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COMPUTING THE BREAKPOINT DISTANCE BETWEEN PARTIALLY
ORDERED GENOMES

ZHENG FU AND TAO JIANG
Computer Science Department, University of California, Riverside

The total order of the genes or markers on a chromosome is crucial for most comparative genomics
studies. However, the current gene mapping efforts might only suffice to provide a partial order of the
genes on a chromosome. Several different genes or markers might be mapped at the same position due
to the low resolution of gene mapping or missing data. Moreover, conflicting datasets might give rise
to the ambiguity of gene order. In this paper, we consider the reversal distance and breakpoint distance
problems for partially ordered genomes. We first prove that these problems are NP-hard, and then give
an efficient heuristic algorithm to compute the breakpoint distance between partially ordered genomes.
The algorithm is based on an efficient approximation algorithm for a natural generalization of the well-
known feedback vertex set problem, and has been tested on both simulated and real biological datasets.
The experimental results demonstrate that our algorithm is quite effective for estimating the breakpoint
distance between partially ordered genomes and for inferring the gene (total) order.

1. Introduction
The total order of the genes or markers on a chromosome is very important for most com-
parative genomics studies. The breakpoint distance 12,8 and reversal distance 11,5 are com-
monly used as the evolutionary distances between genomes, and they work on the premise
that the total order of the genes on each chromosome has been identified. However, except
for a few model genomes, most genomes have not been completely sequenced yet. For
these partially sequenced/assembled genomes, only partial gene maps are available, which
might have a low resolution, missing genes/markers, or conflicting ordering information
among each other. Combining these partial gene maps together might only suffice to pro-
vide a partial order of genes and markers. Hence, Zheng, Lenert and Sankoff 13,14 recently
proposed a new general representation of a genome in terms of genes where each chromo-
some is a directed acyclic graph (DAG) rather than a permutation. Any linearization of
the DAGs represents a possible total order of the genome. They generalized the sorting by
reversal problem to assess the distance between two partially ordered genomes. The idea
is to resolve the partial orders into two total orders (i.e. two linearizations of the DAGs
corresponding to the two genomes) with the minimum reversal distance. In the same pa-
per, a depth-first branch-and-bound search algorithm for computing the reversal distance is
presented, which runs in exponential time in the worst case.

In this paper, we study efficient computation of the reversal distance and breakpoint dis-
tance problems between two partially ordered genomes. We show that these two problems
are NP-hard. We also present an efficient heuristic algorithm to compute the breakpoint dis-
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Figure 1. An example of DAG representation for a partially ordered genome.

tance between two partially ordered genomes, called BDPOG. The algorithm also reports a
pair of total orders for the input genomes realizing the breakpoint distance. It runs in O(n3)

time and uses an efficient approximation algorithm for a natural generalization of the well-
known feedback vertex set problem as a subroutine. The BDPOG algorithm has been tested
on both simulated and real biological datasets. The experimental results demonstrate that it
is quite effective for estimating the breakpoint distance between partially ordered genomes
and inferring the total gene orders.

The rest of the paper is organized as follows. We first introduce some preliminary facts
and definitions in Section 2. Section 3 presents the NP-hardness results. Section 4 describes
the algorithm BDPOG. Section 5 presents the experimental results on both simulated and
real genome datasets. Finally, some concluding remarks are given in Section 6.

2. Preliminaries
Genes or markers are usually represented by signed (+ or -) symbols from a alphabet A,
where the signs represent the strand of the genes. A totally ordered genome could be
modeled as an ordered string of genes. However, the existing gene mapping efforts might
only suffice to partially order the set of genes on a chromosome. If the order of some
genes (e.g. a1, a2, · · · , an) cannot be decided in a gene map, we will use (a1, a2, · · · , an)

to represent the uncertainty of the ordering among them. For example, in the gene map
1 (−2, 3) − 5 6 10 8 12, the ordering of all the genes has been decided except between
genes 2 and 3.

Two or more gene maps constructed from different kinds of data or using different
methodologies can be combined to form a more complicated partial order. As Zheng,
Lenert, and Sankoff proposed in recent studies 13,14, directed acyclic graphs (DAGs) rather
than linear permutations could be used to represent partially ordered genomes. In each
DAG, all genes are represented by vertices, while the ordering relation between the genes
is represented by arcs (see Figure 1).

Let Π and Γ be partially ordered genomes of size n, and the DAG representations for Π

and Γ denoted as DAG(Π) and DAG(Γ). A linearization of DAG(Π) represents a possible
ordering of genome Π. Let L(Π) be the set of all possible linearizations of the DAG(Π).
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Then we define the reversal distance between Π and Γ as

dr(Π, Γ) = min
π∈L(Π),γ∈L(Γ)

dr(π, γ) (1)

Similarly, the breakpoint distance is

db(Π, Γ) = min
π∈L(Π),γ∈L(Γ)

db(π, γ) (2)

We define the problem of computing dr(Π, Γ) as the partial-order reversal distance (PRD)
problem and the problem of computing db(Π, Γ) as the partial-order breakpoint distance
(PBD) problem.

Clearly, all possible pairwise adjacency relationships in all possible linearizations of a
DAG can be represented by the arcs of a DAG plus two arcs of opposite directions between
all pairs of vertices which are not ordered by the DAG (see Figure 1d). We say that a
pair of genes forms a possible adjacency in genome Π if they are possibly adjacent in
any linearization of DAG(Π). We say that a pair of genes a and b is a possible common
adjacency and write a · b if they are a possible adjacency in both genomes Π and Γ. And a

is the left end of a · b and b is the right end of a · b. Let S be the set of all possible common
adjacencies. Define an order relation “;” between a pair of possible common adjacencies
a ·b and c ·d in S. We write a ·b ;Π c ·d if one of the following four conditions is satisfied:
(i) c or d is reachable from a or b in DAG(Π) (i.e. at least one of the genes in the second
possible common adjacency is reachable from at least one of the genes in the first possible
common adjacency in DAG(Π)); (ii) a = c and b 6= d, or b = d and a 6= c (i.e. two
different possible common adjacencies share the same left end or the same right end); (iii)
b = c (i.e. the right end of the first possible common adjacency is the same as the left end of
the second possible common adjacency); (iv) let a = um−1, b = um, c = u1 and d = u2,
and there exist possible common adjacencies u1 ·u2, u2 ·u3, · · · , um−1 ·um, 3 ≤ m and
another path in DAG(Π) from u1 to um other than u1 → u2 → · · · → um−1 → um.

Based on the order relation “;Π”, we define a directed graph GΠ, called the adjacency-
order graph. The construction of GΠ is described as follows (see figure 2):

• Every possible adjacency in S is represented by a vertex.
• For every two possible common adjacencies, if a · b ;Π c · d, add an arc from the

vertex a · b to the vertex c · d.

A directed cycle in an adjacency-order graph usually represents a conflict among the
possible common adjacencies in this cycle. And based on the construction of the adjacency-
order graph, we have the following theorem.

Theorem 2.1. All the possible common adjacencies in an acyclic adjacency-order graph
GΠ could always co-exist in some linearization of DAG(Π).

Proof. First of all, if GΠ is acyclic, all the possible common adjacencies could be ordered
by topological sort. This topological sort will not conflict with the order information of
DAG(Π) since the condition (i) guarantees that the order information of the DAG(Π) is
maintained in GΠ. Secondly, any pair of possible common adjacencies in GΠ share at
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Figure 2. An example of the construction of adjacency-order graphs. In GΠ, the arcs inserted by condition (i):
(1 · 2, 2 · 3), (1 · 2, 3 · 4), (1 · 2, 4 · 5), (2 · 1, 2 · 3), (2 · 1, 3 · 4), (2 · 1, 4 · 5), (2 · 3, 3 · 4), (2 · 3, 4 · 5),
(4 · 5, 2 · 3), (4 · 5, 3 · 4); the arcs inserted by condition (ii): (2 · 1, 2 · 3), (2 · 3, 2 · 1); the arcs inserted by
condition (iii): (1 · 2, 2 · 1), (1 · 2, 2 · 3), (2 · 1, 1 · 2), (2 · 3, 3 · 4), (3 · 4, 4 · 5); and the arc inserted by condition
(iv): (2 · 3, 1 · 2). Note that some arcs might satisfy several different conditions.

most one end and only share the different ends, which is guaranteed by conditions (ii)
and (iii). Finally, there exist some linearizations of DAG(Π), where no other genes will
break any possible common adjacency in GΠ. For a possible common adjacency a · b,
no other genes have to be ordered between a and b in any linearization of DAG(Π). And
conditions (iii) and (iv) guarantees that for a set of possible common adjacency {u1 ·u2, u2 ·

u3, · · · , um−1 · um}, no other genes have to be ordered between u1 and um, otherwise,
there exists a cycle u1 · u2 → u2 · u3 → · · ·um−1 · um → u1 · u2 in GΠ. Theorem 2.1
clearly holds. 2

The graph GΓ can be constructed in the same way except that the arcs represent the
relation ;Γ instead of ;Π. Note that since the adjacency-order graphs GΠ and GΓ are
constructed by possible common adjacencies, they should share a same vertex set but may
have different arc sets.

3. Computational Complexity of the PRD and PBD Problems
In this section, we show that both PRD and PBD problems are NP-hard, using different
reductions.

3.1. The NP-Hardness of PRD
Before discussing the hardness of computing the reversal distance between two partially
ordered genomes, we review the structure of breakpoint graph for two partially ordered
genomes 13,14, which is very similar to the one for totally ordered genomes 5. Let Gp(Π, Γ)

be the breakpoint graph for signed partially ordered genomes Π and Γ. Gp(Π, Γ) has 2n+2

vertices for n genes and black/grey edges representing the potential adjacencies in Π and Γ,
respectively. When the genomes are totally ordered, the breakpoint graph has exactly n+1

edges of each color. Moreover, its color-alternating and edge-disjoint cycle decomposition
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(i.e. alternating cycle decomposition) is unique. The reversal distance between two totally
ordered signed genomes is given by Hannenhalli-Pevzner formula 5

dr(Π, Γ) = n + 1 − c(Π, Γ) + h(Π, Γ) + f(Π, Γ) (3)

where c is the number of cycles, and h and f are corrections (the numbers of hurdles
and fortresses). However, in Gp(Π, Γ) there are more than 2n + 2 edges because of the
presence of gene order uncertainties, and consequently, the alternating cycle decomposition
of Gp(Π, Γ) is not unique.

Given a breakpoint graph Gp(Π, Γ), it would be possible to compute c(Π, Γ) by solving
PRD on Π and Γ, if there exists an optimal alternating cycle decomposition of Gp(Π, Γ)

made up of unoriented cycles only (i.e. a cycle is oriented if it is possible to walk along
the whole cycle traversing each black edge in the direction of its orientation, otherwise it is
unoriented). In this case, dr(Π, Γ) = n + 1 − c(Π, Γ) 5.

The main result of this section is the following theorem.

Theorem 3.1. The PRD problem is NP-hard.

Proof. We give a reduction from the NP-hard problem MAX-ACD 2: Given the break-
point graph G of two unsigned permutations, find the maximum number of alternating
cycles of G.

Let GI be a breakpoint graph of instance I constructed for sorting an unsigned
permutation Π = π1 π2 · · · πn into Γ = γ1 γ2 · · · γn. We construct a
partially ordered instance Ip for sorting a signed partially ordered genome Πp =

(+π1l,−π1r) (+π2l,−π2r) · · · (+πnl,−πnr) into the permutation Γp= +γ1l + γ1r +

γ2l + γ2r · · · + γnl + γnr. We use GIp
to denote the breakpoint graph of instance Ip.

Every possible alternating cycle in GIP
has to contain a grey edge from vh

il and vt
ir,

1 ≤ i ≤ n, since they are adjacent in genome Γp. At the same time, vh
il and vt

ir , 1 ≤ i ≤ n,
are always at the same ends of two black edges, since they always have different signs
in genome Πp (see Figure 3b). These lead to a useful observation that all the possible
alternating cycles in GIP

are unoriented. Therefore, we could compute the optimal value
of maximum-cardinality alternating cycle decomposition of GIp

, by solving the reversal
distance problem of Ip.

Lemma 3.1. There is a one-to-one correspondence between the alternating cycles and
alternating cycle decompositions of GI and those of GIp

.

Proof. In GI , each vertex has two black edges and two grey edges except the two end
vertices, so there are two possible ways to decompose them (see Figure 3a). Each signed
gene v in GI is represented by two vertices vl and vr in GIp

. Every vertex in GIp
has two

black edges incident on it because of the uncertain order. There are two possible ways to
decompose every pair of vl and vr in GIp

(see Figure 3b), which correspond to the two
possible decompositions of vertex v in GI . 2

Therefore, it is possible to compute the optimal solution value of MAX-ACD on GI

by solving the PRD instance defined by Ip, namely c(I) = c(Ip) = n + 1 − dr(Ip). This
completes the proof of Theorem 3.1. 2
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Figure 3. (a) An illustration of two possible ways of alternating cycle decomposition on one vertex in GI ; (b)
An illustration of two possible ways of alternating cycle decomposition on an unordered pair of vertices in GIp

.

3.2. The NP-hardness of PBD
By using a different reduction, we can prove the NP-hardness of the the breakpoint distance
between two partially ordered genomes.

Theorem 3.2. The PBD problem is NP-hard.

Proof. We prove that the decision version of the PBD problem is NP-hard by a reduction
from the decision version of minimum feedback vertex set problem.

Minimum Feedback Vertex Set Problem (MFVS)
INSTANCE: A directed graph G(V, A) and a positive integer k.
QUESTION: Is there a subset X ⊆ V with |X | ≤ k such that deleting all the vertices

from X and their incident arcs will leave G acyclic?
Let directed graph G(V, A) and positive integer k make up an arbitrary instance of the

MFVS problem. The reduction to the breakpoint distance problem between partial ordered
permutations (Π and Γ) works as follows: (a) For every vertex vi in G, make two genes v1

i

and v2
i . (b) Add another n + 1 genes {x1, x2 · · · , xn+1}, where n = |V |. (c) Construct

a totally ordered genome Γ = x1 v1
1 v2

1 x2 v1
2 v2

2 · · · xn v1
n v2

n xn+1. (d) Construct a
partially ordered genome Π = xn+1 (p1, p2, · · · , pm) x1 · · · xn, where m = |E| and each
pi, i ∈ [1, m], represents an ordered pair of vertices. If there is an arc directed from vertex
vu to vertex vw in G, we will have a pair pi = v1

u v2
w, which means that in the genome

Π gene v1
u is ordered before gene v2

w. Finally, the order between pi and pj , i 6= j, is
unknown. Figure 4 gives a simple example for this reduction.

Genome

Genome

(a) (b) (c)

Π

Γ x5x1 a1 a2 x2 b1 b2 x3 c1 c2 x4 d1 d2

x5

a1

b1

c1

d1

a2

b2

c2

d2

x1 x2 x3 x4

a b

cd

a1a2 b1b2

c1c2d1d2

Figure 4. An example of the reduction from the minimum feedback vertex set problem to the breakpoint distance
problem. (a) Directed graph G(V, A). (b) Genome Π and Γ, where Γ is a totally ordered genome. (c) Adjacency-
order graph of Π, GΠ, which is isomorphic to G(V, A).
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This reduction guarantees that for Π and Γ, the set of all possible common adjacencies
S= {v1

1 · v2
1 , v

1
2 · v2

2 , · · · , v1
n · v2

n}. Adjacency-order graph GΠ is isomorphic to G(V, A),
while adjacency-order graph GΓ is acyclic since Γ is totally ordered. Based on the special
construction of Π and Γ, the cardinality of the minimum feedback vertex set of GΠ, or
graph G(V, A), is exactly db(Π, Γ) − 2n − 2. Therefore, the feedback vertex set problem
of G(V, A) and k could be resolved by computing the db(Π, Γ). The result of Theorem 3.2
hence follows. 2

4. An Efficient Heuristic Algorithm for Computing the Breakpoint Distance
Let Π and Γ be two partially ordered genomes with possible common adjacency set S.
Computing the breakpoint distance db(Π, Γ) is actually the problem of finding two lin-
earizations of Π and Γ containing the maximum number of possible common adjacencies.
In other words, we want to delete the smallest number of possible common adjacencies
from S while leaving the rest of possible common adjacencies conflict free (i.e. they could
co-exist in some linearizations). One way to delete order conflicts among possible common
adjacencies is using the adjacency-order graph.

By Theorem 2.1, if the adjacency-order graph is acyclic, all the possible common adja-
cency vertices could be linearized by topological sort and partially ordered genomes could
be totally ordered based on such a topological sort. Hence, deleting the smallest number
of vertices to make both adjacency-order graphs (i.e. GΠ and GΓ) acyclic simultaneously
could approximate the db(Π, Γ). Formally,

Definition 4.1. Minimum Double Feedback Vertex Set (MDFVS) problem
Given two directed graphs with the same vertex set and different arc sets, find the minimum-
cardinality subset of the vertices whose deletion leaves both graphs acyclic simultaneously.
The output vertex set is called a minimum double feedback vertex set.

4.1. An Efficient Approximation Algorithm for the Minimum Double Feedback
Vertex Set Problem

Recall that the minimum feedback vertex set (MFVS) problem deals with a single graph,
i.e., the goal is to find the subset of vertices with the minimum cardinality whose deletion
will leave the (single) input graph acyclic. We know that for the minimum feedback vertex
set problem, the best-known approximation algorithm 4,10 in directed graphs achieves a
performance ratio of O(lognloglogn), where n is the number of vertices of the digraph,
although the algorithm requires to the solution of a linear program. Another useful approx-
imation algorithm 3 (denoted APPROX-MFVS) achieves a performance ratio bounded by
the length, in terms of the number of vertices, of a longest simple cycle in the input digraph.
Based on the strong relationship between the MFVS problem and the MDFVS problem, we
could prove the following theorem.

Theorem 4.1. There exists a polynomial 2λ-approximation algorithm for the MDFVS
problem, where λ is the maximum length, in terms of the number of vertices, of a longest
simple cycle in any of the two input graphs.
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Proof. In the MDFVS problem, we are given two directed graphs, say G1 and G2,
which have the same vertex set and different arc sets. Utilizing the approximation algo-
rithm APPROX-MFVS for the MFVS problem as a subroutine, we can easily design an
approximation algorithm, denoted APPROX-MDFVS (see Figure 5), for the MDFVS prob-
lem as follows. Run APPROX-MFVS on G1 and G2 separately to get the feedback vertex
sets FVS(G1) and FVS(G2), respectively. Denote the union of FVS(G1) and FVS(G2)

as DFVS(G1, G2). DFVS(G1, G2) is certainly a double feedback vertex set, although not
necessarily minimal. In fact, it might contain some vertices whose deletion will not af-
fect the property of DFVS. Hence, the algorithm in its last step greedily removes vertices
from DFVS(G1, G2) as much as possible, as long as the remaining vertices still form a
DFVS. Let OPT1 and OPT2 be the optimal values of MFVS on G1 and G2 respectively.
Let OPT be the optimal value of MDFVS on G1 and G2. It is obvious that OPT1,OPT2 ≤

OPT. Since |FVS(G1)| ≤ λ1OPT1, where λ1 is the length of a longest simple cycle in G1,
and |FVS(G2)| ≤ λ2OPT2, where λ2 is the length of a longest simple cycle in G2, we
get DFVS(G1, G2) ≤ 2λOPT, where λ = max{λ1, λ2}. Since the algorithm APPROX-
MFVS can be implemented in O(n3) worst-case running time, the algorithm APPROX-
MDFVS also runs in O(n3) time. 2

Algorithm APPROX-MDFVS(G1 (V, A1),G2(V, A2) )
/* G1 and G2 are two directed graphs with the same vertex set and different arc sets.*/

1. FVS(G1)← APPROX-MFVS(G1)

2. FVS(G2)← APPROX-MFVS(G2)

3. DFVS←FVS(G1)
S

FVS(G2)

5. for each w ∈ DFVS
6. if G1(V \ DFVS ∪{w}) and G2(V \ DFVS ∪{w}) are both acyclic
7. then DFVS← DFVS \{w}
8. Output DFVS

Figure 5. The approximation algorithm for MDFVS.

4.2. The Final Heuristic Algorithm for Breakpoint Distance
Following the above discussion, we present an efficient heuristic algorithm, denoted as
BDPOG, to calculate db(Π, Γ) in four steps, given DAG(Π) and DAG(Γ):

(1) Add two vertices (e.g. v0 and vn+1) to the two input DAGs. In each DAG, add arcs
from v0 to all the vertices with in-degree 0, and add arcs from all the vertices with
out-degree 0 to vn+1.

(2) Derive the possible common adjacency set S from the DAGs and construct the
adjacency-order graphs GΠ and GΓ.

(3) Find a double feedback vertex set for GΠ and GΓ, denoted as DFVS(GΠ,GΓ), by
applying the APPROX-MDFVS algorithm.

(4) Output n + 1 − |S| + |DFVS(GΠ,GΓ)| as db(Π, Γ) and the corresponding total
orders of Π and Γ.
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It is obvious that the performance of the BDPOG algorithm directly depends on the
performance of the APPROX-MDFVS algorithm. The construction of the adjacency-order
graphs in step 2 takes O(n3) time, where n is the total number of genes, since it involves a
transitive closure construction. Since the APPROX-MDFVS algorithm runs in O(n3) time,
the overall running time of the BDPOG algorithm is O(n3).

5. Experimental Results
In order to test the performance of the BDPOG algorithm, we have applied it to both simu-
lated data and real biological data. We will also use an example from the Comparative Grass
Genomics database (http://www.gramene.org) to illustrate the application of our method on
real data.

5.1. Simulated Data
We use simulated data to assess the performance of our algorithm on computing the break-
point distance between two partially ordered genomes. The simulated data is generated as
follows. Start from a genome G with n distinct symbols whose signs are generated ran-
domly. Perform r reversals on the genome G to obtain another genome H . The boundaries
of these reversals are uniformly distributed within the range of the genome. The maps of
these two simulated genomes are generated according to two parameters: the group rate
p corresponding to the probability of a gene being placed at the same position as the next
gene, and the missing rate q that determines how many genes are missing from the map.
Each gene is subjected independently to these two events. Note that every gene has to ex-
ist in at least one map of each genome. Then we combine all the map datasets for each
genome into a DAG. Clearly, these two DAGs represents two partially ordered genomes g

and h generated from genomes G and H . The quadruple (n, r, p, q) specifies the parame-
ters for generating two partially ordered genomes as test data.

We run BDPOG on 20 random instances for each combination of parameters. The
average breakpoint distance between partially ordered genomes g and h, computed by BD-
POG, is compared with the average breakpoint distance between totally ordered genomes
G and H . The results are shown in Figure 6. As we can see from the figure, our heuristic
algorithm is quite reliable in computing the breakpoint distance between two partially or-
dered genomes. On average, the distance computed by BDPOG algorithm is very close to
the real breakpoint distance between the totally ordered genomes. The difference between
two breakpoint distances generally increases as two genomes become more related, or the
uncertainty of gene orders increases, e.g., increasing (p, q) from (0.2, 0.1) to (0.4, 0.2).

5.2. Real Data
We use the X chromosomes of human (Homo sapiens, UCSC hg18, March 2006), mouse
(Mus musculus, UCSC mm8, March 2006), and rat (Rattus norvegicus, UCSC rn4, Novem-
ber 2004) genomes in our real data test. In these three datasets downloaded from the UCSC
Genome Browser 6 website (http://genome.ucsc.edu), all the genes are totally ordered. We
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Figure 6. Performance of our heuristic algorithm BDPOG on simulated data.

perform the test between each pair of genomes, where we extract all the gene orthologs
between the two compared genomes. Then we generate two partially ordered genomes for
the compared genomes using the method described in the previous section, although we
need to specify the group rate p and missing rate q here. By using our heuristic algorithm,
the breakpoint distance between the simulated partially ordered genomes and the possible
total order for each genome can be determined. We run our heuristic algorithm BDPOG on
ten random instances, and compare the average estimated breakpoint distance and the gene
orders with the real ones. The results are shown in Table 1. For example, if we generate the
partially ordered chromosomes for the X chromosomes of human and mouse by using pa-
rameters p = 0.2 and q = 0.1, we get 44.15 as the average estimated breakpoint distance.
In the total gene orders output by our algorithm, an average of 384.05 gene adjacencies
among 388 are kept for the human X chromosome and an average of 382.9 gene adjacen-
cies among 388 are kept for the mouse X chromosome. Note that, the average estimated
breakpoint distance 44.15 is smaller than the real breakpoint distance between human and
mouse, i.e., 45. A possible reason is that a small amount of uncertainties in gene order
might actually decrease the number of reversals between two genomes. Overall, the results
demonstrate that our algorithm performs very well on estimating breakpoint distance and
recovering the gene orders for partially ordered genomes.

Table 1. Comparison of the estimated breakpoint distances and the gene orders with the real ones. ζ The number of the common
gene adjacencies exist in both the real genome G and the total order of the partially ordered genome g obtained by BDPOG.

g and h (p = 0.2, q = 0.1) g and h (p = 0.4, q = 0.2)
G/H #orthologs db(G, H) estimated common adjs common adjs estimated common adjs common adjs

db(g, h) in g and Gζ in h and H db(g, h) in g and G in h and H

human/mouse 389 45 44.15 384.05 382.9 63.75 380.3 379.4
human/rat 132 22 21.3 129.9 131 27.2 128.5 126.4
mouse/rat 126 17 15.65 124.3 124.05 20 123.45 121.95

To further illustrate the application of our method on real data, we use an example
from the Comparative Grass Genomics database (http://www.gramene.org). We examine
two closely related genomes, maize and sorghum. We used the “IBM2 neighbors 2004”
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and the “IBM neighbors maps” 9 for chromosome 1 of maize, and compared it with the
“Paterson 2003” 1 and the “Klein 2004” 7 maps for the chromosome labeled C and LG−01,
respectively, of sorghum. All markers of maize indicated as having a homolog in one of the
datasets of sorghum are extracted, and vice versa. We extracted 21 markers in total. The
two DAGs constructed from the maize datasets and sorghum datasets and the total order of
the DAGs output by our algorithm are shown in Figure 7.

Combined DAG
for maize

2

3

4 5 6 7 8 9 10 11 14 15 16 10 1712

13

18 19 201 21

5 1

Combined DAG
for sorghum

19

136 9

14
21

17 18

16

15 10

11

12

20

8 3 47 2

A possible total order for sorghum: 6  13  14  9  21  19  17  18  15  16  10  11  12  8  20  3  7  4  5  1  2

A possible total order for maize: 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21

Figure 7. A comparison of maize and sorghum chromosomes using partially ordered data from the Gramene
database.

6. Conclusion
In this paper, we have presented some complexity and algorithmic results for the problem of
comparing two partially ordered genomes. In particular, we proposed an efficient heuris-
tic algorithm to estimate the breakpoint distance between two partially ordered genomes
and infer the corresponding linearizations achieving the distance. In our construction, we
defined a useful tool, called the adjacency-order graph, and introduced a new optimiza-
tion problem (MDFVS), for which we designed an efficient approximation algorithm. Our
preliminary experiments on simulated and real data have demonstrated that our algorithm
performs very well on estimating breakpoint distance and recovering the gene orders for
partially ordered genomes. Considering the breakpoint distance is just the first step. In the
future, we plan to look into other distances between partially ordered genomes, e.g., the
reversal distance, and try to design more efficient algorithms.
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