Principled Unearthing of TCP Side Channel Vulnerabilities

Yue Cao Zhongjie Wang Zhiyun Qian
UC Riverside UC Riverside UC Riverside
Riverside, California Riverside, California Riverside, USA
ycao009@cs.ucr.edu zwang048@ucr.edu zhiyunq@cs.ucr.edu
Chengyu Song Srikanth V. Krishnamurthy Paul Yu
UC Riverside UC Riverside U.S. Army Combat Capabilities
Riverside, USA Riverside, USA Development Command
csong@cs.ucr.edu krish@cs.ucr.edu Army Research Laboratory
Adelphi, USA
paullyu.civ@mail. mil
ABSTRACT KEYWORDS

Recent work has showcased the presence of subtle TCP side chan-
nels in modern operating systems, that can be exploited by off-path
adversaries to launch pernicious attacks such as hijacking a connec-
tion. Unfortunately, most work to date is on the manual discovery of
such side-channels, and patching them subsequently. In this work
we ask “Can we develop a principled approach that can lead to
the automated discovery of such hard-to-find TCP side-channels?”
We identify that the crux of why such side-channels exist is the
violation of the non-interference property between simultaneous
TCP connections i.e., there exist cases wherein a change in state
of one connection implicitly leaks some information to a different
connection (controlled possibly by an attacker). To find such non-
interference property violations, we argue that model-checking is
a natural fit. However, because of limitations with regards to its
scalability, there exist many challenges in using model checking.
Specifically, these challenges relate to (a) making the TCP code base
self-contained and amenable to model checking and (b) limiting
the search space of model checking and yet achieving reasonable
levels of code coverage. We develop a tool that we call SCENT (for
Side Channel Excavation Tool) that addresses these challenges in
a mostly automated way. At the heart of SCENT is an automated
downscaling component that transforms the TCP code base in a
consistent way to achieve both a reduction in the state space com-
plexity encountered by the model checker and the number and
types of inputs needed for verification. Our extensive evaluations
show that SCENT leads to the discovery of 12 new side channel
vulnerabilities in the Linux and FreeBSD kernels. In particular, a
real world validation with one class of vulnerabilities shows that
an off-path attacker is able to infer whether two arbitrary hosts
are communicating with each other, within slightly more than 1
minute, on average.

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3354250

TCP; side-channels; model-checking

ACM Reference Format:

Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V. Krish-
namurthy, and Paul Yu. 2019. Principled Unearthing of TCP Side Channel
Vulnerabilities. In 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’19), November 11-15, 2019, London, UK. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3319535.3354250

1 INTRODUCTION

TCP side-channels are critical vulnerabilities that can be exploited
by adversaries towards launching dangerous attacks. Prior studies
have demonstrated that TCP side-channels can be exploited by off-
path attackers to perform idle port scans [16], to estimate the round
trip time (RTT) of a connection [1], or to infer how many packets
were exchanged over a connection [11]. They even allow attackers
to hijack connections between a client and a server [7, 11, 18, 37, 38],
These side-channels are an artifact of unforeseen code interactions,
can arise with the deployment of large code bases, and are subtle
and hard to find.

Most of the aforementioned side-channel vulnerabilities are dis-
covered manually by domain experts. While manual analysis has
been immensely useful in discovering and patching such subtle vul-
nerabilities, it requires a significant effort, and is thus not scalable
and cannot guarantee the elimination of such vulnerabilities. In
this work our goal is to develop a principled approach to automate
the discovery of such hard-to-find TCP side-channel vulnerabilities.

In principle, TCP side-channel vulnerabilities are violations of
the non-interference property [21] between simultaneous TCP con-
nections, i.e., the existence of one connection can have an observ-
able effect on the other connection(s). Thus, off-path attackers can
use their own connections to the server to infer the properties
(e.g., sequence number) of a targeted TCP connection between a
victim client and the same server. Specifically, an attacker can send
spoofed packets with guessed properties to the server. If the guess
is correct or close, the spoofed packet will cause a change in the
state at the server which in turn, causes changes pertaining to the
attacker’s own connection to the server.

https://doi.org/10.1145/3319535.3354250
https://doi.org/10.1145/3319535.3354250

Based on this observation, we design a tool SCENT, to find TCP
side-channels in a complex code base with very little manual inter-
vention. At a high level, SCENT detects TCP side-channel vulner-
abilities by detecting violations of the non-interference property
between connections. In particular, it uses two instances of the
same server (TCP stack), where the only differences are in the secu-
rity sensitive properties (e.g., sequence number, acknowledgement
number, or port) of an idle (victim) connection. It then sends a set
of packets (inputs) to the two servers. If the responses from the
servers are different, then SCENT has detected a violation of the
non-interference property.

While this approach is intuitive, the challenging part is deter-
mining what kind of packets to send in order to induce such a
violation. Given the large search space of possible combinations
of TCP packets, popular dynamic testing techniques like symbolic
execution and fuzzing all face efficiency problems. In this work, we
resort to bounded model checking [14, 29, 31] to drive an analysis
to answer this question. Compared to bounded testing [32, 42] (i.e.,
blindly enumerating all possible packets up to the bound), bounded
model checking enjoys the benefit of state deduplication and is
thus, much more efficient (see §8 for more details).

Unfortunately, applying model checking to a real-world TCP
stack implementation is non-trivial. First, we need to prepare a self-
contained model that is amenable for model checking (otherwise
the code base is simply too large). Previously, the work by Enasfi
et al., [16] has adopted model checking to detect non-interference
property violations in the network stack. However, due to the com-
plexity of implementation level code, they had to manually craft a
much simplified abstract model for the analysis. Such an approach,
while useful in their context of interest (discovering idle port scan
techniques), cannot guarantee that subtle TCP side-channels buried
in complex implementations like the Linux kernel, will not be (unin-
tentionally) removed during the abstraction. To avoid this problem
(high false negatives), we opt to use the unmodified TCP stack
implementation for analysis and only abstract away code that is
outside the core TCP stack.

The second challenge is state explosion. TCP implementations
from real-world kernels contain many variables; if we blindly mark
all the variables as states, then any change to any variable will be
deemed as a new state. However, if a variable is never “shared” be-
tween two connections, it cannot leak any information and is thus,
not interesting to track. To solve this large state space challenge,
we develop a conservative static analysis within SCENT to safely
reduce the state space.

The last challenge is that bounded model checking has bounded
code/state coverage and hence, cannot detect all vulnerabilities.
For instance, the TCP side-channel discovered by Cao et al., [7]
requires sending 100 packets, which is way beyond the capability
of bounded model checking. To solve this problem, we developed a
program transformation technique to automatically simplify the
model as a way to improve the code coverage. In particular, we
observe that many uncovered cases relate to branches that compare
an attacker-controllable value with a fixed value (e.g., the global rate
limit exploited in [7]), and the problem is that the bounded input
space cannot drive the variable side of the branch to go beyond
the fixed threshold. Based on this observation, SCENT automatically
identifies such branches and downscales the fixed threshold so

that both branches can be visited during a subsequent iteration of
bounded model checking.

To demonstrate the effectiveness of our approach, we have imple-
mented a prototype of SCENT and created two realistic TCP models,
one based on the Linux kernel (version 4.8.0) and the other one
based on the FreeBSD kernel (version 13.0)! We applied SCENT on
these two models and found 12 new side-channel vulnerabilities.
A real world evaluation shows that in particular, with one of the
classes of vulnerabilities discovered, an off-path attacker is able to
infer whether two arbitrary hosts are communicating with each
other, within slightly more than 1 minute on average. The evalu-
ation results also show that our transformation step is critical for
finding these side-channels—none of them can be found without the
transformation. Besides, we also did not observe any false positives
during our evaluation.

Contributions. Our contributions can be summarized as follows:

o We design and implement SCENT, a system that finds subtle TCP
side-channels by detecting violations of the non-interference
property between TCP connections, using model checking as a
basis.

e We developed several techniques to automate the process of
creating self-contained code amenable for use with an off-the-
shelf model checker, from real-world kernels that keep the core
TCP implementation intact. We applied these techniques to the
Linux and the FreeBSD operating systems and open sourced the
extracted models at [41].

e We developed a code-transformation-based model simplifica-
tion technique that improves code coverage for bounded model
checking.

e We applied SCENT to the Linux and the FreeBSD TCP models and
found 12 new side-channel vulnerabilities. We open sourced our
system and released the complete details of findings at [41].

2 BACKGROUND

In this section, we briefly describe the non-interference property
and why it is relevant to the problem of interest. Subsequently,
since we use model checking as a basic building block, we provide
relevant background in brief.

The non-interference property. In recent decades, the non-
interference property [21] has been widely used as a requirement
to prove that neither explicit nor implicit information leakage can
occur in a scenario of interest. Because side-channels are a con-
sequence of information leakage, the non-interference property
can be used as a verification condition to ensure that they do not
exist. If the property is violated, it indicates the potential presence
of an information leak, which can in turn lead to an exploitable
side-channel vulnerability. With regards to the context of interest,
if this property holds, it implies that a state change on a given
connection does not (implicitly or explicitly) become observable in
another connection.

Ensafi et al. [16] applied model checking to verify the non-
interference property in the TCP/IP stack, towards finding side

SCENT can be applied to any OS kernel as long as the source code is available. Therefore,
SCENT can be potentially applied on Windows in its internal environments.

(1 —_ .
Victim Connection
s

Server

Off-path Attacker -

Figure 1: Threat model

channel vulnerabilities relating to idle port scans. While they find
two port scan vulnerabilities, we point out that they use model
checking more like a validation tool instead of a tool to discover
these; they heuristically specify the scope of the TCP code (to only
consider the specific shared resources across connections) and then
manually build the model.

In this work, we seek to perform non-interference analysis in
more general attack scenarios. Importantly, since a manually ab-
stracted model like that in [16] is very approximate and may miss
vulnerabilities that exist in real code, we explore applying model
checking to real TCP implementations from commodity kernels.

Software model checking. Model checking [13, 40] exhaustively
checks if a given model of a system satisfies a given formal prop-
erty. If violations are encountered, the model checker outputs
counter examples which enable the locatation of where a viola-
tion has occurred with relative ease. Model checking methods can
be broadly classified into two categories viz., those that use abstrac-
tion (e.g., SLAM [3], BLAST [22], Event-Driven Software Verifica-
tion [25]) and those that are applied directly on implementations
(e.g., VeriSoft [20], CMC [34] [33], and Model-Driven Software Ver-
ification [24]). Since the former relies on extracting an abstraction
from the real code (and thus can result in significant approxima-
tion), we use the second category to verify the non-interference
property in our work.

Specifically, the basis for our work is a TCP event-driven exe-
cution model that we build. Different from previous work relating
to the use of model checking with an abstracted state machine
of either TCP or the network stack (e.g., [33, 34]), we check for
possible violations of the non-interference property in real TCP im-
plementations. Our model is much more complicated since we have
to look at verifying a property relating to connection interactions
(as discussed later our model contains 4 live TCP connections with
6 different sockets). Furthermore, we need to address challenges
relating to making the model self-contained (to ensure that it can
be used with an off-the-shelf model checker) and concise (without
which the complexity of the code will make it untenable to the
model checker). Unfortunately, even just the core TCP stack imple-
mentation is too complex for the model checker to exhaustively
check all possible states of the code. For this reason, we can only
perform bounded model checking and therefore the conclusions
(existence or absence of violations) are only applicable to a bounded
set of states instead of the entire code base.

In-window seq Out-of-window seq

Serverl Client1 Off-path Client2 Server2
acker

att

ACK e e ACK
count _——T7 RST RST ~ T =~ — _J||count
=100|14— DFOI; =100
ACK
count||| Challenge

=99 ACK

/\

— 100 RSTs | 100 RSTs I

ACK
count|[| 9o~ L0 IlAck
=0 |||challenge \/ Challenge count

ACKs ACKs

Figure 2: An illustrative TCP Side-Channel Vulnerability.

3 THREAT MODEL

Our threat model is that of an off-path TCP attacker as shown
in Figure 1. We consider 3 hosts viz., a victim client, a victim server,
and an off-path attacker. The attacker can either send packets on
its own connection to the server, or send spoofed packets with the
victim client’s IP address or a victim server’s IP address. Different
from a Man-in-the-Middle (MITM) attack, the off-path attacker can
neither eavesdrop nor inject packets into the victim connection.
Instead, it attempts to exploit a side-channel vulnerability to infer
the state of the victim connection based on the packets sent/received
on its own connection. Specifically, it could target the inference of
(a) the port number of the victim client (the server’s port number
is usually known), (b) the sequence (SEQ) number from the client,
and/or (c) the acknowledgement (ACK) number expected by the
server. By inferring just the port number, the attacker can determine
if there is an established victim connection between the server and
the client. With the port number and the SEQ number expected by
the server inferred, the attacker can launch a DoS attack by sending
a packet with the reset (RST) flag (and correct SEQ number) to
terminate the victim’s connection. If all the three attributes are
inferred, the attacker can hijack the victim connection and inject
malicious payloads as shown in [7]. Note that any machine around
the world can launch an off-path attack, as long as it is able to send
spoofed packets with the victim client’s (or server’s) IP address.

Previous TCP inference attacks [7, 11, 37, 38] follow a “guess-
then-check” strategy. Specifically, during the guess phase, a spoofed
packet is sent with a guessed value (for either or a combination
of the port number, SEQ number and/or ACK number). A correct
guess will be “accepted” by the TCP state machine thus causing
it to transit into a state that is different from that due to wrong
guesses. During the subsequent check phase, the attacker exploits
the side-channel vulnerability to leak the state transition of the
victim’s connection, which allows the attacker to tell whether the
guess is correct or not. Like in these efforts, the focus of this work
is on identifying similar “software-induced”? side-channels but by
using a more principled approach.

An illustrative TCP side-channel vulnerability. To illustrate
how an off-path attacker can exploit a side channel vulnerability to
determine the state of a victim connection (in terms of port number,

2Other types of side channels, such as timing based ones [11], are out of the scope.

SEQ number or ACK number) consider the recent example from [7].
Figure 2 captures this example wherein the off-path attacker infers
the expected SEQ number of the victim connection to the server.

To understand how the attack works, consider two cases. In the
first case, the SEQ number guessed by the attacker is within the
“receive window” (in-window) of the server while in the second case,
the SEQ number is out-of-window. The attacker sends a spoofed
RST packet with a guessed SEQ number. If the number is in-window,
the server responds to the victim with a “Challenge ACK” packet
to ask the client to confirm the RST. Since the victim client did not
really send the RST packet, it will simply discard the Challenge ACK
packet. To control how many Challenge ACKs can be sent within
a time period, the Linux kernel maintains a global shared counter
(equal to 100 prior to the work in [7]). Thus, when the attacker
subsequently sends in-window RST packets on its own connection
(one after the other as shown in the bottom part of the figure), it
gets back 99 Challenge ACKs; in contrast, if the spoofed RST packet
is out-of-window, the attacker will receive 100 Challenge ACKs.
This difference/side-channel can then be used to infer whether the
guess is correct or not.

What is evident in the above example is that, by observing the
number of Challenge ACK responses from the server on its own
connection, the attacker can distinguish between two cases with
regards to its spoofed packet viz., whether the SEQ number guessed
is within the server’s receive window or not. Thus, this is a viola-
tion of the non-interference property i.e., the state of the client’s
connection influences how many Challenge ACKs are received by
the off-path attacker.

4 SCENT OVERVIEW

In this section, we provide an overview of our system SCENT and
its core innovation.

4.1 Workflow
Figure 3 shows the overall workflow of SCENT. Specifically,

e Taking the source code of a commodity OS kernel as input,
the Model Generator (§5) generates a self-contained model®
amenable for application of an off-the-shelf model checker and
pushes this initial model into a queue.

e The Non-interference Checker (§6), at each step, takes one self-
contained TCP model from the queue, constructs an attack sce-
nario, and executes bounded model checking to verify the non-
interference property between connections.

o If violations are found by the model checker, validated counter-
examples are output as the proof-of-concepts for possible TCP
side-channel vulnerabilities inside the kernel’s TCP stack imple-
mentation.

o Finally, to mitigate the limited code coverage of bounded model
checking, the Model Transformer (§7) automatically generates
a new, downscaled model and pushes it into the queue for the
next round of analysis.

3Note that we only abstract code irrelavent to TCP stack; previous work abstracts the
TCP stack itself.

TCP Kernel
Source Code

Model
Generator

Original Test Model

TCP Model Queue

<«—Transformed Test Model

MNaon-
interference Branch Program
Checker Information Transformer

Proof of
Vulnerability

<A
ounter Validator
Examples

Figure 3: Overview of SCENT’s workflow.

4.2 Automated downscaling

While applying bounded model checking to TCP implementation
as a way to find non-interference violations is not entirely new,
SCENT solves an important and non-trivial problem. In principle
one will need to send an extremely large sequence (= oo) of packets
in order to excavate all possible violations of the non-interference
property. Unfortunately, we point out that due to the complexity of
commodity kernels’ TCP implementations, even a relatively small
sequence of TCP packets can lead to an explosion of the state space
that cannot be explored by the model checker with limited com-
putation resources (CPU time and/or memory). As a result, the
bound we can afford is considerably small (e.g., only 3 packets in
our evaluations); otherwise, the model checker will either exhaust
memory or take a prohibitively long time to finish. This further
translates to limited code coverage and impacts the effectiveness
of SCENT (i.e., it cannot detect side-channel vulnerabilities in un-
covered code). For example, the vulnerability illustrated in Figure 2
cannot be detected as triggering it requires sending 100 RST packets.
In fact, side-channels are more likely than not, triggered by such
uncommon sequences of packets. SCENT copes with this scalability
issue via a novel technique we call automated downscaling.

Our observation is that the TCP code base contains many checks
(branches) that compare attacker-controlled variables against ei-
ther some constant values or variables that remain the same during
model checking. Due to the limited input bound, those attacker-
controlled variables have limited value ranges. When the attacker-
controlled value range does not overlap with the fixed value (cover
both sides), only one branch can be covered. However, such linear
relationships between an attacker value and a fixed value can be
satisfied easily by downscaling the fixed value (i.e., moving it tor-
wards the attacker-controlled value range). More importantly, this
transformation will not change the fundamental behavior of the
TCP implementation: without downscaling, the relationship can
still be satisfied, but simply takes significantly longer inputs and
therefore times.

To further elucidate this observation, let us revisit the example
from Figure 2. The side-channel relies on the global Challenge
ACK rate limit (a variable with fixed value 100) and the attacker
has to send 100 packets in total (one spoofed and 99 on its own
connection in the example), to trigger the information leakage.
To find this vulnerability, intuitively, the model checker will have
to examine what happens when the TCP code base has received
different numbers of packets which have the RST flag set and are

in-window (it has to perform 100 such checks). Unfortunately, this
is not possible during our bounded model checking because we
can only increase the counter from 0 to 3. However, if we were to
simply (artificially) change this rate limit to say 2, then we will be
able to trigger this vulnerability and observe the difference.
Furthermore, the advantage of this approach is that it also inher-
ently reduces the required input space we need to enumerate. For
example, one can reduce the space of possible SEQ numbers (from
2%2 to a much smaller value) by downscaling other fixed constants
(e.g., the receive window size). This also contributes to a drastic
reduction in the time-complexity associated with our analysis.

Practical Realization. To practically realize automated downscal-
ing, we pursue an iterative approach (alluded to in the workflow
described in § 4.1). This approach is driven by the key insight that
there is a tight coupling between the input space (i.e., length of our
input packet sequence and the space of the fields in the TCP header
such as SEQ number space) and the values to which the limits in
the code are to be changed. In the example above, changing the
limit to 2 requires the attacker to send a sequence of two packets. If
on the other hand, we knew that the attacker had a packet sequence
of length 5, the limit could be anywhere from 2 to 5.

Given this, for ease of realization, to begin with, we fix the length
of the input packet sequence and the sizes of the header fields in
each, but do not modify the TCP code that is input to the model
checker. During the model checking phase, we log information
relating to what parts of the code (what branches) are not covered
because of control statements relating to such limits. We then use
concolic execution to establish transformations of such constraints
(guided by the constraints imposed on the input packet sequence)
that may make such coverage viable (using the program transformer
module shown in Fig. 3). The transformed model is then considered
for bounded model checking. We iterate the process until we either
(a) do not find any additional transformations that we can perform
or (b) we exceed a pre-specified time limit.

5 MODEL GENERATOR

In this section, we describe in detail how we address the challenges
in constructing a standalone TCP code base that can be input to
the model checker and how we initialize variables to ensure that
the model begins with a valid and consistent TCP state.

In principle, one can apply the design principles from [24] to
construct a test model, which combines a test-harness and the real
kernel code with an initial state. Given this initial state, the test
harness would enumerate a sequence of packets as input, and calls
the TCP packet reception code to explore the set of reachable states.
Here, the state of the model is defined as the union of internal
states at a host, and is determined by the values of global variables
and heap objects that are reachable by the connection object (i.e.,
the socket). Unfortunately, applying model checking directly on a
kernel code in its entirety, is not practical. This is because model
checking has high associated time complexity, and using the entire
kernel code base as the model can make the analysis prohibitively
costly. More importantly, many of the paths explored by the model
checker will have no bearing on what we seek to analyze. Last
but not least, there is significant non-determinism in real TCP
implementations which will interfere with the model checking.

Test Model
TCP Kernel Close Salf-containad Set of Systems
Source Codes the System System for All Hosts

" i Globals and Heap
Static Taint 4 ek
Analysis Fields (visited)

End Host
Snapshot

Instrumented
Model Initialization

Init
Generator

;

Figure 4: Workflow of the Model Generator.

Therefore, assembling a standalone TCP implementation without
any kernel dependencies becomes important for the feasibility of
our approach. However, extracting the TCP code from a kernel is
challenging given the fact that the TCP code interacts with the rest
of the kernel via complex interfaces. We solve this challenge by
identifying boundaries where the code can be pruned and manually
constructing stub implementations to close the boundaries.

In addition to generate a self-contained TCP code base for the
model checker, another challenge is how to properly initialize the
model. SCENT solves this challenge by automatically extracting
correct values from a memory snapshot.

5.1 Building a Standalone TCP Model

The high-level guideline for building a standalone TCP code base is
that we want to make sure that all the code related to the TCP stack
remains exactly the same as in the target kernel, while code not
related to the TCP stack should be minimized/abstracted. Following
this guideline, we use a simple worklist-based, semi-automated
approach to gradually grow the code base until the whole TCP
stack is included.

(1) We initialize the worklist with the entry function of the TCP
layer when a packet is received (e.g., tcp_v4_rcv in Linux and
tcp_input in FreeBSD).

(2) We try to remove one function from the worklist. If the worklist
is empty, we terminate the process; otherwise we move on to
the next step.

(3) We check if the current function belongs to the TCP layer (based
on our domain knowledge). If so, we copy the whole function to
the standalone mode and move on to the next step; otherwise
we manually write a stub function to abstract it and go back to
Step (2).

(4) We find all the callees of the current function and add them
into the worklist and go back to Step (2). For indirect calls, we
manually resolve the target based on domain knowledge.

Note that because in our attack scenario (§6.2) we keep the victim
connection idling, our current model excludes functions relating to
sending packets on that connection.

5.2 Initializing the Standalone TCP Model

Because our TCP model is built using partial kernel code starting at
an entry function, we need to initialize what we call environmental
variables at this entry point. This is to ensure that the initial state
provided to the model checker is correct and consistent with TCP

sk object

tcp_prot
sk.sk_prot
[pifget: Y
sysctl_tcp_mem
tcp_prot.s (array)
| ysctl_mem '::> offset:}Z2 sysctl_tcp_mem[1]

Offset chain: sk-{offset:X)-load:typel-(offset:Y)-load:type2-(offset:Z)-load:type3

Figure 5: Using offset chains to locate the target variables
during initialization.

executions. Such environmental variables include the entry func-
tion’s arguments, global variables, and heap objects that may be
accessed or reachable by the code extracted above. We point out
that there is no need to initialize local variables or heap objects that
are allocated (and initialized) during the execution of the model.

Manual identification of all the variables that have to be ini-
tialized is not only an onerous task but is also error-prone. Thus,
we develop an automated procedure to initialize them based on a
memory snapshot from a running kernel, which is captured when
the entry function is invoked, Because our standalone model runs
in user-space, values from the snapshot cannot be directly used
as they could be pointers. So our method needs to (1) identify all
accessible variables and their types, (2) locate each target variable
in the snapshot (i.e., determine its address), (3) extract its value
according to its type and size. Finally, this will allow us recreate
the variables and initialize their values in the model checker.

We achieve these goals via a process that is similar to previous
work on recovery of kernel objects from memory snapshots [8].
First, starting from anchor variables (i.e., entry function’s argu-
ments and global variables explicitly referred to in the model), we
use static taint analysis to recursively identify all accessible/reach-
able heap and global objects by following pointers. Due to the exis-
tence of typecasting, we identify pointers in two ways: (1) based
on the variable/field’s declaration type and (2) based on the use of
the variable/field.

To locate variables inside the memory snapshot, we maintain the
point-to relationship between kernel objects in a data structure that
we call offset chain, which tracks how each variable is derived from
an anchor variable and the used type associated with the variable.
The offset chain allows us to traverse the snapshot and recover the
corresponding variables.

Once we locate a variable inside the snapshot, we extract its
“Initialization” value based on whether it is a pointer or not. For non-
pointer variables, we will directly use its value from the snapshot;
for pointer variables, we will allocate the target variable statically
in the model checker and assign the target object’s address as the
initialization value. One particular challenge in this step is how to
decide the size of the variable if its type is an array with unknown
size. For example, in Linux, the packet header pointer skb->head is
a pointer to an unsigned char, which can be used to visit the packet
payload with a specific offset (via a value of header field doff). As

associating size with a pointer is a hard program analysis problem,
currently we solve this challenge manually.

Figure 5 illustrates this process via an example. In the figure, each
offset depicted represents the address offset between the beginning
of a heap object and the current field in the object. Given the base
address in the snapshot and of fset: X, our method can obtain the
corresponding field value. If the field is a pointer, its value can be
further dereferenced in the snapshot to locate the next (new) heap
object. Given this new heap object’s base address and offset:Y, a
new field can be located and so forth.

6 NON-INTERFERENCE CHECKER

In this section, we describe how we detect violations of the non-
interference property between two TCP connections.

6.1 Constructing the attack scenario

To detect violations of the non-interference property between two
connections, we craft an attack scenario that is similar to what
was captured in the illustrative example (Figure 2). The scenario
consists of two servers (Serverl and Sever2), two clients (Client1
and Client2), and an attacker (Figure 6). Both servers and clients
use the same self-contained model from the Model Generator. A
connection between Server1 and Client1, and Server2 and Client2 is
initialized before testing. The two connections are identical except
a specific secret relating to the victim connection. We use the con-
nection between Client1 and Server1 to model the case when the
guessed secret is correct, and use the connection between Client2
and Server2 to model the case when the guessed secret is wrong.

Ideally, to find all possible side-channel vulnerabilities, the at-
tacker (test-harness) should exhaustively generate all possible in-
put packet sequences, including both spoofed packets (with the IP
address of the victim clients) and packets on its own legitimate con-
nection. Unfortunately, given the unbounded search space, this is
simply infeasible. So our test-harness only enumerates all possible
input packet sequences up to a bound (i.e., performs bounded model
checking). Once the test-harness generates a packet sequence, it
sends the same sequence to both servers. Because only the secret
attribute is different for the two victim connections, if the packets
received from the two servers are different (including the number
of packets, the pattern/order of received packets, the contents, etc.),
the non-interference property is violated and the secret is leaked.
The counter-example (packets being sent from the attacker) is then
reported as violations by the model checker.

To reduce the effort of the attacker and to make the model more
deterministic, we keep the victim connections “idle” during the
model checking (i.e., neither the victim client or the server will
actively send packets in our model). By doing so, we can be sure
that differences in the received packet sequence are indeed caused
by the spoofed packet sequence. If the server and client are ac-
tively exchanging packets, it becomes hard to identify a violation
(differences may simply be due to those exchanges).

6.2 Secrets of interest

Our focus in this work is on identifying side-channel vulnerabilities
that result in the leakage of three specific secret attributes of a

“We set the secret as whether the specific port is being used by the victim connection.

<= packet interactions in TCP connection

4
AN i

— normal packet
> spoofed packet

Scenariol

Attacker

Scenario2

/ \\A
et o=
secret

Figure 6: Our setup for the scenario relating to non-
interference property verification.

Table 1: The 6 different secret settings of interest (The initial
state captures the victim socket state at the server side)

Initial State SYN-RECEIVED ESTABLISHED

secret port no.* ‘ SEQ ‘ ACK | port no. ‘ SEQ ‘ ACK

connection viz., port number, SEQ number, and ACK number. While
there could be other sensitive information (e.g., that reveals the
socket state), we focus on these since they have been shown to
be exploitable for DoS or connection hijacking [7]; however, our
approach can be used to infer the leakage of other secrets.

To formalize, we require our model checker to verify the follow-
ing three properties with respect to non-interference. The sequence
of packets received by the attacker is identical with respect to the
two servers, regardless of :

e The port numbers used in the victim connection;
e The SEQ numbers used in the victim connection; and,
e The ACK numbers appearing in the victim connection.

While previous work only examines if and how these secrets
are leaked when the victim connection is in the ESTABLISHED
state of TCP, we extend the scope to include cases wherein the
victim is in the SYN-RECEIVED state (i.e., during the three way
handshake). This is because in this state, if the attacker can acquire
the information of interest, it can infer whether the client tried to
establish a connection with the server, or even potentially establish
a fake connection itself (by sending a spoofed SYN packet with the
client’s IP address — note that in this case, the SYN-ACK returned
by the server to the victim client is simply dropped). The latter
attack can be serious in practice, since the attacker if successful,
can subsequently inject malicious data on to the server pretending
that the data came from the spoofed client’s IP address. Thus we
have a total of 6 secrets (in the two states combined) listed in Table 1.

6.3 Bounding the input packet sequence

In this work, we focus on the control bits and the secret of interest
(port, SEQ, or ACK number) in the TCP header. All other fields are
fixed, and are copied from snapshots from real connections. We
exclude the TCP header options in this work since not all systems

support these. Table 2 captures the bounded input space that the
attacker (test harness) in our scenario, generates. For fields that
have small value ranges, such as the TCP flags, we enumerate all
the possibilities, (except for FIN and congestion related ones). For
fields that have larger value ranges, we determine the range as
described below.

Recall that in our attacker scenario (Figure 6), we use the con-
nection between Client1 and Serverl to model the case when the
guessed secret is correct (the guess will automatically be wrong for
the connection between Client2 and Server2 because the secrets
are different). Therefore, for the field related to a secret of interest,
the value range is decided based on the concrete values from the
connection between Client1 and Serverl. Assume that on Client1’s
side, the port number, SEQ number, and ACK number are P, S, and
A, respectively. We will always set the port number of all gener-
ated packets to P, because this allows us to exercise the scenario
where we made a correct guess of the port number of the connec-
tion between Client1 and Serverl, and a wrong guess of the port
number of the connection between Client2 and Server2. For the
SEQ number and ACK number, because the TCP stack performs a
range check, we want to simulate cases where the guessed number
is close to, but not equal to the correct number. For this reason, we
enumerate the range [S — 2,S + 2] and [A — 2, A + 2]. Currently,
we limit these variables to this range, because with our automated
downscaling (of the receive window), the enumerated cases are
enough to explore all three of the following cases with respect to
those numbers: (a) outside the receive window, (b) exact match, and
(c) within the receive window.

We currently limit the range of the payload size to [0, 2]. This
range allows our model transformer to downscale packet size re-
lated checks; yet, it will not significantly increase the input space
or the state space.

Finally, we determine the packet length through empirical exper-
iments, i.e., given that the ranges of each packet’s fields are fixed,
we try to enumerate as many packets as possible until the model
checker either exhausts the memory or takes a prohibitively long
time to finish. On our evaluation platform, we can only enumerate
a maximum packet sequence length of 3.

6.4 Deduplication

Since different input sequences can trigger the same vulnerability,
the counter-examples can also be duplicated. To find distinct vul-
nerabilities, we follow a similar approach as semantic crash bucket-
ing [43]: given a counter-example, we use the branch trace recorded
for the model transformer (§7) to locate the key branch/constraint
that leads to the different behavior and “patch” the branch so that
the counter-example will no longer yield the different behavior. One
can consider this as the opposite process compared to our model
transformation process. Then, we run all the counter-examples
again. All the other counter-examples that no longer yield the dif-
ferent behavior will be considered to be duplicates.

7 MODEL TRANSFORMER

In this section, we describe how we practically realize the vision
of automated downscaling using an iterative approach. We begin
with a limited input space and execute bounded model checking.

Table 2: Packet fields enumeration ranges. C1 means the corresponding value used by Client1 in our attack scenario. Packet
with IP equal to C1 is spoofed packet, while packet with IP equal to Attk is on attacker’s own connection.

Packet Fields Length of
P SEQ Num ACKNum | SYN | ACK | RST | PSH | URG | Payload Size | Packet Sequence
Original range | [0, 2*32) [0, 2732) [0, 2732) 0/1 0/1 | 0/1 | 0/1 0/1 [0-1460) Infinite
Bounded range | C1/Attk | [C1-2, C1+2] | [C1-2,C1+2] | 0/1 0/1 | 0/1 | 0/1 0/1 [0-2] 3

During the process, we log information relating to the code that are
not covered but relate to fixed limits (discussed earlier). We then
apply concolic executions to determine how these limits must be
transformed (flipped), to make the code coverage feasible while
adhering to the inherent constraints imposed by the chosen, limited
input space. The transformed model is then re-considered (in the
next iteration) and the process is repeated until we do not find any
new transformations that can be performed or when we exceed a
pre-specified time limit. We describe these steps in detail below.

7.1 Identifying target branches

Given the above premise, our first challenge is to locate branches
we aim to flip. To do so, we instrument our model so as to trace
all the branch instructions and dump their conditions during the
model checking phase. Then we parse the trace and look for branch
conditions (a relation operation like <,>) that have one operand
that varies (e.g., a stateful variable), while the other operand is
always a fixed value. Next, we check if both the true branch and
false branch are visited during model checking; if only one branch
is visited, we have found a target branch.

7.2 Determining expected values

After identifying the target branch, the next step is to determine
the expected value. Given that the other operand imposes a range
[1, k], we have two general options: we can either move the fixed
value to the other side of the range (> h or < [) or move it to the
middle of the range. In this work, we choose to move the value
to the middle of the range for the following reason. The goal of
the non-interference checker is to find a behavior that differs be-
tween Server1 and Server2 when handling the same input sequence.
One reason such a difference can arise is Server1 and Server2 tak-
ing different paths at the same branch. For a target branch, the
input sequences we enumerate can only go down one path, with
both servers; otherwise we would have observed these cases. So
if we move the fixed operand to the other side of the range, the
input sequence still can only go down only one path, which is not
particularly useful for revealing potential different outputs.

7.3 Identifying targets for transformation

The goal of our model transformer is to rewrite the program so that
our limited input packet sequence can visit both the true and false
conditions of a branch. After identifying a target branch, there are
multiple ways to rewrite the program to achieve this goal. One way
is to replace the relational operation with one that compares the
variable operand with a smaller but fixed constant. However, this
simple approach could introduce inconsistencies when the operand
with the fixed value is derived from one or more program variables

that are also used in other constraints (e.g., branch conditions). To
avoid potential false positives or false negatives introduced by such
inconsistencies, we choose to modify the source variables during
initialization, instead of directly patching the branch.

There are two general approaches to identify the source vari-
able(s), data-flow (taint) analysis and symbolic execution. Because
the source variable(s) could go through a series of operations before
being used in the target branch (e.g., 1imit+10), we choose sym-
bolic execution. This approach provides us with a symbolic formula
expressing the relationship between the source variable(s) and the
value used in the target branch. Therefore, given an expected value
to be used in the target branch, we can consult a SMT solver to
automatically determine the corresponding value(s) to which the
source variable(s) need to be set during initialization. Moreover,
symbolic execution also allows us to collect all path constraints
prior to reaching the target branch. By adding these constraints
while querying for suitable initialization value(s), we can ensure
that the new value(s) will not break path constraints leading to the
target branch.

In brief, SCENT uses concolic execution to determine (a) which
variable(s) should be modified during initialization and (b) what
is the value(s) to which it must be initialized. Because we perform
concolic execution over a single trace (only to collect the symbolic
formula relating to a branch predicate), we point out that we do
not have a problem of path explosion. A sketch of the process is as
follows:

(1) SCENT conservatively symbolizes all variables that are related to
the system’s internal states. (i.e., all the global and heap objects
found in §5).

(2) SCENT applies concolic execution wherein one path recorded

during model checking is followed to reach a target branch
constraint.

(3) SCENT checks if the operand with a fixed value is symbolic
(i.e., derived from internal states). If not, we directly patch the
constant and exit; otherwise we move on to the next step.

(4) SCENT queries a SMT solver for a feasible assignment to the
internal states such that (a) the path constraints are satisfied
and (b) the operand used in the branch will fall into the range
of the variable operand.

(5) Ifthe solver can return an assignment, SCENT modifies the model
initialization procedure to assign the values returned from the
SMT solver to the related internal states; otherwise it tries to
find another recorded path that can lead to the target branch
and goes back to Step (2).

Table 3: Side-channel vulnerabilities discovered by SCENT with different initial secret settings.

0s Index- 6 Secret Settings in Table 1 Transfor
Kernel | ClassID Key Constraint that Causes Violations Different Outputs SYN_Recv Established -mation | New
port | SEQ | ACK | port | SEQ | ACK | Required
1-A RST pkt vs NULL + + Y Y
FreeBSD 2-A V_icmp_rates[3].cr.cr_rate <V_icmplim RST pkt vs NULL # # # # Y Y
13.0 3-A RST pkt vs NULL + + Y Y
4-A V_icmp_rates[4].cr.cr_rate <V_icmplim RST pkt vs NULL + + Y Y
5-B sch->sch_length >= V_tcp_syncache.bucket_limit NULL vs RST pkt + Y Y
6-C tcp_memory_allocated <sysctl_tcp_mem[2] ACK pkt vs NULL # # # # # # Y Y
7-C (e, e il] e, e, sl Immediate ACK vs Delayed ACK # # # # # # Y Y
8-C - - - ACK pkt with different window size | # # # # # # Y Y
9-B inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog SYN-ACK pkt vs NULL + + Y Y
Linux 10-B inet_csk_reqsk_queue_len(sk) >= sk->sk_max_ack_backlog SYN-ACK pkt vs NULL # # Y Y
4.8.0 11-B sk->sk_ack_backlog >sk->sk_max_ack_backlog SYN-ACK pkt vs NULL # # # # Y Y
12-D ACK pkt vs NULL # # # # Y Y
Sig challenge_count <sysctl_tcp_challenge_ack_limit QSE gti :: Egit I N : N 5 E
15-D ACK pkt vs NULL # # # # # # Y N

+: correct port number required to trigger the violation
*: correct port number and SEQ number (in-window) required to trigger the violation

#: correct port number, SEQ number (in-window) and correct ACK number required to trigger the violation

8 EVALUATIONS

In this section, we evalute SCENT on two OS implementations, viz.,
Linux 4.8.0 and FreeBSD 13.0, with the goal of answering the fol-
lowing questions:

o Effectiveness on vulnerability finding: Can SCENT find real
TCP side-channel vulnerabilities from these two kernels? (§8.2)

o Effectiveness of automated downscaling: Does automated
downscaling allow SCENT to cover more code and more impor-
tantly, find more vulnerabilities? (§8.3)

o Effectiveness of model checking: Does bounded model check-
ing offer better scalability than bounded testing? (§8.4)

8.1 Evaluation setup

Implementation details. Our implementation of SCENT is built
on a set of open-sourced program analysis platforms and tools.
The static data-flow analysis used by Model Generator is built
upon kernel-analyzer [46]. The concolic execution engine used
by Model Transformer is built on top of KLEE [6] with the Z3
SMT solver [47]. The instrumentation is built on top of the LLVM
compiler infrastructure [30]. The bounded model checking is done
using the SPIN model checker [23].

Stub function abstraction and crafting a standalone system.
As discussed in §5, we abstract a few functions to facilitate scala-
bility and make the code amenable to model checking. The details
are listed below. It initially takes us longer with Linux as we were
finalizing the methodology. However, it took us only 2.5 weeks to
build the model for FreeBSD afterwards.

e Mutex and Lock related functions: Use empty function (During
model checking, TCP is executed as a single thread process).

e Memory allocation: Pre-allocate the memory and return the cor-
responding memory object (because the model checker cannot
track dynamic memory).

e Memory release: Use empty function (because we preallocated
the memory).

e Callback functions: Use empty functions (as limited by the state
explosion issue, we only consider one interleaving of concurrent
events; therefore, we can focus on TCP mechanisms).

o Out of scope functions (IP layer or User space): Use empty function
body or craft abstractions manually, to send packets with TCP
layer information.

o Functions that include assembly code: Either replace with glibc
functions or abstract them based on their logic (examples in-
clude printk or __memcpy). Since we need to keep the model
deterministic, we replace prandom_u32 function with a fixed but
arbitrarily chosen value.

o Timer: Return the fixed value captured from a snapshot based on
a real connection (e.g., for tcp_current_mss). This helps elimi-
nate the non-determinism in the model as well as the otherwise
intractable state space (time as a new dimension) that we are not
interested in.

In general, manually abstracting functions results in a risk of miss-
ing vulnerabilities (lowered true positives); however, this step is
necessary to ensure the feasibility of model checking. If these man-
ual abstractions cause false positives, they can be easily verified (in
our experiments, we did not encounter such cases).

Testbed. We evaluated SCENT on two servers, each with a 2.6GHz
(8-core) CPU and 128G memory. The secrets of interest are tabulated
in Table 1. We consider the following scenarios: (1) the attacker
has established its own TCP connection with the server; (2) the
attacker sends packets to an open port at the server; and (3) the
attacker sends packets to a closed port at the client. We assume
that the attacker can either send packets to the client or the server,
but not send to both®. We consider 6 different settings with regards
to the victim’s secret attributes and thus, with the three attacker
scenarios, we run 36 experiments for each model. For the Linux
model, we set 2 days as a hard limit for each experiment (given that
it is more complex); while for the FreeBSD model, we set 1 day as a
hard limit. We point out that these limits were imposed based on

5The latter cases can be handled by SCENT but we leave such evaluations for future
work.

the computation capacity available, and to obtain results within a
reasonable time frame. Based on the counter examples found by
SCENT, we set up two virtual hosts (Debian OS with Linux kernel
4.8.0 and FreeBSD OS with kernel 13.0) to validate their veracity in
real settings.

8.2 Discovered side-channels

Table 3 shows the violations found during our experiment. SCENT
discovered a total of 53 distinct violations. Our manual verification
confirmed that they are all true positives.

These violations relate to a total of 15 side-channels, of which 10
are found in Linux and 5 in FreeBSD. Here we define “a side-channel”
as a branch that causes the violation. Since the same check over a
shared variable can be applied at multiple branches, the same key
constraint in Table 3 can be associated with multiple side-channels.

Five of the discovered side-channels (4,6,7,8,11) are based on
shared variables that are not discovered before, namely, close port
reset counter, tcp memory counter, and accept queue associate with
Listen socket (details to follow). Seven side-channels (1,2,3,5,9,10,12)
are new ways (i.e., execution path) to exploit known shared re-
sources [1, 16, 48]. The remaining three side-channels (13,14,15) are
known ways to exploit a known shared resource [7].

Based on the shared resources, the side-channels can be catego-
rized into 4 classes. Next, we describe the details and provide an
examplar to showcase in each case.

Reset counter based side-channels (Class A). Side-channel 1,
2, and 3 in Table 3 are caused by what is called the “open port RST
packet rate,” which is used to restrict sending too many RST packets
from an open port. Side-channel 4 is caused by what is called the
“close port RST packet rate,” which is used to restrict sending too
many RST packets from a closed port at a host.

Figure 7 shows how side-channel 1 can be exploited to infer the
port number of a victim connection. During the guess phase, the
attacker sends a spoofed ACK packet with a guessed port number.
As shown in the left part of the figure, if the port number is the one
used in the victim connection, the server will either accept or drop
the packet (depending on the SEQ and ACK numbers); the response
is sent to the client if appropriate. If the port number in the packet
is not used (right part of the figure), the server determines that an
ACK was received before any SYN packet. It therefore drops the
packet but responds to the client with an OPENPORT RST packet.
Because of this, the OPENPORT RST Counter is increased by one.
Subsequently, in a check phase, the attacker will send 200 SYN-
ACK packets to exhaust the OPENPORT RST limit (in 1 second) and
observes the number of resposnes (RSTs) received from the server.
If the attacker receives 200 RSTs, it means that the victim client is
using that port number to communicate with server; else, it infers
that the port number that it had guessed is incorrect.
SYN-backlog-based side-channels (Class B). The SYN backlog
is a buffer that stores half-opened TCP sockets from connections
during the three-way-handshake. Because the SYN backlog is asso-
ciated with the “Listen” socket, its state is shared by all connections
to the server. In order to prevent DoS attacks, the size of the SYN
backlog is constrained to a shared limit. When the number of half-
opened sockets has reached this limit, the SYN backlog buffer will

either remove an old element or directly drop the current one (based
on the OS kernel used, i.e., FreeBSD or Linux).

Side-channels 5 and 9 in Table 3, are caused because of this
feature, exploiting which an attacker can infer the port number
of a victim connection. Side-channels 10 and 11 can be used to
infer the port number, SEQ number and ACK number; however it is
practically hard to do so since the attacker needs to guess all three
secrets simultaneously (which leads to a prohibitive search space).

To illustrate, let us consider the side-channel 9 as an example,
which can be used to infer the port number of the victim connection.
To begin with, the attacker establishes a number of half-opened
sockets to just leave enough space for one additional spot in the
SYN backlog buffer. Next, as shown in Figure 8, the attacker sends
a spoofed SYN packet to server pretending to be the victim. If the
guessed port number is already used in an established connection
(i.e., the server and the client are communicating), the server will
drop the SYN or send a challenge ACK, without allocating a new
half-opened socket (as shown in the left part of the figure). Other-
wise, a half-open socket is allocated and this makes the buffer full
(as shown in the right part of the figure). Subsequently, the attacker
sends a SYN packet with its own IP address towards creating a
new half-opened socket, but more importantly to check whether
the SYN backlog is full. Because Linux implements a LIFO (Last In
First Out) algorithm to constrain the buffer size, if SYN backlog is
full (as shown in the right part of the figure) , the server simply
drops this new request for a half-opened socket without sending
a response (assuming that SYN cookies are not enabled, which is
common among quite a few cloud servers [2, 12]). Otherwise, the
server will respond with a SYN-ACK to attacker.

Different from the Linux kernel, FreeBSD implements SYN back-
log as a FIFO (First In First Out) buffer; this implies that an old
half-opened socket will be dropped if the buffer is full. In this case,
before sending the spoofed SYN packet, the attacker needs to plant
its own half-opened socket first (via a legitimate SYN). After send-
ing the spoofed SYN, it can infer whether buffer is full by checking
if the previously planted half-opened socket still exists, by send-
ing an ACK packet. Similar to the case with Linux, here we again
assume that SYN cookies are not enabled.

TCP memory-counter-based side-channels (Class C). Side-
channels 6, 7, and 8 are caused by a new shared variable discovered
by SCENT. We refer to them as the TCP memory-counter-based
side-channels. As shown in Table 3, all three vulnerabilities require
an attacker to guess port number, SEQ number (in-window) and
ACK number simultaneously, therefore they are not quite practi-
cal. Information leakage in this class are due to a global variable,
viz., tcp_memory_allocated, which can be changed by any TCP
connection. Table 3 depicts two key constraints associated with
this variable: (a) sysctl_tcp_mem[1] indicates that currently the
memory is under pressure, while (b) sysctl_tcp_mem[2] is used
to indicate if the current allocated memory has reached a hard limit
(thus, the server will drop data packets that need additional memory
allocation). The different values of the above global variable can lead
to different control flows, which in turn cause the server to send dif-
ferent packets to the attacker (in response to specific sequences of
inputs). To exploit this feature, the attacker will first send a spoofed
packet to try to change this global variable. The changes occur

Has connection

Has connection No connection

serverl Clientl Off-path client2 server2
attacker

OPENPORT I opENPORT edsk | -~
RST Counter B —~{__ RSTCoupter que =T s
) il ACK ACK ~H ol
Drop / ROS;EE\‘P O?T /
ounter
RST =199 / SYN
OPENPORT 200 ACKs | 200 ACKs reask | SYNACK T~
BT RTCoumer e
) o= c 10
200 RST| ™, |— |199RsT|

Figure 8: SYN-backlog based side
channel example when SYN-Cookie
is disabled (Vulnerability 9, Linux)

Figure 7: Reset counter based side chan-
nel example (Vulnerability 1, FreeBSD)

Table 4: Branch Coverage Information Before and After
Transformation

Kernel Before Transformations | After Transformations Increase Rate
Num Rate Num Rate
Linux 476 36.62% 598 46.00% 25.63%
FreeBSD 618 33.59% 781 42.45% 26.38%

only when the secret attributes of interest (i.e., SEQ number, ACK
number, and port number) are guessed correctly. Subsequently, the
attacker sends its own packets to try to reach the aforementioned
limit; it can observe if the global variable has changed, based on
the patterns of packets that are received. A change indicates that
its guess of the secret attributes holds true.

To showecase this class of side channels, we sketch an exemplary
case study shown in Figure 9. First, the attacker subsumes (pre-
allocates) a large volume of memory before the attack. Next, the
attacker sends a spoofed long data packet with a guessed SEQ
number and ACK number. If the SEQ number is in window and
the ACK number is correct (as shown on the left), the long data
payload is stored in a queue that holds out-of-order packets (packets
that are in window but are not equal to the next expected packet
i.e., rcv_next) causing an increase in the tcp_memory_allocated
counter; otherwise, the server will simply drop the packet (as shown
on the right). During a subsequent probing phase, the attacker
deliberately sends an out-of-order packet with a large data payload
on its own connection. This is designed to significantly increase
tcp_memory_allocated. If tcp_memory_allocated has increased
before (in the previous step) causing the server to reach its hard
memory limit, it will cause a droppage of this packet; otherwise, the
attacker will receive an ACK packet from server. Therefore, attacker
can infer whether the guesssed secret attributes (SEQ number and
ACK number) in the spoofed packet are correct or not.
Challenge counter based side channel (Class D). Side-channel
12 is a new one that is similar to previously reported old ones (13,
14, 15). Here, we explicitly include the challenge ack mechanism in
Linux 3.8.0 towards validating previously reported side channels [7];
these are based on a global variable called challenge_count and
have been extensively described in [7]. Furthermore, this has al-
ready been patched in Linux and other OSes.

Serverl Client1 Off-path client2 server2
attacker

No connection In-window sei Out-ot-window seq

& correct AC or wrong ACK
Serverl Client1 Off-path cClient2 server2
attacker
™~ memdory e
sn 1< reask pressure||| __—177 T [remery
SYN-ACK 19) ‘o mem o Data pkt | Data pkt Drop|||pressure
\ augEatedﬁ \
>< ACK
SYN regsk
o)
|| o mem Ile——T PRt with | Pkt with ———]
eyt 1288 1288 tcp_mem_
RST Drop payload | payload allocated++
memhur\{j {
ovtleirmi?r /

Figure 9: TCP memory counter based
side channel example (Vulnerability 6,
Linux)

8.3 Effectiveness of automated downscaling

Automated downscaling is the core innovation of SCENT that im-
proves the code coverage of bounded model checking. In this sub-
section, we evaluate the effectiveness of this technique.

Table 4 shows the branch coverages achieved before and after
the transformation of automated downscaling. The branch cover-
age rate was increased by 25.63% with regards to the Linux kernel
and by 26.38% with the FreeBSD kernel. Although the final branch
coverage rate is seemingly low at 46.00% (as in Linux model), dur-
ing our manual analysis, we found that many of the uncovered
branches were due to our limited input space. Specifically, we did
not explore paths related to header options, paths that involve the
server actively sending packets, paths that are related to connec-
tion termination before the “Closed” state, etc. If we discard these
branches (which we do not expect to cover) the branch coverage
rate improves to around 70%.

Besides code coverage, a more important question is whether au-
tomated downscaling enables SCENT to discover more side-channels.
The second last column in Table 3 shows the answer to this question.
In fact, none of the side-channels can be found without automated
downscaling (all require it). We believe that this highlights the im-
portance and effectiveness of our technique.

8.4 Performance of model checking

One important design choice we made when building SCENT is
whether to use bounded testing [32], wherein we can directly test
an unmodified kernel, or use bounded model checking. The benefit
of model checking is that it will visit each state only once, thereby
avoiding the execution of redundant steps and improving the perfor-
mance of testing. In this subsection, we compare the performance of
bounded model checking with bounded testing, in terms of number
of iterations. Figure 10 shows the result. Basically, bounded model
checking executes 4 orders of magnitude fewer iterations than blind
enumeration (i.e., bounded testing).

The next choice we made, that is related to the performance of
model checking, is imposing a limit on the number of packets to be
enumerated during bounded model checking. Figure 11 shows how
the time of one round of model checking increases as the number
of packets increases. Figure 12 shows how the memory usage of the
model checker increases as the number of packets increases. When

the number of packets increase to 4, it will either take too long to
test all the different configurations or exhaust all the memory on
the testbed.

9 CASE STUDY

When the port number is leaked, an attacker can infer whether the
victim client is communicating with the server (either during the
three way handshake or in ESTABLISHED state). This leaks the
victim user’s privacy. Side-channels 1, 3, 4, 5, 9 can leak port number
information, and can therefore be used to achieve this attack. In the
previous section, we discussed how such an attack can be launched.
We now construct a real attack to demonstrate the impact of the
corresponding side-channels found by SCENT.

As an exemplar, we pick side-channel 1 (as shown in Figure 7),
and evaluate it in terms of metrics such as success rate and the time
to succeed. In our experiment, we used a Ubuntu 14.04 host on a
university campus as the victim client. The victim server is a virtual
machine running FreeBSD OS from a different Ubuntu 14.04 host.
The attack machine is a Ubuntu 16.04 host on the same campus.
The steps in the attack process are listed below:

(1) Synchronize machine times between attacker and server;

(2) Send spoofed and unspoofed ACK packets to linearly guess a
port number range based on the number of RST packets re-
ceived;

(3) Given a port number range, use binary search to locate the
specific port number.

The attacker can guess 200 different port numbers (via spoofed
packets) in one second; otherwise, spoofed packets will always
reach the reset counter limit. The attacker can guess the port num-
ber starting from the Ephemeral port range [15], and then guess
the remainder of the port range. Our experiment shows that this
attack of inferring a correct port number is achievable within an
average time of 73 seconds with a 100% success rate.

10 RELATED WORK

TCP side channel attacks. In the last decade, several TCP side
channels have been manually found by researchers. These side
channels can be utilized to (1) cause a TCP inference attack [7, 11,
18, 37, 38], which in turn can lead to a hijack of the connection
and injection of malicious data; (2) measure host attributes without
exposing the attacker’s IP address (examples include performing an
idle port scan [16] or measuring the RTT between two hosts [1]).
Roughly these distinct attacks can be mapped onto the exploita-
tion of four categories of side-channel vulnerabilities: (1) Shared
rate limit: these side-channels relate to a rate limit that is shared
across the victim and an off-path attacker connection, such as IPID
counter [4, 10, 18, 35, 39, 49], the challenge ACK rate limit [7], the
reset rate limit and the shared SYN backlog queue limit [1, 16]. (2)
System-wide packet counter: As the name suggests a packet counter
is shared globally in these cases [37, 38]. (3) Wireless link: Wire-
less contention results in information leakage in these cases [11]
(timing-based side channel). (4) Browser implementation’s feature:
A per destination port-counter and a FIFO HTTP request queue
cause information leaks [19].

While most of these side-channels are discovered manual by do-
main experts, SCENT aims to automate the discovery in a principled
way. Our evaluation shows that SCENT indeed can detected (both
new and known) side-channels.

Side channel detection. Most previous side-channel vulnerabili-
ties have been discovered manually (e.g., using domain expertise).
However, a few side-channel detection tools have been proposed.
[9] uses static taint analysis to discover system-wide TCP packet
counter side-channel vulnerabilities. Generally, static taint analy-
sis can be guaranteed to find all true violations, but suffers from
high false positives. By relying on violation of the non-interference
property, SCENT can avoid high false positives and can detect side-
channels caused by different shared variables. There are also several
efforts relating to the detection of other types of side-channels but
these are orthogonal to our work [5, 44].

Program analysis and testing. There are also several efforts
that use program analysis (e.g., static and/or dynamic analysis) to
find bugs or other types of attacks in TCP implementations [26, 28].
These are orthogonal to our work and address significantly different
problems.

Model checking and formal verification have been used to an-
alyze the robustness of TCP implementations [17, 33]; however,
their objectives are signficiantly different. More importantly, SCENT
uses automated downscaling to improve the effectivenss of model
checking.

Besides bounded module checking [14, 29, 31], one could also
do bounded testing [32]. The advantage of bounded testing is that
it does not require additional modification to the target program,
while model checking usually requires generating a model amenable
to the model checker. However, as shown in our evaluations, by
avoiding redundant states, a model checker can help explore a
larger input space.

Program transformation has been used to assist testing using
fuzzing to patch hard-to-flip branches (like checksum checks) as
a way of improving code coverage [27, 36, 45]. In contrast, SCENT
tries to coerce both true and false path to be visited and most of
the target branches (Table 3 column 3) have simple constraints. In
addition, SCENT changes the internal states instead of “disabling”
the branch.

11 CONCLUSIONS

In this paper, we consider the challenging problem of developing a
principled approach to discovering hard-to-find TCP side-channels.
We use model checking as a basis for finding violations of the
non-interference property between simultaneous TCP connections,
which we argue is a precursor to exploitable side channels. As
our main contribution, we build a tool SCENT that achieves our
goal by addressing two hard challenges in making model check-
ing amenable to our goal namely, (a) making a TCP code base
self contained after pruning irrelevant parts and (b) systematically
downscaling both the input space and the model state space by
means of principled program transformations. We use the counter-
examples generated by the transformed model checker in SCENT
to discover 12 new side channels and also validate all previously
discovered ones. In this work, we limit ourselves to side channels
that facilitate the inference of a specific set of secret attributes (e.g.,

10" 10° 10° 7040
11 —_— 1

) 10 Enumeratlonl it 12492
g 1010 — Model Checking -
2 10°
g -
g 10° ﬁml & g 33
2100 % g
2 g 10? 810t
2 107 g
% £ g
5 10° 10t L g
= E 3
E 10° 10 8
3
Z 10°

10*

0. 1
10° 10! 10%
1.0 15 2.0 2.5 3.0 1.0 15 2.0 25 3.0 35 40 1.0 15 2.0 2.5 3.0 35 4.0
Incoming Packet Number Incoming Packet Number Incoming Packet Number

Figure 10: Number of testing iter- Figure 11: Timecost of one model Figure 12: Memory cost of one

ations versus number of incoming

packets coming packets

SEQ number); we will expand our threat model to find other types
of vulnerabilities (e.g., idle port scans) and with more scenarios
(e.g., attacker can send packets to both the client and the server
and/or with different OSes) in the future.

ACKNOWLEDGMENTS

This research was partially sponsored by the U.S. Army Combat Ca-
pabilities Development Command Army Research Laboratory and
was accomplished under Cooperative Agreement Number W911NF-
13-2-0045 (ARL Cyber Security CRA). The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Combat Capabilities Development Command
Army Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation here on.
It was also partially supported by the NSF grant 1652954.

REFERENCES

[1] Geoffrey Alexander and Jedidiah R Crandall. 2015. Off-path round trip time
measurement via TCP/IP side channels. In 2015 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 1589-1597.

Apache Geode Documentation [n. d.]. Disable TCP SYN Cookies. Retrieved
May 15, 2019 from https://geode.apache.org/docs/guide/14/managing/monitor_
tune/disabling_tcp_syn_cookies.html

Thomas Ball and Sriram K. Rajamani. 2001. The SLAM Toolkit. In Computer
Aided Verification, Gérard Berry, Hubert Comon, and Alain Finkel (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 260-264.

Steven M Bellovin. 2002. A technique for counting NATted hosts. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM, 267-272.
Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir.
2019. CaSym: Cache aware symbolic execution for side channel detection and
mitigation. In CaSym: Cache Aware Symbolic Execution for Side Channel Detection
and Mitigation. IEEE, 0.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI, Vol. 8. 209-224.

Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2016. Off-Path TCP Exploits: Global Rate Limit Consid-
ered Dangerous. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 209-225. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/cao

Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian
Jiang. 2009. Mapping kernel objects to enable systematic integrity checking. In
Proceedings of the 16th ACM conference on Computer and communications security.
ACM, 555-565.

Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Mor-
ley Mao. 2015. Static detection of packet injection vulnerabilities: A case for

(2]

(3]

[7

[

(8]

=

checking run versus number of in-

[10

[11

[12

[15

[16

(17

oy
&

[19

[20

[21]

[22

[23

[24

[25]

model checking run versus number
of incoming packets

identifying attacker-controlled implicit information leaks. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
388-400.

Weifeng Chen, Yong Huang, Bruno F Ribeiro, Kyoungwon Suh, Honggang Zhang,
Edmundo de Souza e Silva, Jim Kurose, and Don Towsley. 2005. Exploiting the
IPID field to infer network path and end-system characteristics. In International
Workshop on Passive and Active Network Measurement. Springer, 108-120.
Weiteng Chen and Zhiyun Qian. 2018. Off-Path {TCP} Exploit: How Wireless
Routers Can Jeopardize Your Secrets. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 1581-1598.

Cisco [n. d.]. Defenses Against TCP SYN Flooding Attacks. Retrieved May 15,
2019 from https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/
back-issues/table-contents-34/syn-flooding-attacks.html

Edmund M. Clarke and E. Allen Emerson. 1982. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Logics of Programs,
Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 52-71.
Lucas Cordeiro, Jeremy Morse, Denis Nicole, and Bernd Fischer. 2012. Context-
bounded model checking with ESBMC 1.17. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 534-537.
Cymru [n. d.]. Ephemeral Source Port Selection Strategies. Retrieved May 15,
2019 from https://www.cymru.com/jtk/misc/ephemeralports.html

Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. 2010.
Idle Port Scanning and Non-interference Analysis of Network Protocol Stacks
Using Model Checking. In Proceedings of the 19th USENIX Conference on Security
(USENIX Security’10). USENIX Association, Berkeley, CA, USA, 17-17. http:
//dLacm.org/citation.cfm?id=1929820.1929843

Paul Fiterdu-Brostean, Ramon Janssen, and Frits Vaandrager. 2016. Combin-
ing model learning and model checking to analyze TCP implementations. In
International Conference on Computer Aided Verification. Springer, 454-471.
Yossi Gilad and Amir Herzberg. 2012. Off-Path Attacking the Web.. In WOOT.
41-52.

Yossi Gilad and Amir Herzberg. 2013. When tolerance causes weakness: the case
of injection-friendly browsers. In Proceedings of the 22nd international conference
on World Wide Web. ACM, 435-446.

Patrice Godefroid. 1997. Model Checking for Programming Languages Using
VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL °97). ACM, New York, NY, USA, 174-186.
https://doi.org/10.1145/263699.263717

J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy. 11-11. https://doi.org/10.1109/SP.
1982.10014

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. 2003.
Software Verification with BLAST. In Proceedings of the 10th International Confer-
ence on Model Checking Software (SPIN’03). Springer-Verlag, Berlin, Heidelberg,
235-239. http://dlacm.org/citation.cfm?id=1767111.1767128

Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on software
engineering 23, 5 (1997), 279-295.

Gerard J. Holzmann and Rajeev Joshi. 2004. Model-Driven Software Verification.
In Model Checking Software, Susanne Graf and Laurent Mounier (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 76-91.

G. J. Holzmann and M. H. Smith. 1999. A practical method for verifying event-
driven software. In Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002). 597-607. https://doi.org/10.1145/302405.
302710

https://geode.apache.org/docs/guide/14/managing/monitor_tune/disabling_tcp_syn_cookies.html
https://geode.apache.org/docs/guide/14/managing/monitor_tune/disabling_tcp_syn_cookies.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cao
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-34/syn-flooding-attacks.html
https://www.cymru.com/jtk/misc/ephemeralports.html
http://dl.acm.org/citation.cfm?id=1929820.1929843
http://dl.acm.org/citation.cfm?id=1929820.1929843
https://doi.org/10.1145/263699.263717
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
http://dl.acm.org/citation.cfm?id=1767111.1767128
https://doi.org/10.1145/302405.302710
https://doi.org/10.1145/302405.302710

Samuel Jero, Endadul Hoque, David Choffnes, Alan Mislove, and Cristina Nita-
Rotaru. 2018. Automated attack discovery in TCP congestion control using a
model-guided approach. In Proceedings of NDSS.

Ulf Kargén and Nahid Shahmehri. 2015. Turning programs against each other:
high coverage fuzz-testing using binary-code mutation and dynamic slicing. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 782-792.

Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and Madanlal
Musuvathi. 2011. Finding protocol manipulation attacks. In ACM SIGCOMM
computer communication review, Vol. 41. ACM, 26-37.

Daniel Kroening and Michael Tautschnig. 2014. CBMC-C bounded model checker.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 389-391.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75-.
http://dl.acm.org/citation.cfm?id=977395.977673

Florian Merz, Stephan Falke, and Carsten Sinz. 2012. LLBMC: Bounded model
checking of C and C++ programs using a compiler IR. In International Conference
on Verified Software: Tools, Theories, Experiments. Springer, 146-161.

[32] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay

Chidambaram. 2018. Finding crash-consistency bugs with bounded black-box
crash testing. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18). 33-50.

Madanlal Musuvathi and Dawson R. Engler. 2004. Model Checking Large Network
Protocol Implementations. In Proceedings of the 1st Conference on Symposium on
Networked Systems Design and Implementation - Volume 1 (NSDI'04). USENIX As-
sociation, Berkeley, CA, USA, 12-12. http://dLacm.org/citation.cfm?id=1251175.
1251187

Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. 2002. CMC: A Pragmatic Approach to Model Checking Real Code.
SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 75-88. https://doi.org/10.1145/844128.
844136

Paul Pearce, Roya Ensafi, Frank Li, Nick Feamster, and Vern Paxson. 2017. Augur:
Internet-wide detection of connectivity disruptions. In 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 427-443.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 697-710.

Zhiyun Qian and Z Morley Mao. 2012. Off-path TCP sequence number inference
attack-how firewall middleboxes reduce security. In 2012 IEEE Symposium on
Security and Privacy. IEEE, 347-361.

Zhiyun Qian, Z Morley Mao, and Yinglian Xie. 2012. Collaborative TCP sequence
number inference attack: how to crack sequence number under a second. In
Proceedings of the 2012 ACM conference on Computer and communications security.
ACM, 593-604.

Zhiyun Qian, Z Morley Mao, Yinglian Xie, and Fang Yu. 2010. Investigation of
triangular spamming: A stealthy and efficient spamming technique. In 2010 IEEE
Symposium on Security and Privacy. IEEE, 207-222.

Jean-Pierre Queille and Joseph Sifakis. 1982. Specification and Verification of

Concurrent Systems in CESAR. In Proceedings of the 5th Colloquium on Interna-
tional Symposium on Programming. Springer-Verlag, London, UK, UK, 337-351.
http://dl.acm.org/citation.cfm?id=647325.721668

SCENT [n. d.]. SCENT: TCP Side Channel Excavation Tool. https://github.com/
seclab-ucr/SCENT

Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jackson.
2004. Software assurance by bounded exhaustive testing. In ACM SIGSOFT
Software Engineering Notes, Vol. 29. ACM, 133-142.

Rijnard van Tonder, John Kotheimer, and Claire Le Goues. 2018. Semantic crash
bucketing. In Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering.

Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. 2017.
CacheD: Identifying cache-based timing channels in production software. In
26th {USENIX} Security Symposium ({USENIX} Security 17). 235-252.

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy. IEEE, 497-512.

Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
2012. Improving Integer Security for Systems with {KINT}. In Presented as part of
the 10th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 12). 163-177.

Z3Prover/z3 [n. d.]. The Z3 Theorem Prover. Retrieved May 4, 2019 from
https://github.com/Z3Prover/z3

Xu Zhang, Jeffrey Knockel, and Jedidiah R Crandall. 2015. Original SYN: Find-
ing machines hidden behind firewalls. In 2015 IEEE Conference on Computer

Communications (INFOCOM). IEEE, 720-728.
Xu Zhang, Jeffrey Knockel, and Jedidiah R Crandall. 2018. ONIS: Inferring TCP/IP-

based Trust Relationships Completely Off-Path. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2069-2077.

http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=1251175.1251187
http://dl.acm.org/citation.cfm?id=1251175.1251187
https://doi.org/10.1145/844128.844136
https://doi.org/10.1145/844128.844136
http://dl.acm.org/citation.cfm?id=647325.721668
https://github.com/seclab-ucr/SCENT
https://github.com/seclab-ucr/SCENT
https://github.com/Z3Prover/z3

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 SCENT Overview
	4.1 Workflow
	4.2 Automated downscaling

	5 Model Generator
	5.1 Building a Standalone TCP Model
	5.2 Initializing the Standalone TCP Model

	6 Non-interference Checker
	6.1 Constructing the attack scenario
	6.2 Secrets of interest
	6.3 Bounding the input packet sequence
	6.4 Deduplication

	7 Model Transformer
	7.1 Identifying target branches
	7.2 Determining expected values
	7.3 Identifying targets for transformation

	8 Evaluations
	8.1 Evaluation setup
	8.2 Discovered side-channels
	8.3 Effectiveness of automated downscaling
	8.4 Performance of model checking

	9 Case Study
	10 Related Work
	11 Conclusions
	Acknowledgments
	References

