whose
SRC < —0.2. Note that when |SRC| of a feature is smaller
than 0.2, it is considered to have a very weak or no rela-
tionship with the malice of apps [36]; in other words, when
|SRC| > 0.2, the correlation is considered non-trivial.

Among the above 247 APIs whose SRC is greater than 0.2,
we find that some of them are correlated with each other with
regard to certain apps, thereby being somewhat redundant
when used to analyze these apps. Nevertheless, these APIs
often complement each other in terms of functionality rather
than being mutually replaceable. Thus, they are in fact benefi-
cial and necessary to our analysis. Moreover, as we carefully
examine the 2,536 APIs whose SRC is smaller than —0.2, we
notice that most of them are seldom invoked by the apps in our
dataset. Here we empirically take seldom as being invoked by
fewer than 0.1% apps in our dataset. Using these infrequently
invoked APIs as features may bring over-fitting problems to
machine learning, and thus we have to neglect these APIs
when conducting API selection. On the other hand, we do ob-
serve that 13 APIs whose SRC < —0.2 are frequently invoked
by most apps to perform common Android operations like
file I/O; such APIs are still taken into account in our analysis.
In detail, Figure 5 shows the top-1K framework APIs that are
not seldom invoked in terms of their |SRC|s with the malice
of apps. From the figure we find there are 260 APIs (247 APIs
with SRC > 0.2 and 13 APIs with SRC < —0.2, referred to as
Set—C) that possess a non-trivial |SRC|.

Analysis time. Figure 6 shows the relationship between the
number of tracked APIs (n) and the analysis time (¢), when
we prioritize tracking highly correlated APIs (with the malice
of apps) that are not seldom invoked.

To understand the statistical relationship demonstrated in
Figure 6, we propose a complex tri-modal distribution and
find it can fit the data well. Concretely, t first linearly grows
with n when n € [1, 800), with the associated APIs being used
with moderate frequency, more likely by malware due to their
high SRCs. Then, t polynomially grows when n € [800, 1K]
due to the enrollment of APIs which are heavily used by
both malware and non-malware, and therefore they are less

expressive in terms of characterizing malicious behaviors.
Finally, ¢ logarithmically grows when n > 1K because the
newly added APIs have low invocation frequencies. We use
the following tri-modal distribution to fit t(n):

ai 'n+b1, ne [1,800)2
t=1< a,- nt, n € [800, 1K]; (1)
as - log(n) + bs, n> 1K.

where a; = 0.006, by = 2.06, a, = 10™°, by = 3.44, a5 = 6.4,
and b; = —43.36. Also, we adopt the coefficient of determi-
nation [34] (denoted as R?, ranging from O to 1) to measure
the closeness between the measured data and the three fitting
equations. We calculate R? = 0.96, R5 = 0.99, and R% = 0.99,
which are very close to 1.0 (the perfect fitting).

The above result indicates that the relationship between
APIs’ SRC and their invocation frequency (and thus the in-
curred dynamic analysis overhead) is rather complex. Quan-
titatively understanding it helps better balance the tradeoff
between analysis time and detection accuracy. Regarding the
former, Figure 6 indicates that with our dynamic analysis
engine, up the top-490 APIs can be tracked to achieve an
average detection time of less than 5 minutes per app. We
explore the latter (the accuracy dimension) shortly.

Machine learning models. We evaluate the impact of the
nine machine learning models introduced in §4.2, assuming
all 50K APIs are tracked. The performance and overhead of
each classifier are listed in Table 2. We find that these clas-
sifiers exhibit significant differences in terms of precision,
recall, and in particular training time; however, no single clas-
sifier achieves the best in all the three key metrics. Therefore,
we choose to adopt the classifier that makes the best balance
among the three metrics, i.e., Random Forest, which yields
the best precision, the better recall, and acceptable training
time. In addition, RF is also known to have a good general-
ization ability [28]. As a matter of fact, when we only track
top-1K or top-490 APIs (refer to Figure 6) to collect data, our
best choice is still the random forest classifier.

©
(&}

%)

©
o

©
a

Precision / Recall (¥
~ o]
(6] o

N
o

— Recall 100
— -Precision
65

0 200 400 600 800 1K 10K 50K
Number of Tracked API

Figure 7. Efficacy for tracking top-n
correlated APIs respectively.

Malware detection accuracy. Tracking all the 50K APIs,
despite being the most time-consuming, is supposed to pro-
duce the best accuracy. Figure 7 shows the detection accuracy
achieved by tracking the top-n correlated APIs based on the
random forest classifier. The precision/recall achieved by
tracking 50K APIs, top-1K correlated APIs, and top-490 cor-
related APIs is 91.6%/90.2%, 94.7%/92.0%, and 96.3%/92.4%,
respectively. Somewhat to our surprise, (strategically) track-
ing fewer APIs can result in better precision and recall than
tracking all the 50K APIs. Delving deeper, we find this counter-
intuitive observation stems from the fact that most APIs are
sparsely or rarely invoked by Android apps, and thus too
many features cause over-fitting of the trained model. In other
words, tracking fewer APIs can bring benefits in terms of both
runtime performance and detection accuracy.

4.4 Key API Selection Strategy

We now detail our principled API selection approach that
consists of four steps.

Step 1. Selecting APIs with the highest correlation with
malware (Set—C). Our analysis in §4.3 indicates that track-
ing the top-260 highly correlated APIs (Set—C) can achieve
93.5% precision and 82.1% recall.

Step 2. Selecting APIs that relate to restrictive permis-
sions (Set—-P). To protect the privacy/security of user infor-
mation, an app needs to request permissions before obtain-
ing certain information or fulfilling certain functions [43].
Android permissions are classified into three protection lev-
els [41]: normal, signature, and dangerous. The APIs pro-
tected by dangerous-level permissions and those by signature-
level permissions are oftentimes relevant to sensitive user
data (such as camera, SMS, and location data), which are
thus crucial for malware detection. We take advantage of the
Axplorer [12] and PScout [13] tools to select the APIs related
to restrictive permissions, and we get a total of 112 APIs
(referred to as Set—P). By solely tracking the 112 APIs, we
achieve 95.1% precision but rather low (71.3%) recall.

Step 3. Selecting APIs that perform sensitive opera-
tions (Set-S). The third strategy selects APIs that perform
sensitive operations. Different from permissions, there is no

L 06
© 0.4
Set-P

Figure 8. Number of APIs in Set-C,
Set-P, Set-S and their overlaps.

Max = 15.3 (min)
Mean = 4.3 (min)
Median = 3.5 (min)
Min = 1.1 (min)

0.8

D

0.2

— -Track No API
—Track 426 key APls
0 5 10 15 20
Emulation Time (minute)

Figure 9. Time consumption for track-
ing 426 key APIs.

“official” definition of sensitive operations. Based on previous
work, we find five categories of sensitive operations com-
monly exploited for conducting attacks: (1) APIs that can
lead to privilege escalation, e.g., shell command execution
APIs [25], (2) APIs for database operations and file read/write,
which are commonly used in privacy leakage attacks [14], (3)
APIs operating on key Android components, e.g., those for
creating an Android window or overlay, which are used in
attacks such as Activity hijacking [10], (4) cryptographic
operation APIs, which are commonly used in ransomware
attacks [48], and (5) APIs for dynamic code loading, which
can load malicious payloads at runtime and perform attacks
such as update attack [25]. Based on our domain knowledge,
we identify 70 APIs (referred to as Set—S) that are relevant
to the above sensitive operations. By solely tracking these 70
APIs, we achieve 95% precision but poor (70.1%) recall for
malware detection.

Step 4. Combining the above. The last step is combining
the above strategies, i.e., Set—P| JSet -S| JSet-C, leading
to a total of 426 key APIs. Intuitively, doing so jointly consid-
ers both the statistical observations of the data and adversaries’
general intentions based on domain knowledge. Note that only
16 overlapped APIs exist among the three sets as shown in
Figure 8, indicating that the three sets tend to be orthogonal.

Figure 9 shows that when we only track the 426 key APIs,
the per-app time consumption becomes 4.3 minutes on aver-
age, which is much shorter than 53.6 minutes (the average
time consumption when we track all the 50K APIs), and close
to 2.1 minutes (the average time consumption when we do
not track any APIs), on our dynamic analysis engine. In §5.1,
we will further reduce this detection time by engineering the
underlying dynamic analysis engine.

Further, we evaluate the precision and recall of malware
detection using the 426 key APIs with the nine mainstream
classifiers. As listed in Table 2, random forest still exhibits
the highest precision (96.8%) and recall (93.7%), and its
training (14.4 seconds) is much faster than that of the more
complex classifiers (such as DNN and SVM). In comparison,
solely tracking the top-426 highly correlated APIs (extending
Set-C, also using random forest) results in 95.2% precision

and 90.6% recall, as shown in Figure 7. This confirms that
the hybrid strategy is better than an individual strategy.

It is worth noting that our selected 426 key APIs might not
be the optimal set of APIs with the highest detection accu-
racy. We do not exhaustively search for such an “optimality”
due to the unacceptably large search space. Nevertheless, our
proposed API selection strategy is easy to execute, and demon-
strates good results in our real-world deployment (§5.2).

4.5 Further Enriching the Feature Space

By examining the dynamic analysis results of ~500K apps,
we notice that purely relying on framework APIs to detect
malware is inherently limited: an attacker can bypass certain
key API invocations by other mechanisms. In practice, two
alternative methods can trigger the action of a given frame-
work API without explicitly invoking it: (1) internal/hidden
APIs, which can be triggered using special methods such as
Java reflection, (2) intents, a key IPC mechanism of Android,
which can help an app request another app/service to perform
sensitive actions on behalf of it, as well as to monitor/intercept
system-level events or broadcasts [16]. We observe that both
cases are actively exploited to hide the usage of certain APIs
by malicious apps. Hence, these “concealed” API invocations
become hidden features that deserve further explorations.
Fortunately, we find that this limitation can be effectively
mitigated without incurring any dynamic analysis overhead.
Specifically, we add two auxiliary features to help unveil con-
cealed API invocations: the requested permissions and the
used intents. Note that the requested permissions are prereq-
uisites of invoking internal/hidden APIs — to our knowledge
there is no way for the application to bypass it [16]. The two
auxiliary features can be collected by analyzing the app meta-
data and the parameters of the intent-related framework APIs
that are already tracked in Set—S. Specifically, we add one
feature per permission/intent to the existing feature vector.
Figure 10 shows that combining permissions and the 426
key APIs (“A+P”) can increase the recall from 93.7% to
96.5%, while combining intents and the 426 key APIs (“A+I")
can increase the recall to 94.8%. Interestingly, using permis-
sions and intents alone (“P+I"") can also achieve sound per-
formance (97.5% precision and 94.6% recall), implying that
these two mechanisms are heavily used by today’s Android
malware. Finally, in comparison to purely using the 426
key APIs (“A”), jointly leveraging all three feature categories
(“A+P+I") achieves the best performance, i.e., increasing the
precision from 96.8% to 98.6%, recall from 93.7% to 96.7%,
and FlI-score from 95.2% to 97.6%. Here F1-score is the

. .. isionx 11
harmonic mean of precision and recall: 2 x 2EEionxrecdr.
precision+recall

5 System Development

Guided by our above study results in §4, we implement and
deploy the APICHECKER system to automatically detect ma-
licious apps submitted to T-Market. In §5.1 we introduce

our optimization to the emulation environment for more effi-
cient dynamic analysis. Then we present the deployment of
APICHECKER and its “in-the-wild” performance in §5.2. We
discuss some other practical aspects of the system in §5.4.

5.1 Emulation Environment Optimization

Having derived the desired features, we shift our focus to
enhancing the runtime performance of APICHECKER. To
begin with, we notice that the default Google Android device
emulator [5] has suboptimal performance due to its heavy-
weight, full-system emulation built on top of QEMU [11].
This may not be an issue for performing in-lab analysis as
we did in §4. However, in a real-world production environ-
ment where a large number of apps need to be examined at
scale, a long detection delay may negatively affect the expe-
riences and incentives of app developers, as well as increase
the infrastructural cost of app market operators.

In Figure 9 we notice that for 30% apps, our original dy-
namic analysis engine (§4.2) requires more than 5 minutes, a
typical turnaround time of Google Bouncer [26], to scan each
of them. To boost the scanning performance, in addition to
various optimizations introduced in §4 at the detection engine
level, we make system-level optimizations to the underlying
emulation environment. We architect a lightweight emulation
system that efficiently runs the Android OS and apps on pow-
erful commodity x86 servers. First, as for the Android OS we
use Android-x86 [21], an open-source x86 port of the original
ARM-based Android OS. As a result, the OS-level perfor-
mance degradation caused by the ISA gap between ARM
and x86 is mostly avoided. Meanwhile, to support apps that
use Android’s native libraries, we utilize the state-of-the-art
dynamic binary translation framework developed by Intel
(Houdini [22]) to translate the apps’ ARM instructions into
x86 instructions, given that most native libraries in Android
are based on ARM ISA instead of x86 [47].

Our lightweight Android emulator works with Monkey and
the Xposed hooking tool, and runs on top of a physical x86
server with a 5x4-core Xeon CPU @ 2.50 GHz and 256-GB
DDR memory. To fully utilize the hardware resources, we
run multiple emulators in parallel on the server, with each
emulator bound to a CPU core. In detail, 16 emulators run on
16 cores concurrently, and the remaining 4 cores are used for
task scheduling, status monitoring, and information logging.

Although our lightweight analysis engine substantially out-
paces our original engine, its compatibility to Android apps
slightly decreases. By customizing the SystemServer ser-
vice in Android-x86, once an app hangs or crashes during
the emulation process, an exception message will be auto-
matically reported to the 4 cores (among the 20 cores on
the physical server) used for task scheduling, status moni-
toring, and information logging. From the collected reports,
we observe that a very small portion (< 1%) of apps cannot
run successfully on the lightweight engine, mainly because
of the compatibility issues stemming from Android-x86 and

100 1 — 100
Il Precision =" K/I, 15.3 (min)
- [JRecall ’ ax = 15.3 (min —
S 0.8 Mean = 4.3 (min) 98
< 98 f / = 99 PR
= 1 Median = 3.5 (min) = P S 7
2 0.6 1 Min = 1.1 (min) o F=--
& o 1 T — -Precision
= 96 8 i Max =152 (min) = 98
S 0.4} [1 Mean = 1.3 (min) g
@ 1 Median = 1.4 (min) k%)
o 94 02 Min = 0.2 (min) 3 97 \/\/\/\/
o ’ — Lightweight Android emulator o
4 — -Google Android emulator
oo MLI U L L ol 96
A A+P A+l P+l A+P+l 0 5 10 15 20 3 456 7 8 9101112 1 2
Features Emulation Time (minute) Month

Figure 10. Benefits of auxiliary features
(A: key APIs, P: permissions, I: intents).
emulator.

Intel Houdini. For these incompatible apps, we roll back to
the default Google Android emulator to successfully analyze
them. This apparently takes longer analysis time, but ensures
the reliability of APICHECKER—all submitted apps can be
tested on our production system.

The above custom infrastructure enables APICHECKER
to analyze apps much more efficiently, saving around 70%
of the detection time compared to using the default Google
Android emulator under the same hardware and detection
engine configurations without any detection accuracy loss
(we have taken into account the time cost of dealing with
the incompatible apps). We evaluate the per-app dynamic
analysis time using the default Google Android emulator and
our lightweight emulator on the same physical x86 server.
Here we only track 426 key APIs. Figure 11 shows that on
the same server, our lightweight emulator considerably saves
the analysis time per app. The average analysis time per-app
is as short as 1.3 minutes, compared to 4.3 minutes of the
Google Android emulator.

5.2 System Deployment and Performance

We apply the optimized emulator to APICHECKER and eval-
uate its performance in T-Market. In particular, we discover a
handful of key features play a more important role and discuss
them in detail. Moreover, accompanying the emergence of
new apps and the upgrade of Android SDK, the selected set
of key APIs requires continuous evolution, which prompts us
to periodically update our detection model.

Integration to a real app market. APICHECKER was de-
ployed at T-Market and has been running since March 2018.
It checks around 10K apps per day using a single commodity
server with 16 emulators running concurrently on 16 cores
(refer to §4.2 and §5.1 for the detailed hardware/software
configurations).

Specifically, it takes an app’s APK file as input, and then
installs it on an idle Android emulator. Next, APICHECKER
executes the app and meanwhile logs a wide range of informa-
tion as its features (§4). Finally, the random forest classifier

Figure 11. Time consumption of
Google emulator and our lightweight

Figure 12. Online performance of
APICHECKER over 12 months, from
March 2018 to February 2019.

determines the malice of the app based on the feature vec-
tor. The overall process costs 1.92 minutes on average where
the app security analysis consumes 1.4 minutes. In the sub-
sequent 12 months (from March 2018 to February 2019),
APICHECKER detected around 2.4K suspicious apps every
month. To evaluate the detection accuracy of APICHECKER
in the production environment, we inspect submitted apps
based on other components in T-Market’s app review pro-
cess (the signature-based preliminary detection, T-Market’s
manual inspection based on users’ and developers’ feedback,
see §2) as well as our own manual examination. This inspec-
tion process can ensure very high precision and recall but
involves high manual efforts. The results indicate that over
the 12 months, the per-month precision is over 98% (min:
98.5%, max: 99.0%) and the recall is over 96% (min: 96.5%,
max: 97.0%), as shown in Figure 12.

As mentioned in §4.1, T-Market has a sophisticated app
review process with very high precision and recall. This gives
us the ability to deeply understand the <2% false positive and
<4% false negative incurred by APICHECKER. First, we find
that the 2% false positive (apps) have all used quite a few
top-ranking features exemplified in Figure 13. In other words,
these apps look similar to malicious apps in terms of API,
permission, and/or intent usage. Specifically, among the ~10K
apps submitted to T-Market per day, there are on average 800
apps flagged as malicious by APICHECKER. Among them,
usually more than 90% are updated apps that can be quickly
vetted based on their previous versions. Hence, seeking out
the false positives only requires manual inspection on fewer
than 80 apps on average, incurring an acceptable overhead
to T-Market. Consequently, we choose to actively avoid the
false positive apps by manual work every day. In contrast, the
4% false negative reported by users have seldom used the top-
ranking features. We manually inspect the detection logs, and
find that most (87%) of the false negative apps barely use the
426 key APIs we track. In fact, these apps usually have fairly
simple functionalities such as displaying advertisements or
accessing certain websites, which are commonly considered

Gini Importance
0.04 0.06

o

0.02 0.08

©
-

API: SmsManager sendTextMessage
Permission: SEND_SMS

Intent: SMS_RECEIVED

Intent: wifi. STATE_ CHANGE

Permission: RECEIVE_SMS

Intent: DEVICE_ADMIN_ENABLED

Intent: buluetooth.STATE_ CHANGED
Permission: RECEIVE_MMS

Intent: ACTION_BATTERY_OKAY

API: TelephonyManager_getLinel Number
Permission: RECEIVE_WAP_PUSH

APIL: Wifilnfo_getMac Address

Permission: READ_SMS

API: View_setBackgroundColor

Permission: ACCESS_NETWORK_STATE
Permission: SYSTEM_ALERT_WINDOW
API: SQLiteDatabase_insertWithOnConflict
Permission: RECEIVE_BOOT_COMPLETED
API: HttpURLConnection_connect [l

API: e Tasks

I

Figure 13. Top-ranking important features for API-based
Android malware detection.

to be “mild” security threats to end users. Consequently, we
choose to passively mitigate the false negative apps when
receiving users’ complaints upon specific apps.

Important features. Among all the key features we ex-
tracted from the dataset of ~500K apps, we asked which
features play the most important roles in malware detection.
In Figure 13 we list the Gini [8] indices of the top-20 most
important features, including 7 key APIs, 8 requested permis-
sions, and 5 used intents. Here we use the Gini index to quan-
tify the importance of the features due to its suitability for our
trained random forest model. In terms of functionality, these
20 key features can be classified into three categories:

e Attempting to acquire privacy-sensitive information of user
devices such as SMS message (e.g., the
SmsManager_sendTextMessage APD), phone number
(e.g., the TelephonyManager_getLinelNumber permis-
sion), and MAC address (e.g., the
WifiInfo_getMacAddress API).

e Tracking or intercepting system-level events such as critical
activities of devices (e.g., the RECETVE_BOOT_COMPLETED
permission), changes of network status (e.g., the
wifi.STATE_CHANGE intent), and granting privileges (e.g.,
the DEVICE_ADMIN_ENABLED intent).

e Enabling certain types of attacks such as overlay-based
attacks [45] (e.g., requiring the SYSTEM_ALERT_WINDOW
permission to launch “cloak and dagger” attacks [17]).

5.3 System Evolution

During the APICHECKER’s operation, we note that it is nec-
essary to periodically update our selected set of key APIs;
accordingly, the total number of key APIs is not constant (ini-
tially it was 426). This is because new apps are continuously

3Here we use the short alias SmsManager_sendTextMessage to
represent the actual API name
android.telephony.SmsManager.sendTextMessage.
We also use short aliases for other mentioned APIs.

added into T-Market’s database, and the entire API base also
evolves as Android SDK is updated every several months.

Currently, the period of our updating the key APIs (and
retraining the classification model) is empirically configured
as one month. The retraining dataset consists of the original
dataset acquired from T-Market (§4.1) and the subsequent
new apps submitted to T-Market. The malice labels of new
apps are flagged by both APICHECKER and manual inspec-
tion, bearing no false positives while a small number of false
negatives. Moreover, our methodology of selecting the key
APIs stays unchanged as described in §4.4.

Figure 14 shows that from March 2018 to February 2019,
the number of our selected key APIs only slightly fluctuates
between 425 and 432. Hence, the per-app detection time re-
mains stable over the 12 months of deployment. Note that this
retraining process is taken into account in Figure 12 where we
report the online results. As shown, changes in the key API
set only bring mild impacts on the online detection precision,
recall, and F1-score, which are 98.5%~98.9%, 96.5%~96.9%,
and 97.5%~97.9%, respectively. Overall, the above results
indicate that APICHECKER is robust to API evolution.

5.4 Discussion on Other Aspects

During the operation and maintenance of APICHECKER, we
have also acquired insights or experiences on other aspects of
the system, such as its robustness to possible knowledgeable
attackers in the future, its applicability to other app markets
who do not wish to implement our customized infrastructure,
and its extensibility to other app markets.

How robust is APICHECKER to sophisticated attackers?
We write a script to scan the source code of Android SDK
(level 27) to know the actual coverage of our selected key
APIs. We find that although the 426 key APIs take a tiny
portion (0.85%) in the 50K framework APIs, there are 4,816
other APIs (9.6%) whose implementation relies on them (i.e.,
the internal realization of these 4,816 APIs use the 426 key
APIs), thus adding up to 5,242 (10.5%) APIs. Consequently,
if knowledgeable attackers want to evade our detection by
adapting the usage of APIs, they will have to “reimplement”
a considerable number of APIs with the same functions to
replace the concerned framework APIs and meanwhile care-
fully avoid the usage of our added auxiliary features (§4.5).
This is highly difficult and tedious, if not impossible. A more
practical approach for attackers is to use Android NDK. But
it also raises the bar of malware development. Also, heavy
usage of NDK for common features itself is an indicator of
potential malicious behaviors.

Can we further reduce the key API set? API selection is
known to be crucial to the tradeoffs among detection accuracy,
analysis time, and system resource consumption. Figure 15
shows that among the 426 key APIs, the majority have a
relatively small impact on the detection accuracy, but a large
impact on the analysis time (see Figure 6). In Figure 15, the

440
o
o
T 435
> o
o
X o
=430 2
— w
[}
£
E 425 0.2
=2
420 0 ‘
345678 91011121 2 0 100

Month

Figure 14. Evolution of the number of
our selected key APIs over 12 months,
from March 2018 to February 2019.

results make us wonder if we can further use small detection
accuracy loss to trade for large detection time improvement.
We find that APICHECKER using only the top-150 high-
ranking key APIs can achieve similar detection performance
(98.3% precision and 96.6% recall) compared to that using all
426 key APIs (98.6% precision and 96.7% recall), while the
analysis time per app is considerably reduced to 2.5 minutes
on average, as shown in Figure 16. This makes it feasible to
run Google’s Android emulator on even low-end PCs or VM
instances for timely malware detection.

Can APICHECKER be used by other app markets? It is
not difficult to apply our methodology to other app stores, as
it only requires the APK files and some ground-truth data for
training purposes. In addition, large app markets can possibly
distribute their trained models to smaller markets, who thus do
not need to train their own models. Besides, APICHECKER
only uses mature program analysis and machine learning tech-
niques, which are easy to implement, deploy, and maintain.

6 Conclusion and Future Work

Machine learning (ML)-based mobile malware detection has
been promising in the last decade. Nonetheless, till now we
have not seen its realistic solutions for large-scale app mar-
kets, which are pivotal to the success of today’s mobile ecosys-
tem. In order to figure out and overcome the real-world chal-
lenges, we collaborate with a major Android app market to
implement, deploy, and maintain an effective and efficient
ML-powered malware detection system. It detects Android
malware by examining their run-time usage of a small set of
strategically selected APIs, enhanced by additional features
such as the requested permissions and the used intents. It
has been operational at our collaborated market for over one
year with several system-level optimizations, such as our cus-
tomized fast emulation engine, automated model evolution,
and affordable false positive/negative mitigation. We hope
our measurement findings, mechanism designs, deployment
experience, and data release will contribute to the community.

=
E
49
£
(=
3 _5 é .
®
= (@]
2g
[im|
— F1 Score 19 % —--Track No API
- - Emulation Time o —Track 150 APIs
z — -Track 426 APls
| | 0<
300 400 10 15 20

200
API Ranking in Gini Importance

Figure 15. Detection accuracy and anal-
ysis time when we only track the top-k
(k € [1,426]) important key APIs.

13

Emulation Time (minute)

Figure 16. CDF of time consumption
when we track no API, 150 APIs and
426 key APIs.

In the future, we plan to explore potential opportunities to
further improve our work. First, we note that the UI coverage
of Monkey could be a bottleneck of our detection due to its
critical impact on feature extraction. To make our automated
Ul exploration mechanism more robust and effective, we wish
to incorporate sophisticated software testing techniques such
as fuzzing. Moreover, in our current design we leverage a bit
vector to encode extracted features, which is lightweight and
efficient in practice, but could lose certain feature informa-
tion (e.g., API invocation frequency) and lead to over-fitting.
Therefore, we would like to experiment with other encoding
techniques such as histogram that are able to retain more
abundant feature information.

Acknowledgments

We sincerely thank our shepherd Prof. Jon Crowcroft and
the anonymous reviewers for their valuable feedback. We
also appreciate Weizhi Li, Yang Li, Zipeng Wu, and Hai
Long for their contributions to the data collection and sys-
tem deployment of APICHECKER. This work is supported
in part by the National Key R&D Program of China under
grant 2018YFB 1004700, the National Natural Science Foun-
dation of China (NSFC) under grants 61822205, 61902211,
61632020 and 61632013, and the Beijing National Research
Center for Information Science and Technology (BNRuist).

References

[1] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner:
Mining API-Level Features for Robust Malware Detection in Android.
In Proc. of SecureComm.

Mohammed Alzaylaee, Suleiman Yerima, and Sakir Sezer. 2017. Im-
proving Dynamic Analysis of Android Apps Using Hybrid Test Input
Generation. In Proc. of IEEE Cyber Security.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana,
Bryan Dzung Ta, and Atif M Memon. 2014. MobiGUITAR: Automated
Model-based Testing of Mobile Apps. IEEE Software 32 (2014).
Android.com. 2008. Ul/Application Exerciser Monkey in Android
Studio. https://developer.android.com/studio/test/monkey.html.
Android.com. 2020. Android Emulator. https://developer.android.
com/studio/run/emulator.

[2]

[3]

[4]

[5]

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator

[6] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and
Konrad Rieck. 2014. DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket. In Proc. of NDSS.

Arzt, Steven and Rasthofer, Siegfried and Fritz, Christian and Bodden,
Eric and Bartel, Alexandre and Klein, Jacques and Le Traon, Yves and
Octeau, Damien and McDaniel, Patrick. 2014. Flowdroid: Precise Con-
text, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis
for Android Apps. In Proc. of ACM PLDI.

Leo Breiman, Jerome H. Friedman, Richard. Olshen, and Charles J.
Stone. 1984. Classification and Regression Trees. Encyclopedia of
Ecology 40, 3 (1984), 582-588.

Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2019. Droid-
cat: Effective Android Malware Detection and Categorization via App-
level Profiling. IEEE Transactions on Information Forensics and Secu-
rity 14, 6 (2019), 1455-1470.

Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014. Peeking into
Your App without Actually Seeing it: Ul State Inference and Novel
Android Attacks. In Proc. of USENIX Security.

Fan Dang, Zhenhua Li, Yunhao Liu, Ennan Zhai, Qi Alfred Chen,
Tianyin Xu, Yan Chen, and Jingyu Yang. 2019. Understanding Fileless
Attacks on Linux-based IoT Devices with HoneyCloud. In Proc. of
ACM MobiSys.

Erik Derr. 2017. axplorer. https://github.com/reddr/axplorer.
dlgroupuoft. 2018. PScout. https://github.com/digroupuoft/PScout.
William Enck, Peter Gilbert, Seungyeop Han, et al. 2014. TaintDroid:
An Information-flow Tracking System for Realtime Privacy Monitoring
on Smartphones. ACM Transactions on Computer Systems 32,2 (2014).
Adrienne Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proc. of ACM CCS.
Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve
Hanna, and Erika Chin. 2011. Permission Re-Delegation: Attacks
and Defenses. In Proc. of USENIX Security.

Yanick Fratantonio, Chenxiong Qian, Simon Chung, and Wenke Lee.
2017. Cloak and Dagger: From Two Permissions to Complete Control
of the UI Feedback Loop. In Proc. of IEEE S&P.

Bin Fu, Jialiu Lin, Li Lei, Christos Faloutsos, Jason Hong, and Norman
Sadeh. 2013. Why People Hate Your App: Making Sense of User
Feedback in a Mobile App Store. In Proc. of ACM KDD.

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.
2013. Reran: Timing and Touch-sensitive Record and Replay for
Android. In Proc. of IEEE ICSE.

[20] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. 2012. Riskranker: Scalable and Accurate Zero-day Android
Malware Detection. In Proc. of ACM MobiSys.

Google Group. 2009. Android-x86 — Porting Android to x86. http:
/lwww.android-x86.org/.

Chih-Wei Huang. 2016. Intel Houdini. https://osdn.net/projects/an
droid-x86/scm/git/vendor-intel-houdini/.

INRIA. 2010. Scikit-learn. http://scikit-learn.org/stable/index.html.
Jason Brownlee. 2016. Data Leakage in Machine Learning. https://
machinelearningmastery.com/data-leakage-machine-learning/.
Xuxian Jiang and Yajin Zhou. 2012. Dissecting Android Malware:
Characterization and Evolution. In Proc. of IEEE S&P.

O. Jon and M. Charlie. 2012. Dissecting the Android Bouncer.
https://jon.oberheide.org/files/summerconi2-bouncer.pdf.

Jemin Lee and Hyungshin Kim. 2016. QDroid: Mobile Application
Quality Analyzer for App Market Curators. Mobile Information Systems
2016, 1 (2016), 1-11.

Hong Bo Li, Wei Wang, Hong Wei Ding, and Jin Dong. 2010. Trees
Weighting Random Forest Method for Classifying High-dimensional
Noisy Data. In Proc. of IEEE ICEBE.

Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emil-
iano De Cristofaro, Gordon J. Ross, and Gianluca Stringhini. 2017.
MaMaDroid: Detecting Android Malware by Building Markov Chains

[7

—

[8

[t

[9

—

(10]

[11]

[12]
[13]
[14]

[15

[16]

[17]

(18]

[19]

[21]
[22]

[23]
[24]

[25]
[26]

[27]

(28]

[29]

of Behavioral Models. In Proc. of NDSS.

John H. McDonald. 2019. Spearman Rank Correlation. http:/www.bi

ostathandbook.com/spearman.html.

Naser Peiravian and Xingquan Zhu. 2013. Machine Learning for

Android Malware Detection Using Permission and API Calls. In Proc.

of IEEE ICTAL

Rovo89. 2016. XposedBridge. https://github.com/rovo89/Xposed

Bridge/wiki/Development-tutorial.

Arshad Saba, Ali Shah Munam, Khan Abid, and Ahmed Mansoor. 2016.

Android Malware Detection & Protection: A Survey. International

Journal of Advanced Computer Science and Applications 7, 2 (2016).

Schulz, Michele N and Landstrom, Jens and Hubbard, Roderick E.

2013. MTSA-A Matlab Program to Fit Thermal Shift Data. Analytical

biochemistry 433, 1 (2013), 43-47.

Akanksha Sharma and Subrat Kumar Dash. 2014. Mining API Calls

and Permissions for Android Malware Detection. In Proc. of CANS.

Simone Silvestri, Rahul Urgaonkar, Murtaza Zafer, and Bong Jun Ko.

2018. A Framework for the Inference of Sensing Measurements based

on Correlation. ACM Transactions on Sensor Networks 15, 1 (2018).

Mingshen Sun, Min Zheng, John CS Lui, and Xuxian Jiang. 2014.

Design and Implementation of an Android Host-based Intrusion Pre-

vention System. In Proc. of IEEE ACSAC.

Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo

Cavallaro. 2015. CopperDroid: Automatic Reconstruction of Android

Malware Behaviors. In Proc. of NDSS.

[39] Guanhong Tao, Zibin Zheng, Ziying Guo, and Michael R. Lyu. 2018.
MalPat: Mining Patterns of Malicious and Benign Android Apps via
Permission-Related APIs. IEEE Transactions on Reliability 67 (2018).

[40] Dali Wang, Zhifen Lin, Ting Wang, Xiruo Ding, and Ying Liu. 2017. An
Analogous Wood Barrel Theory to Explain the Occurrence of Hormesis:
A Case Study of Sulfonamides and Erythromycin on Escherichia Coli
Growth. PloS One 12,7 (2017).

[41] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos.
2012. Permission Evolution in the Android Ecosystem. In Proc. of
IEEE ACSAC.

[42] M. Wong and D. Lie. 2016. IntelliDroid: A Targeted Input Generator
for the Dynamic Analysis of Android Malware. In Proc. of NDSS.

[43] D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu. 2012. Droidmat: Android

Malware Detection through Manifest and API Calls Tracing. In Proc.

of IEEE Asia JCIS.

WenChieh Wu and ShihHao Hung. 2014. DroidDolphin: A Dynamic

Android Malware Detection Framework Using Big Data and Machine

Learning. In Proc. of ACM RACS.

Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson, Tianyin

Xu, Ennan Zhai, Yong Li, and Yunhao Liu. 2019. Understanding and

Detecting Overlay-based Android Malware at Market Scales. In Proc.

of ACM MobiSys.

Ming Yang, Shan Wang, Zhen Ling, Yaowen Liu, and Zhenyu Ni.

2017. Detection of Malicious Behavior in Android Apps through API

Calls and Permission Uses Analysis. Concurrency and Computation:

Practice and Experience 29, 19 (2017).

[47] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuanchao Huang,
Jiaming He, Tianyin Xu, and Ennan Zhai. 2019. Mobile Gaming on
Personal Computers with Direct Android Emulation. In Proc. of ACM
MobiCom.

[48] Tianda Yang, Yu Yang, Kai Qian, Dan Chia-Tien Lo, Ying Qian, and
Lixin Tao. 2015. Automated Detection and Analysis for Android
Ransomware. In Proc. of IEEE HPCC.

[49] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014.
Droid-sec: Deep Learning in Android Malware Detection. ACM SIG-
COMM Computer Communication Review 44, 4 (2014), 371-372.

[50] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You,
Get Off of My Market: Detecting Malicious Apps in Official and Alter-
native Android Markets. In Proc. of NDSS.

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[44]

[45]

[46]

https://github.com/reddr/axplorer
https://github.com/dlgroupuoft/PScout
http://www.android-x86.org/
http://www.android-x86.org/
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
http://scikit-learn.org/stable/index.html
https://machinelearningmastery.com/data-leakage-machine-learning/
https://machinelearningmastery.com/data-leakage-machine-learning/
https://jon.oberheide.org/files/summercon12-bouncer.pdf
https://jon.oberheide.org/files/summercon12-bouncer.pdf
http://www.biostathandbook.com/spearman.html
http://www.biostathandbook.com/spearman.html
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial
https://github.com/rovo89/XposedBridge/wiki/Development-tutorial

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 Collaborative Study
	4.1 App Dataset
	4.2 Dynamic Analysis Engine
	4.3 Understanding Tradeoffs for API Selection
	4.4 Key API Selection Strategy
	4.5 Further Enriching the Feature Space

	5 System Development
	5.1 Emulation Environment Optimization
	5.2 System Deployment and Performance
	5.3 System Evolution
	5.4 Discussion on Other Aspects

	6 Conclusion and Future Work
	Acknowledgments
	References

