ABSTRACT

Finite state machines (FSMs) are basic computation models that play essential roles in many applications. Enabling efficient parallel FSM execution is critical to the performance of these applications. However, they are very challenging to parallelize due to their inherent data dependencies that occur at each step of computations.

Existing efforts on FSM parallelization either explore coarse-grained speculative parallelism or leverage parallel prefix-sum. The former ignores prevalent fine-grained hardware parallelism on modern processors (such as ILP or SIMD parallelism) while the latter limits the benefits of fine-grained parallelism mainly to state enumeration.

This work presents MicroSpec, a set of parallelization techniques that, for the first time, expose fine-grained speculative parallelism to FSM computations. Based on a rigorous analysis of three types of parallelism at fine-grained level, MicroSpec consists of a list of four fine-grained speculative parallelization approaches along with a speculation-oriented data transformation. Experiments on a large set of real-world FSM benchmarks show that MicroSpec achieves substantial performance improvement over the state-of-the-art.

Keywords
Program Parallelization, Finite State Machine, FSM, SIMD, Speculative Parallelization, Vectorization

1. INTRODUCTION

Exposing parallelism is key to computing efficiency and scalability of software applications. Modern microprocessors feature a variety of hardware parallelism from instruction level to on-chip multiprocessors. Effectively leveraging such rich hardware parallelism critically affects the performance.

This work focuses on exposing effective fine-grained parallelism to Finite State Machine (FSM)-based computations, a class of computations that are frequently used in a wide range of applications, including deep packet inspection in network intrusion detection system (NIDS) [60, 15, 34, 39], motif searching in biological databases (e.g., Genebank and Prosite) [53, 11, 59, 8], Huffman decoding in image and video compression [3, 54, 24, 32], path queries and validation in semi-structural data stream [44, 9, 19, 58], and model checking in software engineering [45, 49, 10, 4], among others.

FSMs are extremely challenging to parallelize, formerly known as "embarrassingly sequential" computations [5]. The challenges lie in the inherent data dependencies among state transitions. Figure 1 shows an example FSM with six states. The valid transitions in an FSM can be represented as a table, called transition table. Given an input string, the execution of an FSM starts from a predefined state (called initial state). Each time it reads one symbol from the input string. The FSM looks up the transition table based on the current state and the read symbol to find and transition to the next state. The dependence between the current state and next state exists at every transition step. These dependencies form a tight dependence chain, inherently preventing any parallelism from being exposed.

State of The Art. Given their fundamental importance in computing theory and their broad range of real-world applications, recent years have seen growing interests in parallelizing FSM computations, leading to some significant advancements. In general, they fall into two groups based on the types of parallelism that they explore: (1) speculative parallelization [61] and (2) parallel prefix-sum [40]. The former breaks the dependencies by predicting future states. In the cases that some predictions fail, reprocessing might be needed to ensure correctness. In comparison, the latter needs no prediction at all. Instead, it enumerates all the possible states, which always cover the actual one. With either of the two ways, an input string now is allowed to be partitioned into segments and processed in parallel.

Even though they break the barrier of making FSM computations run parallel, none of them has released the full po-
Parallelizing FSM computations are extremely difficult due to their inherent sequential characteristics — dependencies exist between every consecutive state transitions, as illustrated by Figure 1(c). A natural way to parallelize its execution is to partition the input string into to segments, and let thread process segments concurrently, one segment per thread. However, the starting states are unknown except the first thread (which starts from initial state ‘A’). A starting state for a segment is essentially the ending state of the previous segment. These dependencies form a chain structure, preventing any concurrent execution among threads.

Existing work to solve this problem mainly follow two directions: speculative parallelization and parallel prefix-sum. Zhao and others [61] followed the first direction and proposed a coarse-grained speculative parallelization approach to circumvent the dependencies. Instead of speculation, Todd and others [40]’s approach enumerates all the possible cases to leverage classic parallel prefix-sum. They implemented with both coarse-grained and fine-grained parallelism to take advantage of different levels of hardware parallelism. However, each of them has its own limitations. The former is only able to explore coarse-grained thread-level parallelism, leaving widely available fine-grained hardware parallelism (such ILP and SIMD) unused. The latter uses fine-grained hardware parallelism only for enumerating different cases. None of them fully take advantage of the computing power of today’s microprocessors.

Hence, the goal of this work is to maximize the parallel efficiency on modern processors by exposing more effective fine-grained parallelism to FSM computations. However, challenges exist at several levels. First, fine-grained parallelism is notoriously more difficult to expose comparing to coarse-grained thread-level parallelism due to the lack of friendly programming models. For example, programming with Intel SSE instruction set requires knowledge about microarchitecture and is more error-prone. Second, different types of parallelism exist for FSM computations, it is non-trivial to find out which ones are more effective at fine-grained levels. Third, fine-grained hardware parallelism varies across different architectures. For example, some microarchitectures may not support gather instruction, which is critical for fine-grained FSM parallelization (see Section 4.2).

2.2 Coarse-Grained Speculative Parallelization

As this work mainly follows the first direction – speculation-based parallelization, we briefly summarize its ideas for self-containedness. At high-level, there are four major steps in coarse-grained speculative FSM parallelization. To make it easier to follow, we use Algorithm 1 to illustrate its basic ideas, followed by a step-by-step explanation.

Algorithm 1: Coarse-Grained Speculative Parallelization

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\Pi = \text{coarse_grained_.partition}(N_{\text{core}});) /* Step 1 */</td>
</tr>
<tr>
<td>2.</td>
<td>for thread (1 \ldots N_{\text{core}}) do</td>
</tr>
<tr>
<td>3.</td>
<td>(S_{\text{start}}(i) = \text{predict}(\text{suffix of } \Pi(i-1));) /* Step 2 */</td>
</tr>
<tr>
<td>4.</td>
<td>process((\Pi(i), S_{\text{start}}(i))); /* Step 3 */</td>
</tr>
<tr>
<td>5.</td>
<td>thread_join();</td>
</tr>
<tr>
<td>6.</td>
<td>for partition (1 \ldots N_{\text{core}}) do /* Step 4 */</td>
</tr>
<tr>
<td>7.</td>
<td>if validate((S_{\text{start}}(i))) == FALSE then</td>
</tr>
<tr>
<td>8.</td>
<td>reprocess((\Pi(i)));</td>
</tr>
</tbody>
</table>

1. **Partitioning.** Given an input string of length \(L \), it first cuts it evenly into \(N_{\text{core}} \) segments, where \(N_{\text{core}} \) is the number of available cores.

1 This work focuses on vectorization on CPUs, but general ideas are applicable to SIMD parallelism on GPUs as well.
2 Non-deterministic FSM can be converted to deterministic ones through subset construction.
2. Predicting Starting States. For each segment (except the first one), it predicts its starting state with a technique called lookback. For segment \(i\), lookback examines the suffix of its prior segment \(i-1\) and uses it as conditions to rule out impossible states or states with low chances to be the correct starting state (more details in [61]). Later, a single state is selected as the predicted starting state.

3. Parallel Execution. With predicted starting states, it then executes each segment of length \(L_{seg} = L/N_{core}\) in parallel. For each individual segment, this execution is the same as a sequential FSM execution.

4. Validation and Reprocessing. At last, it validates the correctness of the predicted starting states after the parallel execution. The validation compares the predicted starting state of segment \(i\) with the ending state of segment \(i-1\), if they are different (i.e., prediction fails), segment \(i\) would be reprocessed.

Three things are important to note. First, According to prior results [61], the prediction accuracy highly depends on segment suffix, rather than how far it is away from the input beginning. Second, in Step 4, validations among different segments need to be in sequential order to ensure the correctness; Third, the reprocessing of a segment may stop earlier thanks to the state convergence property that widely exists in many FSMs. We elaborate this property using the example in Figure 2.

```
<table>
<thead>
<tr>
<th>Input</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>...</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path 1</td>
<td>A→B→C→B→B→C → D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path 2</td>
<td>D→A→B→B→B→C → D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 2: Example of State Convergence.

Consider processing a piece of an input string, starting with two different states \(A\) and \(D\). There are two paths of state sequence, each for a different starting state. After processing the first three symbols 110, both paths get into the same state \(B\). Since then, these two paths would keep producing the same state sequence as they will observe the same symbols. This phenomenon is referred to as State Convergence [61, 40].

In the context of reprocessing, as long as the predicted (wrong) state converges with the actual starting state before reaching the end of the segment, the reprocessing can safely stop since the remaining states would be the same as the correct ones. In fact, state convergence is not only useful for speculative FSM parallelization, but also for parallel prefix-sum, where paths from different starting states may also converge and hence maintaining one of them is sufficient. We elaborate the details shortly in Section 3.2.

3. FINE-GRAINED PARALLELISM

Fine-grained parallelism is becoming increasingly prevalent in mainstream microprocessors, in a variety of forms, such as deep pipelining, multi-instruction issue, and SIMD vector units. For example, Intel’s recent microarchitectures, Haswell, supports Advanced Vector Extensions 2 (AVX2) which features 256-bit vector units that can process 8 integer-typed data in parallel.

Effectively utilizing such fine-grained hardware parallelism is critical to maximizing the efficiency of various applications. In this section, we first discuss three types of parallelism that can be used in fine-grained levels, two of which are proposed by this work. Then, we compare their effectiveness with a rigorous analysis, which in turn guides the design of FSM parallelization techniques.

3.1 Three Dimensions

The only fine-grained parallelism that has been seen in prior work comes from associative parallelism [35, 40]. We propose two other types of parallelism that are applicable to fine-grained levels, namely, multi-state speculation and multi-level speculation. We next elaborate each of them. For convenience, we refer to them as P1, P2, and P3.

P1: Parallelism in Associative Operations

Computations with associative operations can be trivially parallelized, such as multiplying a sequence of matrices. In fact, an FSM execution on an input sequence \(c_1c_2\cdots c_l\) can also be associative. This is achieved by enumerating all the states in the FSM and making transitions for each of them, referred to as prefix-sum parallelism by Ladner and Fischer [35].

In practice, as described in [40], it first cuts the input into \(T\) segments, then it enumerates all the \(n\) states for each segment except the first segment (which starts from initial state) to start transitions. After a segment has been processed, a mapping between each starting state and its ending state would be available. With the known initial state, it finally goes through every resulted mapping in order and selects the correct path. Clearly, it brings in \(n-1\) times extra computations, where \(n\) is the number of states. It may be beneficial when the available hardware parallelism is more than \(n\). However, with state convergence optimization, the extra cost can be dramatically reduced [40] (see Section 2.2).

P2: Parallelism in Multi-State Speculation

Existing work on speculative parallelization of FSMs partitions the input based on the number of CPU cores and predict a single starting state for each segment, the one with the highest potential to minimize the misspeculation penalty. A straightforward extension to this approach is speculating multiple starting states for each segment, instead of one.

The intuition is that the more candidates are used for prediction, the more likely the correct starting state gets covered and the more likely the misspeculation penalty gets reduced. Such extension enables new parallelism as each one of the speculated starting states can start its own path independently. We refer to it as multi-state speculative parallelism. The difference between single-state and multi-state speculation is significant because most previous work was based on single-value prediction, such as the BOP system [29].

Essentially, multi-state speculative parallelism provides a tradeoff between single-state speculative parallelization and parallel prefix-sum. It offers more flexibility to deal with FSMs that are hard to speculate and FSMs that are hard to enumerate due to a large number of states.

P3: Parallelism in Multi-Level Speculation

The third way to expose parallelism is further partitioning the \(N_{core}\) input segments into \(N_{core} \ast W^{l-1}\) finer-grained segments recursively, assuming that \(W\) is the degree of parallelism at fine-grained levels (\(l\) is the number of levels). We refer to this type of parallelism as Multi-Level Speculation.

Since hardware parallelism is also hierarchical – a CPU has multiple computing cores, each with its own SIMD units
3.2 Efficiency Analysis

We next analyze the efficiency of the three types of parallelism theoretically. To facilitate our analysis, we bring two commonly used metrics into the context of FSM execution.

- **Expected Critical Path Length (ECPL).** This is the expected number of state transitions on the longest transition path of an FSM execution.

- **Degree of Parallelism (DoP).** This is the number of processing units that can be effectively used by an FSM execution.

For example, in a sequential execution, an FSM proceeds on a single transition path. Hence, $ECPL_{seq} = L$, where L is the input length. As only one processing unit is used for all the transitions, we have $DoP_{seq} = 1$.

Since state convergence is used by recent work \[61, 40\] for its large efficiency boost, we assume that it is applied in our discussion. Without loss of generality, we also assume that the input is partitioned into two segments at a coarse-grained level and the following analysis is on the second segment.

To analyze the effects of state convergence, we introduce two concepts: *convergence length* and *convergence matrix*.

Definition 1. Given an input string I and two different starting states s_i and s_j. The convergence length between s_i and s_j on I is the least number of transitions for each of them to take in order to transition to the same state, denoted as $L^i(s_i, s_j)$. If by end of I, they end at different states, set $L^i(s_i, s_j) = \infty$.

Consider the example in Figure 2, we have $L^i(A, D) = 3$. Based on this, we define *convergence matrix* as follows.

Definition 2. Given an FSM with n states, the convergence matrix over an input I is an $n \times n$ matrix, where each element is the convergence length between states s_i and s_j on input I (i.e., $L^i(s_i, s_j)$), denoted as M_L.

$$M_L = \begin{bmatrix} L^i(s_1, s_1) & L^i(s_1, s_2) & \ldots & L^i(s_1, s_n) \\ L^i(s_2, s_1) & L^i(s_2, s_2) & \ldots & L^i(s_2, s_n) \\ \vdots & \vdots & \ddots & \vdots \\ L^i(s_n, s_1) & L^i(s_n, s_2) & \ldots & L^i(s_n, s_n) \end{bmatrix}$$

M_L has some properties: (i) It is symmetric as $L^i(s_i, s_j) = L^i(s_j, s_i)$; (ii) $L^i(s_i, s_i) = 0$; (iii) If $L^i(s_i, s_j) = l_1$, $l_1 \leq ||I||$ and $L^i(s_j, s_i) = l_2$, $l_2 \leq ||I||$, then $L^i(s_i, s_i) = \max(l_1, l_2)$, where $||.||$ means the length or number of transitions.

Convergence matrix embodies information about how states converge at each step during an FSM execution, it hence can help us reason about the reprocessing cost for P2 and P3.

In P1, each state starts its own transition path (denoted as $Path(s_i)$). Once a path finds that it converges with another path, one of the two paths would be killed (stopped), the other one would be kept live. Hence, the length of $Path(s_i)$ is the shortest convergence length between s_i and any other states, supposing that s_i converges with at least one of other states. Otherwise, its length would equal to the length of the input. Formally, we have

$$||Path(s_i)|| = \min[L^i(s_i, S - \{s_i\}), ||I||]$$

where s_i converges with $S - \{s_i\}$ when s_i converges with at least one state from $S - \{s_i\}$. Correspondingly, $L^i(s_i, S - \{s_i\}) = \min[L^i(s_i, s_j) | s_j \in S - \{s_i\}]$.

By definition, it is possible that $||Path(s_i)|| < ||I||$ for every s_i. To finish the whole input, one of the transition paths $Path(s_i), s_i \in S$, has to continue $||I|| - \max_{1 \leq i \leq k} \{||Path(s_i)||\}$ transitions. Hence, the ECPL of P1 is simply the input length.

Lemma 1. Given an input I, the ECPL of P1 is

$$ECPL_{P1} = ||I||$$

On the other hand, the DoP of P1 may vary as the FSM executes depending on state convergence. Starting from all states S, when the number of live paths at the j-th input symbol, live(S, j), exceeds the number of processing units, PU, the DoP equals to PU; Otherwise, the DoP drops to live(S, j). \[DoP_{P1} = \min\{live(S, j), PU\}, \text{ where } 1 \leq j \leq ||I||\]

In P2, suppose K states, denoted as S_K, are selected as the prediction. Since the selection does not change the path length of any state, if S_K covers the correct state, then $ECPL$ equals to the input length. Otherwise, it needs to reprocess the input until the correct state converges with one of selected K states. The reprocessing length is

$$||redo|| = \min\{L^i(s_i, s^*) | s_i \in S_K, s^* \text{ is the true state}\}$$

Assuming that the reprocessing in P2 runs sequentially, we have Lemma 2 holds for P2.

Lemma 2. Given an input I, the ECPL of P2 is

$$ECPL_{P2} = ||I|| - (1 - P_k) \cdot ||redo||$$

where P_k is the probability that S_K covers the true state s^*.

Before reprocessing, the DoP of P2 is similar to P1; During reprocessing, the DoP($P2$) drops to one.

$$DoP_{P2} = \begin{cases} \min\{live(S_k, j), PU\}, & 1 \leq j \leq ||I|| \\ 1 & \text{redo} \end{cases}$$

In P3, the input segment is further cut into PU fine-grained chunks, each of them is processed with a predicted starting state $s_i, 1 < i \leq PU$. Suppose the probability of each predicted starting state is $p(s_i)$ and the corresponding reprocessing length is $redo(s_i)$, then the expected amount of reprocessing is

$$||redo|| = \sum_{i=2}^{PU} (1 - p(s_i)) \cdot redo(s_i)$$

Note that the reprocessing of different chunks runs sequentially, since the correctness validation of chunk i depends on the validation of chunk $i-1$. This is also true at coarse-grained level. Hence, the expected reprocessing length for the whole input should include the reprocessing at both coarse-grained and fine-grained levels, that is, replacing PU in Equation 8 with $PU \cdot (T - 1)$, where T is the number of threads at coarse-grained level.

Putting them together, we have Lemma 3 for P3.
According to Lemma 3, any misprediction has the potential to lengthen the critical path, compromising the benefits of speculative parallelization. In the worst case, when all prediction fails, ECPL(P3) would equal to the input length, the same as a sequential execution.

As each processing unit processes a different input chunk, no state convergence would happen. Hence, the DoP of P3 equals to PU before reprocessing and drops to one during reprocessing.

\[
DoP(P3) = \begin{cases}
PU & 1 \leq j \leq ||I|| \\
1 & \text{redo}
\end{cases}
\]

Discussion. Based on the above analysis, we compare the three types of parallelism in terms of both ECPL and DoP.

First, ECPL captures the expected execution length. For P1 and P2, since enumerating all states or a set of states do not shorten the critical path, ECPL(P1) and ECPL(P2) at least equals to the segment length. In comparison, by cutting the segment into finer-grained chunks, P3 have the chances to further shorten the critical path length. However, due to the dependence in reprocessing, the ECPL of P3 could be as long as the whole input length, which happens when all prediction fails.

Second, DoP captures the utilization of fine-grained hardware parallelism. DoP(P1) and DoP(P2) start dropping when the number of live paths goes below the number of processing units PU. In another word, some of the processing units become idle. Unfortunately, DoP(P3) cannot guarantee full utilization all the time neither, due to possibility of sequential reprocessing.

Overall, the efficiency of a type of parallelism depends on the properties of FSMs and hardware architecture (e.g., PU). In this work, we choose P3, mainly based on our observation that the reprocessing lengths are usually short thanks to the quick state convergence. This has two positive consequences. First, it ensures that ECPL(P3) is usually much shorter than segment length (see Section 5). Second, it guarantees high hardware utilization by keeping DoP(P3) mostly as high as PU.

4. MICROSPEC

Guided by the analysis in Section 3, we design and implement MicroSpec, a library that leverages multi-level speculation to maximize the efficiency of parallel FSM execution on modern processors. We first describes its major techniques, then introduces an optimization to facilitate its use.

4.1 Overview

At high-level, MicroSpec consists of four speculation-centric parallelization techniques (denoted as S1 - S4) plus a speculation-oriented data transformation. The parallelization techniques are able to expose fine-grained speculative parallelism to FSM computations while the data transformation automatically re-layouts the input for better locality.

Predicting Starting States. Since starting states prediction is not the focus of this work, we simply choose a relatively straightforward prediction, named *simple lookback*, which has been used by prior work [61, 1]. Basically, it starts from the suffix of a prior segment with a random state, then uses its ending state after processing the suffix as the predicted starting state. More advanced predictions can be ported to MicroSpec. However, there will be a tradeoff between accuracy and overhead, which remains to be investigated. In the following, we elaborate these four major techniques and the optimization in details.

4.2 Techniques

In multi-level speculation, each level follows a speculative parallelization scheme that is similar to the one in Algorithm 1. The key differences lie in the implementations. In the following, we consider two cases: two-level speculation and three-level speculation. For the first level, that is, the coarse-grained level, we simply follow the coarse-grained speculative parallelization in Algorithm 1. For the second and third levels, we mainly focus on ILP and SIMD parallelism, both of which are common features owned by modern processors. As the first level is given in Section 2, in the following, we only show the algorithms in the second and third levels. Next, we first present two two-level speculations, followed by two three-level ones.

S1: Speculative SIMD Gather

We first consider SIMD parallelism only for the second-level speculation. Algorithm 2 shows the pseudo-code of this approach. As this approach mainly relies on SIMD operation gather, we refer to it as *Speculative Gather*.

Algorithm 2 Speculative SIMD Gather

```
1: π = fine_grained_partition(W);
2: S = predictInitialState(π);
3: for (i=0; i < Lseg/W, i++) do
4:  I = readInputVec(i);
5:  F = S ∗ Nsym + I;
6:  S = gather(T, F);
7: end
```

Basically, given an input segment of length L_{seg} from the first-level speculation, speculative gather partitions it based on the SIMD width W (e.g., $W = 8$ for 256-bit integer operations) (Line 1). Then, it predicts the starting states for the W smaller segments with simple lookback (Line 2). Since there are no dependencies among predictions, they can be vectorized with SIMD operations as well.

With the predicted starting states, stored in a vector S, it goes through W smaller segments in parallel with SIMD operations, as shown through Lines 3 to 6 in Algorithm 2. The readInputVec() can be implemented either in SIMD operation or a sequence of non-SIMD read operations. To find next states, it accesses the transition table T, which is stored in a state-major one-dimensional array. This is finished in two steps. First, it calculates the address of next states and stores them in the offset vector F. Then it leverages a single gather operation to load W next states to vector S.

To illustrate the functionality of gather, consider the running example. Suppose the SIMD width $W = 8$, current state vector $S = [D, C, A, C, F, A, E, B]$ (i.e., $[3, 2, 0, 2, 5, 0, 4, 1]$), input vector $I = [1, 0, 0, 1, 0, 1, 0, 1, 0]$, then offset vector $F = S × 2 + I = [7, 6, 0, 5, 11, 0, 9, 2]$. The next state vector would be $S = gather(base, F) = [A, B, E, D, A, E, F, B]$.

S2: Speculative Unrolling

Alternatively, we can also consider unrolling for the second-level speculation. Unrolling is one of the major ways to expose ILP. However exposing such low-level parallelism is not
straightforward. In fact, by default, due to the tight dependencies across state transitions, unrolling does not provide any benefits. As shown in Figure 3, the performance of after unrolling is almost the same as the default version. This is mainly because the state transition dependencies turn into instruction dependencies, making most unrolled instructions incapable of executing in parallel.

To overcome the above difficulty, we apply the idea of speculation to unrolling, aiming to break the most dependencies among the unrolled instructions. We refer to it as Speculative Unrolling, illustrated by Algorithm 3.

Algorithm 3 Speculative Unrolling

1. \(\pi = \text{fine-grained}_{\text{partition}}(R); \)
2. \(s[0 \cdots R-1] = \text{predictInitStates}(\pi); \)
3. \(B = L_{\text{seg}}/R; \)
4. for \((i=0; i < B, i++) \) do
5. \(c[0] = \text{readInput}(i); \)
6. \(s[0] = T[s[0]][c[0]]; \)
7. \(c[1] = \text{readInput}(i + B); \)
8. \(s[1] = T[s[1]][c[1]]; \)
9. \(\cdots \)
10. \(c[R-1] = \text{readInput}(i + B \times (R - 1)); \)
11. \(s[R-1] = T[s[R-1]][c[R-1]]; \)
12. end

The basic idea of speculative unrolling is as follows. At first, it takes a coarse-grained input segment and partitions it into finer-grained segments according to the unrolling factor, \(R. \) Then it predicts the starting state for each fine-grained segment. So far, it is the same as S1, speculative SIMD gather. The difference is in the next. Instead of using some SIMD operations, it unrolls the loop body \(R \) times, with a goal to bring in artificial ILPs. Note that, with starting state prediction, the unrolled loop iterations do not have any dependencies, hence, can be executed in parallel and optimized by microprocessors.

A key question in speculative unrolling is the selection of unrolling factor \(R. \) If choosing \(R \) too high, it takes more risks of bringing in misspecified segments; If choosing \(R \) too low, it may not fully utilize the potential of ILPs in microprocessors. In Section 5, we will examine this with experiments.

Discussion. Note that both of the above approaches rely on speculation to expose fine-grained parallelism. The former exposes SIMD parallelism while the latter exposes ILP. They are essentially orthogonal, hence, might be combined to expose even richer parallelism, the third-level speculative parallelism, pushing the utilization of microprocessor to the extreme. Depending on the order that they are combined, we refer to the combined approaches as Speculative SIMD Gather+ and Speculative Unrolling+, respectively. We elaborate them next, namely, S3 and S4.

S3: Speculative SIMD Gather+

Intuitively, this approach applies speculative unrolling to speculative SIMD gather. This essentially requires more speculation, in particular, \(W \times R \) times of speculation for a coarse-grained input segment, where \(W \) is the SIMD width and \(R \) is the unrolling factor. Algorithm 4 describes this approach. Basically, the loop body in Algorithm 2 is unrolled \(R \) times as that in Algorithm 3. Note that the number of loop iterations drops to \(L_{\text{seg}}/W/R. \)

Similarly to speculative unrolling, it also needs to select the loop unrolling factor \(R. \) An interesting question is whether it has a smaller optimal \(R \) comparing to that of speculative unrolling. We show our findings to this question in Section 5.

Algorithm 4 Speculative SIMD Gather+

1. \(\pi = \text{fine-grained}_{\text{partition}}(W \times R); \)
2. \(S[0 \cdots R-1] = \text{predictInitStates}(\pi); \)
3. \(B = L_{\text{seg}}/W/R; \)
4. for \((i=0; i < B, i++) \) do
5. \(I[0] = \text{readInputVec}(i); \)
6. \(F[0] = S[0] \times N_{\text{sym}} + I[0]; \)
7. \(S[0] = \text{gather}(T, F[0]); \)
8. \(I[1] = \text{readInputVec}(i + B); \)
9. \(F[1] = S[1] \times N_{\text{sym}} + I[1]; \)
10. \(S[1] = \text{gather}(T, F[1]); \)
11. \(\cdots \)
12. \(I[R-1] = \text{readInputVec}(i + B \times (R - 1)); \)
13. \(F[R-1] = S[R-1] \times N_{\text{sym}} + I[R-1]; \)
14. \(S[R-1] = \text{gather}(T, F[R-1]); \)
15. end

S4: Speculative Unrolling+

Different from S3, speculative unrolling+ first applies speculative unrolling to the second level of speculation, then applies speculative gather to the third level. The pseudo-code of this approach is illustrated as in Algorithm 5. Each for-loop corresponds to the unrolling as in S2. Within each for-loop, a segment is further partitioned into \(W \) segments to initiate speculative gather. Similarly to S3, S4 also aims to realize the maximal utilization of the processing power by aggressively increasing the amount of speculation.

In sum, S1 and S2 are based on two-level speculation, while S3 and S4 are based on three-level speculation. The total number of partitions increases from \(W \) and \(R \) in the former cases to \(W \times R \) in the latter cases.

4.3 Optimization

For coarse-grained speculative parallelization, the input is partitioned evenly into coarse-grained segments based on the number of cores. Each thread sequentially accesses its own segment which is stored in a piece of continuous memory (since inputs are arrays). In this case, the locality is ideal. However, when multi-level speculation is used, the accessing pattern is not sequential any more, instead, it becomes stride-based. Even worse, the width of stride is typically large (i.e., the length of a fine-grained segment). This non-coalesced memory accessing pattern could drag the performance benefits down.

To overcome this, we propose a speculation-oriented data transformation that re-layouts the data according to the accessing pattern in multi-level speculation scheme to minimize the memory accessing delays. Basically, it transforms...
Algorithm 5 Speculative Unrolling+
1: \(\pi = \text{fine\textunderscore grained\textunderscore partition}(W \times R) \);
2: \(S[0 \ldots R - 1] = \text{predictInitStates}(\pi) \);
3: \(B = L_{\text{seg}}/R \);
4: for \((i=0; i < B/W; i++) \) do
5: \(I[0] = \text{readInputVec}(i) \);
6: \(F[0] = S[0] \times N_{\text{sym}} + I[0] \);
7: \(S[0] = \text{gather}(T, F[0]) \);
8: end
9: for \((i=B; i < B + B/W; i++) \) do
10: \(I[1] = \text{readInputVec}(i) \);
12: \(S[1] = \text{gather}(T, F[1]) \);
13: end
14: \(
\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 1 \\
0 & 1 & \ldots & 0 \\
\end{array}
\)
\(W = 4; B = L_{\text{seg}}/W\)
15: for \((i=0; i < L_{\text{seg}}; i = i + W) \) /* after trans. */ do
16: \(I[R - 1] = \text{readInputVec}(i) \);
17: \(F[R - 1] = S[R - 1] \times N_{\text{sym}} + I[R - 1] \);
18: \(S[R - 1] = \text{gather}(T, F[R - 1]) \);
19: end

Figure 4: Spec.-Oriented Data Transformation

the big stride-based accessing to simple sequential accessing. It does this by moving each group of stride-based accessed data next to each other, as shown in Figure 4.

Consider S1, speculative SIMD gather 3. Suppose the SIMD width \(W = 4 \), a coarse-grained input segment with length of \(L_{\text{seg}} \) is further partitioned into four fine-grained segments, each with a length of \(B = L_{\text{seg}}/W \). To get an input vector \(I \) (as in Algorithm 2), the original memory accessing has a stride width of \(B \). After the data transformation, the memory accessing becomes strictly sequential.

Speculation-oriented data transformation can either work offline (pre-layout) or online (on-the-fly re-layout). In many scenarios, the whole dataset is available and stable and different FSMs are executed over the same dataset many times. A typical example is biological sequence analysis, which may search different patterns on the same sequence database multiple times. Though the database may be updated sometimes, it is expected that updating rate is much lower than accessing rate. For scenarios like this, it is reasonable to do offline data transformation as the cost of data transformation will be amortized across different FSM executions.

4.4 Implementation

We prototype MicroSpec as a C library using Pthread and Intel’s AVX2 instruction set. The library provides a uniform interface to various FSMs through a set of APIs, which implement both the four speculative parallelization methods and the data transformation. The major arguments to the APIs include the FSM FSm* and input char*. Other parameters such as the number of threads are automatically configured. In terms of FSM formats, it supports both transition table and dot file (a graphical FSM representation). It can also take regular expressions as arguments with the help of some off-the-shelf regular expression processors.

The compilation of MicroSpec depends on the use of the APIs. Since S1 does not include any SIMD instructions, it can be compiled even on machines without AVX2 using standard C compilers, such as GCC or ICC. In comparison, the implementations of S2-S4 use _mm256_i32gather_epi32 instruction from AVX2, hence need to be compiled on recent Intel microarchitectures, such as Haswell and its successors.

We implement the data transformation in two versions: an API call that can be invoked by S1-S4 at runtime and a standalone tool that runs the transformation offline.

5. EVALUATION

In this section, we evaluate the effectiveness of MicroSpec using a set of real-world FSM applications that are manually collected from different domains, including motif searching in Bioinformatics, rule matching in NIDS, and Huffman decoding in data compression, among others.

5.1 Methodology

The evaluation of MicroSpec includes all four speculation-based fine-grained parallelization techniques as well as the speculation-oriented data transformation. Table 1 summarizes them and lists their abbreviation used in the evaluation.

<table>
<thead>
<tr>
<th>Techniques in MicroSpec</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speculative SIMD Gather</td>
<td>SpecGather</td>
</tr>
<tr>
<td>Speculative Unrolling</td>
<td>SpecUnroll</td>
</tr>
<tr>
<td>Speculative SIMD Gather+</td>
<td>SpecGather+</td>
</tr>
<tr>
<td>Speculative Unrolling+</td>
<td>SpecUnroll+</td>
</tr>
<tr>
<td>Spec.-Oriented Data Trans.</td>
<td>SpecTrans</td>
</tr>
</tbody>
</table>

We compare MicroSpec with prior techniques, the coarse-grained speculative parallelization [61] and parallel prefix-sum [40], including both state convergence and range coalescing optimizations. For convenience, we refer to them as coarseSpec and prefixSum, respectively. Our implementations are based on our best understanding of their papers.

Our major experiments run on a quad-core machine equipped with Intel 2.8GHz Xeon E5-1603 v3 processor with AVX2. The machine runs CentOS Linux 7.2.1511 and has GCC 4.8.5. For comparison, we also tested a machine without AVX2 supports. It is a quad-core machine equipped with Intel 3GHz Xeon CPU E5-1607 v2 processor with SSE 4.2. It runs Ubuntu 14.04.4 LTS and has GCC 4.9.3.

All programs are compiled with “-O3” optimization flag. The timing results reported are the average of 10 repetitive runs with all runtime cost included. We do not report 95% confidence interval of the average when the variation is not significant. In fact, we found that the measurements are usually stable since FSM executions involve a large amount of repetitive but similar computations.

5.2 Benchmarks

The benchmarks are selected to cover a wide range of FSM applications with different levels of complexities. We first
elaborate them by groups, then summarize their statistics.

Biological Sequence Analysis. Pattern searching is a basic way to analyze biological sequences, such as DNA sequences or protein sequences. For example, a DNA motif is a short pattern of nucleic acid, while a protein motif is a pattern of amino acids. Usually, protein patterns are represented as regular expressions. Table 2 lists three protein patterns.

To elaborate them by groups, then summarize their statistics. **Biological Sequence Analysis.** Pattern searching is a basic way to analyze biological sequences, such as DNA sequences or protein sequences. For example, a DNA motif is a short pattern of nucleic acid, while a protein motif is a pattern of amino acids. Usually, protein patterns are represented as regular expressions. Table 2 lists three protein patterns.

<table>
<thead>
<tr>
<th>Bench</th>
<th>Description and Regular Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton1</td>
<td>IQ calmodulin-binding motif. ([FLV][G][X][3]) ([NR][Q][G][X][3]) ([RK][X][2]) ([FILVWY])</td>
</tr>
<tr>
<td>proton2</td>
<td>Hemopexin domain signature. ([LIFAT][L][X][2]) ([K][X][2]) ([PE][X][F][V] [L][YW][F])</td>
</tr>
<tr>
<td>proton3</td>
<td>P-type ‘Trefoil’ domain signature. ([RRH][X][2]) ([FYPSTV][X][3], [4]) ([ST][X][3][C][X][4]) ([LYMFY])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: Snort Rules.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench</td>
</tr>
<tr>
<td>snort1</td>
</tr>
<tr>
<td>snort2</td>
</tr>
<tr>
<td>snort3</td>
</tr>
<tr>
<td>snort4</td>
</tr>
<tr>
<td>snort5</td>
</tr>
<tr>
<td>snort6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: Summary of FSM Benchmarks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench</td>
</tr>
<tr>
<td>dna1</td>
</tr>
<tr>
<td>dna2</td>
</tr>
<tr>
<td>dna3</td>
</tr>
<tr>
<td>proton1</td>
</tr>
<tr>
<td>proton2</td>
</tr>
<tr>
<td>proton3</td>
</tr>
<tr>
<td>snort1</td>
</tr>
<tr>
<td>snort2</td>
</tr>
<tr>
<td>snort3</td>
</tr>
<tr>
<td>snort4</td>
</tr>
<tr>
<td>snort5</td>
</tr>
<tr>
<td>snort6</td>
</tr>
<tr>
<td>huff</td>
</tr>
<tr>
<td>div</td>
</tr>
<tr>
<td>evenodd</td>
</tr>
<tr>
<td>commadot</td>
</tr>
<tr>
<td>likeapple</td>
</tr>
</tbody>
</table>

5.3 Results

Unrolling Factor. Since the selection of the unrolling factor \(R \) may affect the performance of MicroSpec, we first discuss it. Table 5 shows the execution time of dna1 on a small testing input using different unrolling factor values. The results answer the question in Section 4.2 – the best \(R \) varies across methods, 6 or 8 for SpecUnroll, 2 for SpecGather+ and SpecUnroll+. This implies that the ILP for SIMD operations is less effective than the one for non-SIMD operations. Since we found that the best \(Rs \) are stable across different benchmarks, we empirically set \(R = 8 \) for SpecUnroll and \(R = 2 \) for SpecGather+ and SpecUnroll+ in the following.

Group A: Motif Searching. Figure 5 shows the perfor-
Table 5: Unrolling Factor Selection

<table>
<thead>
<tr>
<th>exec. time (ms)</th>
<th>unrolling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpecUnroll</td>
<td>4</td>
</tr>
<tr>
<td>SpecGather+</td>
<td>4</td>
</tr>
<tr>
<td>SpecUnroll+</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Figure 5: Speedups for Biological Benchmarks**

- **Figure 6: Speedups for Snort Benchmarks**

- **Figure 7: Speedups for Mixed FSM Benchmarks**

Performance results for **motif searching** benchmark group. Overall, the performance of four speculation-based methods in MicroSpec outperform previous two methods substantially, achieving about 14X speedups among all six benchmarks.

More specifically, SpecUnroll yields about 8X speedup on average, also exceeding prior methods. It demonstrates the benefits of utilizing gather intrinsic from Intel AVX2 for FSM computations. However, on the other hand, it barely reaches around 60% performance of SpecUnroll, which indicates that the limitation of current gather compromises the speculation benefits. Methods SpecGather+ and SpecUnroll+, yield similar speedups, higher than SpecGather but lower than SpecUnroll.

Note that PrefixSum yields inconsistent speedups across different benchmarks. The reason is that its performance depends on the properties of FSMs. For FSMs with fast convergence length and less number of states, it tends to perform much better. For example, it gets about 7X speedup on benchmark dna3, which has only 40 states. These states converge quickly to a single state within 50 transitions. In comparison CoarseSpec shows consist but limited speedups due to its unawareness of fine-grained parallelism.

Group B: Snort Rules Matching Figure 6 shows the performance results for **Snort rules** benchmarks. In general, the results are similar to those in the first group. The main differences come from PrefixSum, which achieves the best speedups for two benchmarks snort2 and snort3. The reason is that both benchmarks have less than 16 states, smaller than the maximal number of states that a single SIMD shuffle can handle. This means it only needs a single shuffle instruction for each transition. Hence, this shows the optimal speedup of PrefixSum. Comparing with SpecGather, this also validates that shuffle is much more efficient than gather on current processors.

Group C: Mixed FSM Benchmarks Figure 7 shows the performance results of the last benchmark group, which are mixed with Huffman decoding (huff) and some hard-to-speculate FSM benchmarks div, evenodd, commadot, and likeapple. After range coalescing, huff has a state range of 255. Though it can be executed by PrefixSum using a mix of shuffle and blend operations, it hardly gets any benefits due to the large number of SIMD operations involved. In comparison, the four methods from MicroSpec show similar speedups on huff as those in the previous two groups.

The other four benchmarks in this group are more difficult to speculate due to their special structures. For div and evenodd, no states converge no matter what input sequences they are given. In this case, MicroSpec either shows limited improvement, about 2X speedup on evenodd or even performance degradation, about 10% slowdown on div. In comparison, PrefixSum reaches 1.39X and 14X speedups, respectively, thanks to its speculation-free property and the small number of states in these two benchmarks (7 and 4). The other two benchmarks, commadot and likeapple, have relatively large number of states, meanwhile most states take long distances to converge (often exceeding 10K transitions). In this situation, MicroSpec gets about 8-9X speedup on average. Note that SpecUnroll+ and SpecGather+ all get similar or better performance than their counterparts, demonstrating the potential of combining SIMD gather and with speculation unrolling. In comparison, PrefixSum could not get any speedups due to a large number of states in these two benchmarks (130 and 495).

Optimization specTrans. Table 6 shows the cost of specTrans optimization. In fact, the cost is quite comparable to the FSM execution time, about 1/3 of the sequential FSM execution time for input size of 100MB. Hence, it is recommended to use only offline, where the same datasets are reused across different FSM executions, such as different mo-
Figure 8: Performance Improvements of specTrans

Figure 9: Performance on Different Machines

tif queries to the same DNA or protein sequence database. Figure 8 shows the improvements of specTrans optimization. On average, it brings about 8.5% extra speedup.

<table>
<thead>
<tr>
<th>Table 6: Cost of specTrans (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>input size</td>
</tr>
<tr>
<td>10MB</td>
</tr>
<tr>
<td>100MB</td>
</tr>
<tr>
<td>1GB</td>
</tr>
</tbody>
</table>

Comparison on Different Architectures. Finally, we also tested MicroSpec on an architecture without SIMD gather. In this case, only S2, specUnroll is experimented. Figure 9 summarizes the results. Haswell has AVX2, which supports an 8-way integer SIMD gather (_mm256_i32gather_epi32). In comparison, Sandy Bridge EP only comes with an earlier version of instruction set AVX. Overall, the performance on Sandy Bridge EP is slightly less than Haswell; but both follow a similar pattern. This demonstrates the potential of MicroSpec in a larger scope, across different architectures.

6. RELATED WORK

Program parallelization in general has received many efforts from various aspects, including but not limited to language design (e.g., Cilk [17], X10 [7]), hardware support (e.g., TLS [55, 21]) and programming models (e.g., STM [2, 6]). This section focuses the studies that are closed to FSM and speculative parallelization.

FSM and Speculative Parallelization. Traditional ways to parallelize FSM are through parallel prefix-sum or its variations [35]. Todd and others [40] implement this method on machines with vector units with a couple of optimizations. Some other FSM parallelization work focus on a few specific FSM applications, such as browser front-end [27] and JPEG decoder [31]. The basic ideas in these work were later formalized by Zhao and others [61] by introducing a concept called principled speculation. Other examples include hot state prediction for FSMs in intrusion detection [38] and speculative parsing [28]. For non-FSM applications, speculative parallelization has been studied for many years, including designing new language constructs [47] and parallelization frameworks [50, 12, 48, 56, 14]. Some of these studies have explored parallelism in irregular programs [33, 20, 46], which provide useful insights for exploiting parallelism in FSM computations, given that FSMs essentially run on an irregular data structure (a graph). They are mainly based on coarse-grained speculative parallelism. Some other prior work have explored bit-parallel fine-grained parallelism for FSMs by converting FSM computations into a sequence of bit operations [41, 36]. In comparison, this work uses both fine-grained and coarse-grained speculative parallelism. Integrating such bit-level parallelism to MicroSpec would be an interesting research topic that remains to be studied.

Vectorization and GPU. Vector extensions, such as SSE, have been widely used in many applications such as graphics [25], scientific applications [18], and signal processing [16]. Based on such vector extensions, many efforts have been put into auto-vectorization [42, 43, 57, 22]. However, there are still computations that are difficult to vectorize, due to irregular data structures, heavy branch operations, and noncontinuous memory access. To address these, prior work have vectorized binary tree search [30], tree traversal [26], irregular tree forest and multiple graphs traversal [51], and sparse matrix-vector multiplication [37]. The basic principles of vectorizing irregular applications include both improving the cache performance by careful data layout and resolving the branch operations. FSM parallelization has also been studied on GPU platform in the context of NFAs [62] which naturally run in parallel. Since FSMs are also irregular structure, the results of this work would provide valuable insights to the parallelization of other irregular computations.

7. CONCLUSION

This paper provides a rigorous analysis among three types of parallelism that can be exposed at fine-grained levels for FSM computations. It deepens the understanding to the efficiency of different FSM parallelization schemes. Guided by the analysis, it presents MicroSpec, a set of speculation-centric parallelization techniques that expose fine-grained speculative parallelism into FSM computations, along with a data transformation optimization. MicroSpec extends the available parallelism in FSM computations to a new level. Experiments show that MicroSpec outperforms the state-of-the-art by up to a factor of four, demonstrating the benefits of fine-grained speculative parallelism.

8. ACKNOWLEDGMENTS

We thank all anonymous reviewers for their constructive comments and our paper shepherd Keshav Pingali for his great help with the final version preparation.
9. REFERENCES

