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The assignment of orthologous genes between a pair of genomes is a fundamental and challenging
problem in comparative genomics. Existing methods that assign orthologs based on the similarity
between DNA or protein sequences may make erroneous assignments when sequence similarity does
not clearly delineate the evolutionary relationship among genes of the same families. In this paper,
we present a new approach to ortholog assignment that takes into account both sequence similarity
and evolutionary events at genome level, where orthologous genes are assumed to correspond to each
other in the most parsimonious evolving scenario under genome rearrangement. It is then formulated
as a problem of computing the signed reversal distance with duplicates between two genomes of
interest, for which an efficient heuristic algorithm was given by introducing two new optimization
problems, minimum common partition and maximum cycle decomposition. Following this approach,
we have implemented a high-throughput system for assigning orthologs on a genome scale, called
SOAR, and tested it on both simulated data and real genome sequence data. Compared to a recent
ortholog assignment method based entirely on homology search (called INPARANOID), SOAR shows
a marginally better performance in terms of sensitivity on the real data set because it was able to
identify several correct orthologous pairs that were missed by INPARANOID. The simulation results
demonstrate that SOAR in general performs better than the iterated exemplar algorithm in terms of
computing the reversal distance and assigning correct orthologs.
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1. Introduction

Orthologs and paralogs were originally defined by Fitch! in 1970. Orthologs are genes
in different species that evolved from the same gene in the last common ancestor of the
species, and paralogs are genes that were duplicated from a single gene on the same
genome. In order to avoid ambiguity, Sonnhammer and Koonin? further divided paralogs
into two subtypes: inparalogs and outparalogs. Outparalogs between two species are par-
alogs in a species that were duplicated before the speciation (i.e., split of the two species)
and inparalogs are duplicated after the speciation. For a given set of paralogs on a genome,
there commonly exists a gene that is the direct descendant of the ancestral gene of the set,
namely the one that best reflects the original position of the ancestral gene in the ancestral
genome. Sankoff? called such a gene the true exemplar of the paralogous set.

Orthologous genes are typically evolutionary and functional counterparts in different
species. Many existing computational methods for solving various biological problems,
e.g., the inference of functions of new genes, the analysis of phylogenetic relationship be-
tween different species and many tools in comparative genomics, use orthologs in a critical
way. As a consequence, the identification of orthologs, especially direct descendants of an-
cestral genes in current species, is a fundamental problem in computational biology. It fol-
lows from the definitions of ortholog and paralogs that the best way to recognize orthologs
is to measure the divergence time between homologous genes in two different genomes.
As the divergence time could be estimated by comparing the DNA/protein sequences of
genes, most of existing algorithms for ortholog assignment, such as the well-known COG
system®® and INPARANOID program®, employ a homology search algorithm such as
BLAST”. However, the evolutionary rates of all genes in a homologous gene set may vary
greatly and thus the estimation of divergence times from sequence similarity can be in-
accurate. Therefore, information from homology search alone may not be sufficient for
recognizing orthologs reliably, although it is usually sufficient for identifying paralogs. On
the other hand, observe that molecular evolution proceeds in two different forms: local
mutations and global rearrangements. Local mutations include base substitution, insertion
and deletion, and global rearrangements include genome inversion, translocation, transpo-
sition, efc. The homology-based ortholog assignment methods only use local mutations and
neglect genome rearrangement events that might actually provide valuable information.

In this paper, we propose a new approach for assigning orthologs by taking into account
both local mutations and genome rearrangement events. Our method starts by identifying
sets of paralogs (i.e., gene families) on each genome and the correspondence between these
families by using homology search. The paralogs are then treated as copies of the same
genes, and ortholog assignment is formulated as a natural optimization problem of rear-
ranging one genome consisting of a sequence of (possibly duplicated) genes into the other
with the smallest number of rearrangement events. This most parsimonious rearrangement
process should suggest pairs of orthologous genes in a straightforward way. To simplify the
discussion (and as a first attempt), we first consider only inversion events in genome rear-
rangement. The above optimization problems thus becomes computing the signed reversal
distance with duplicates (SRDD) between two genomes. SRDD is a simple extension of the
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well-known problem of sorting by reversals.® Although the problem of sorting by reversals
has been intensively studied in the past decade, SRDD has basically been untouched. We
give an efficient and effective heuristic algorithm for solving SRDD, using the techniques
of minimum common partition of two given genomes and maximum cycle decomposition
on a breakpoint graph. Based on this algorithm, we develop a high-throughput system
for assigning orthologs on a genome scale, called SOAR (i.e., System for Ortholog As-
signment by Reversals). The heuristic algorithm for SRDD and system SOAR have been
tested on both simulated and real genomic sequence data (from human, mouse and rat
X chromosomes), and compared with two existing algorithms in the literature, the exem-
plar algorithm?® (actually, an iterative version of it) and INPARANOID®. The test results
demonstrate that our heuristic algorithm for SRDD in general performs better than the iter-
ated exemplar algorithm in terms of computing the reversal distance and assigning correct
orthologs, and SOAR is marginally better than INPARANOID in terms of the sensitivity of
its predictions, because it was able to find several true orthologous pairs that were missed
by INPARANOID. 2

The rest of the paper is organized as follows. The next section reviews some related
work on ortholog assignment and genome rearrangement. Section 3 introduces the system
SOAR that we have implemented for ortholog assignment. The heuristic algorithm for
SRDD, which is used in SOAR, is described in Section 4. Preliminary experiments on
simulated data and real data are presented in Section 5. Some concluding remarks are
given in Section 6. Due to space limitations, all proofs and some figures are omitted in the
extended abstract.

2. Related Work

Since our approach for ortholog assignment combines homology search with genome re-
arrangement, we briefly review some related work in ortholog assignment and genome
rearrangement.

2.1. Previous results on ortholog assignment

One of the earliest systems developed to identify orthologs is the COG database*-®, which
is widely used to infer the functions of new genes from annotated genes. COG stands for
clusters of orthologous groups, each of which consists of individual orthologous genes or
orthologous sets of paralogs from at least three lineages. When a gene is queried against the
COG database, it is classified into a COG if it has at least three best BLAST hits in COG.
However, as its name implies, the COG database actually does not report exactly which
gene is the ortholog of the query gene if paralogs exist. That is, it does not distinguish the
true ortholog of the query gene and its paralogs.

2SOAR is slightly worse than INPARANOID in terms of specificity. However, the specificity numbers may not
be very reliable here because we validate orthologs by matching their names in Genbank. It is well known that the
gene names in Genbank are not completely consistent at the present stage and orthologous genes could be named
differently. Besides, the validation method is biased in favor of homology-based ortholog assignment methods
since many genes in Genbank were named via homology search.
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Yan et al.® proposed an approach based on the analysis of reconciled trees. The authors
first construct a gene tree for a set of homologous genes, and then a phylogenetic (species)
tree for the species from which the genes came. When there are discrepancies between
these two trees, a reconciled tree is computed taking into consideration the presence of
gene duplications, which results in an assignment of orthologous genes. This approach
fails when the involved species belong to the same genus because the species background
cannot provide sufficient information for resolving the genes under consideration.’ Fur-
thermore, accurate reconstruction of gene and species trees is a nontrivial problem itself,
which further limits the effectiveness of the approach as a method for assigning orthol-
ogous genes. A similar approach that uses a set of bootstrap trees instead of reconciled
trees was proposed in Storm and Sonnhammer!? recently. These tree-based methods are
not designed to assign orthologs between complete genomes.

To avoid potential errors that might be introduced by multiple alignments or phylo-
genetic trees, a homology-based tool called INPARANOID, was introduced in Remm et
al.® Tt uses all-versus-all pairwise gene sequence comparison and bi-directional best hits
(BBHs) to identify the so called main orthologs (and their inparalogs) between a given
pair of genomes. This approach is in general pretty reliable; however, it could miss many
pairs of orthologs or even assign orthologs incorrectly when the similarity between gene
sequences does not accurately reflect the evolutionary relationship among the genes.

Recently, Cannon and Young!! developed a suite of programs called OrthoParaMap to
distinguish orthologs from paralogs, which may represent the first effort to assign orthol-
ogy by making use of comparative genomic positional information. These information are
retrieved from conserved synteny blocks in the two species of interest and then mapped
onto gene family phylogeny to infer gene duplication mechanism like speciation, segmen-
tal duplications or tandem gene duplications. However, it is widely believed that genome
rearrangement scenarios can essentially provide more valuable positional information than
synteny blocks. This makes the assignment of orthologous genes via genome rearrange-
ment a very promising approach.

2.2. Genome rearrangement

Hannenhalli and Pevzner® developed an elegant algorithm for computing signed reversal
distance and translocational distance between two genomes (with distinct genes) in poly-
nomial time. A permutation is represented as a breakpoint graph. The reversal distance
between the permutation and the identity permutation is calculated by decomposing the
breakpoint graph into a maximum number of edge-disjoint cycles and counting the num-
bers of breakpoint, cycles, and hurdles, as well as checking the existence of a fortress.
The best running time for sorting a permutation by the minimum number of reversals is
quadratic'2, although the signed reversal distance can computed in linear time.'?

As mentioned before, the above model and algorithms only deal with genomes con-
sisting of distinct genes. When studying divergent genomes that contain many highly ho-
mologous genes (i.e., paralogs) scattered across each genome, we need consider genome
rearrangement with duplicated genes. Sankoff® designed an exemplar algorithm to find the
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Figure 1. An outline of SOAR.

genes from two corresponding gene families that are direct descendants of the same gene in
the most recent common ancestral genome. The basic idea is to delete all but one member
of every gene family on each of the two genomes being compared, so as to minimize some
rearrangement distance over all choices of reduced genomes thus derived.

El-Mabrouk'4 recently proposed an algorithm to reconstruct an ancestral genome giv-
ing rise to the minimal number of duplication transpositions and reversals, which works
only for genomes containing sets of gene families of sizes at most two. Tang and Moret'®
presented a straightforward approach by enumerating all the possible assignments of or-
thologs between two genomes with duplicates. However, the number of such possible as-
signments grows exponentially as the number of paralogs increases, making their approach
applicable only to genomes with a very small number of duplicated genes.

3. A System for Ortholog Assignment Based on Sorting by Reversals

Our proposed approach for ortholog assignment takes into account both local mutations
at the gene level and rearrangements at the genome level. Local mutations are measured
by sequence similarity and genome rearrangement is measured by the minimum number
of rearrangement events (i.e., inversions of contiguous segments of genes) necessary to
transform one genome into the other. Following this approach, we have implemented a
system, called SOAR, that consists of two major steps: (i) identify paralogs and construct
gene families from an annotated genome via homology search, and (ii) assign orthologs
via a heuristic algorithm for SRDD. The steps are illustrated in Figure 1 and described
separately below.

3.1. Construction of gene families

SOAR takes as input two annotated genomes (or chromosomes). Gene protein sequences as
well as their locations are extracted to form a gene list for each genome, which is then for-
matted and indexed to facilitate an all-versus-all gene sequence comparison by BLASTp.”
BLASTYp generates several high scoring segment pairs (HSPs) for each pair of genes. Since
the HSPs may overlap with each other, a simple summation of their scores may over-
estimate the similarity between the two genes. We apply a chaining algorithm?® to find a
set of compatible HSPs while maximizing their combined E-value. As in Remm et al.b,
two genes are considered homologous if (1) the combined E-value is less than 1e-20 and
(2) the compatible HSPs span 50% of each gene in length. Each set of homologous genes
from the same genome constitute a gene family.

Since we do not attempt to consider gene loss or insertion events after the speciation in
this preliminary version of SOAR, we remove from a gene family those members that are
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the least homologous to the members of the counterpart family so that corresponding gene
families from both genomes always have equal sizes. Finally, all the remaining genes from
each genome are ordered according to their locations on the genome, and the resulting two
sequences of genes will be input to the following heuristic algorithm for SRDD.

3.2. Identification of orthologs using a heuristic algorithm for SRDD

Now we have two genomes of equal content and all the genes are assumed to be the direct
descendant of their ancestral genes in the most recent common ancestral genome. The
sequence of genes on each genome thus evolved from the sequence of genes on the common
ancestral genome by genome rearrangement events such as reversals and transpositions. By
reconstructing the most parsimonious rearrangement scenario, we could identify pairs of
genes, where each pairs contains one gene from each genome, that came from the same
ancestral gene and thus likely candidates for orthologs. Equivalently, we may consider
the most parsimonious transformation from one genome into the other by reversals and
transpositions. Since transpositions occur much less frequently than reversals, hereafter we
will only consider reversals. The following is a simple example to illustrate the idea of
ortholog assignment via sorting by reversals. Consider two genomes,G = +c—b+a+b
and H = +a — b — b — ¢, consisting of four genes and one multi-gene family each.
The most parsimonious transformation from G into H uses only three reversals. In this
transformation, the first (or second) copy of gene b in G is found to correspond to the first
(or second, respectively) gene b in H, indicating that they might be a pair of orthologous
genes.

This approach for ortholog assignment raises a new computational problem, i.e., how
to sort a sequence of genes (with duplicates) into another with the minimum number of
reversals (SRDD). SOAR uses an efficient and effective heuristic algorithm for SRDD,
which will be explained in the next section.

4. An Efficient Heuristic Algorithm for SRDD

In this section, a genome is represented as a string of signed symbols from a finite alphabet
A, where each sign (+ or -) represents a transcriptional orientation and a symbol denotes
a gene. All occurrences of a symbol in a genome constitute a gene family. A gene is
called a singleton if it is the only member of its family; otherwise, it is a duplicated gene.
Two genomes G and H are related if they have the same gene content, Given two related
genomes G and H, the reversal distance problem is to find the smallest number of reversals
P1, P2, -+ ,pt such that G - p1 - p1 ---pr = H. The reversal distance between G and H
is thus d(G, H) = t. If all the genes in G and H are singletons, the reversal distance
problem is usually referred to as the problem of sorting by reversal, and the distance can
be calculated by the Hannenhalli-Pevzner (H-P) formula®:

d(GaH) = b(GaH) _C(GaH) +h(G5H) +f(GaH)

where b(G, H) is the number of black edges in the breakpoint graph for G and H, ¢(G, H)
the number of cycles in maximum cycle decomposition, h(G, H) the number of hurdles,
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and f(G, H) the number of fortresses, respectively. P

When G and H contain duplicated genes, however, the problem cannot be directly
solved by the H-P algorithm anymore. Once ortholog assignment between the two genomes
is accomplished, the signed reversal distance with duplicates (SRDD) can be simply com-
puted using the H-P formula since every gene can then be regarded as unique. Let us
denote by M the set of all the possible ortholog assignment. Given an assignment 7 and a
genome G, let G™ denote gene sequences of G after orthologs have been assigned by m.
The following straightforward lemma relates SRDD to the assignment of orthologs.

Lemma 4.1. Given genomes G and H, we have d(G, H) = min,epmd(G™, H™).

Unfortunately, the following theorem shows that SRDD is NP-hard. Observe that the
NP-hardness of sorting unsigned strings over a fixed alphabet!” does not imply Theorem
4.2.

Theorem 4.2. SRDD is NP-hard, even when the maximum size of a gene family is limited
to two.

In the following, we devise an efficient and effective heuristic algorithm for SRDD. To
simplify the discussion, we will assume without loss of generality that the first genes and
the last genes of the two related genomes are identical and are positive singletons.

4.1. A useful lower bound

The following definitions are adapted from Christie and Irving!” and El-Mabrouk!*. We
convert a (signed) genome G = (g192 - - - gn) to an unsigned one by replacing each gene
g; with a string g? gl if g; is positive or g} g? if g; is negative, as it is done in the breakpoint
graph of H-P. A partial graph'* associated with a genome G = (g1g2 - - - gn) is the graph
G(V,E), where V = {g?|1 <i <mn,s € {h,t}}, and each of (undirected) edge in E links
two nodes in V' that correspond to adjacent symbols in the genome G except pairs of the
form g and g! from the same gene g;. Let V be the set of distinct symbols in V, where g?
and g;? are considered as the same symbol if g; and g; are from the same family. Clearly,
the partial graphs of a pair of related genomes have an identical vertex set V and set V. For
each pair of elements {¥1,02} € V, let fa(91,92) denote the number of edges in E that
links two nodes in the partial graph G(V, E) of G with symbols #; and ¥y, respectively.
The number of reversal breakpoints between two related genomes G and H is defined as
follows'”

b(G H) = Y 8(fu(®1,8) — fa(br,82))
{1,02}€V

where §(z) = z if £ > 0 and 0 otherwise. The following theorem follows from the
observation that a reversal operation could reduce the number of breakpoints by at most
two.

bPplease refer to Hannenhalli and Pevzner® for the definitions of black edges, hurdles, and fortresses.
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Theorem 4.3. Let G and H be a pair of related genomes. Their reversal distance is lower
bounded by d(G,H) > [b.(G, H)/2].

4.2. (Sub)Optimal assignments

Our heuristic algorithm begins by finding individual ortholog assignments that are (nearly)
optimal with respect to SRDD. Note that the (correct) identification of each ortholog re-
duces the number of duplicates in the related genomes and thus makes the SRDD problem
easier. Lemma 4.4 gives a nearly optimal rule, whereas Lemma 4.5 gives an optimal as-
signment rule.

Lemma 4.4. Assume that g;_19;9i+1 is identical to hj_1hjhj1 or its reversal, where
gi—1 and g;41 are singletons but g; is not. Define two new genomes G and H from G and
H by assigning orthology between g; and h;. Then, d(G, H) < d(G',H') < d(G,H)+1.

Lemma 4.5. Assume that g;_1g; and g;_1g; are identical to hy_1 hy, and hy_1 by or their
reversals, respectively. Suppose that each of the above four pairs is composed of a singleton
and a duplicated gene, and the four duplicated genes are from the same family and without
any other gene included. Define two new genomes G and H from G and H by assigning
orthology between the duplicated genes in g;_1g; and hy,_1 hy, and between the duplicated
genes in gj_19; and hy_1hy. Then, d(G,H) = d(G',H").

It is well known that in the problem of sorting signed permutations by reversals,
the distance value is highly dominated by the first two terms of the H-P formula, i.e.,

d(G,H) = b(G, H) — ¢(G, H). Based on this observation, one can devise the following
assignment rule, which unfortunately does not guarantee optimality with respect to SRDD.

Lemma 4.6. Assume that g;_19; is identical to h;j_1 h; or its reversal, where each of pair
consists of a singleton and a duplicated gene. Define two new genomes G and H' from G
and H by assigning orthology between the duplicated genes in g;_1g; and hj_1h;. Then,
d(G,H) =d(G',H").

4.3. Minimum common partition

In order to formulate an efficient algorithm for the problem of SRDD, we introduce here
for the first time a new optimization problem, called minimum common partition (MCP).
Let us first define a segment g; as a substring (or its reversal) of a genome sequence G. A
partition is a list {g1, gz, - - , Gn } of segments of a genome G, such that the concatenation
of the segments (or their reversals) in some order results in the genome G. The list can be
thought as a contracted representation of G if we consider each segment g; as a symbol.
A list of segments is called a common partition of two related genomes G and H if it is
a partition of G and a partition of H as well. Note that the contracted representations of
two related genomes induced by a common partition are still related to each other. Further-
more, a minimum common partition is a partition with the minimum cardinality (denoted
as L(G, H)) over all choices of common partitions of G and H. For example, for genomes
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G=+4+c+a+b—a+dand H = +c+ a — b — a+ d, a minimum common partition is
{+c+a,+b, —a+d} with L(G, H) = 3. The minimum common partition (MCP) problem
is naturally defined as the problem of finding the minimum common partition between two
given genomes. The following theorem establishes the relation between SRDD and MCP.

Theorem 4.7. Given two related genomes G and H, we have [(L(G,H) — 1)/2] <
d(G,H) < L(G,H) - 1.

Theorem 4.7 suggests a way to approximate SRDD by MCP. Unfortunately, MCP is
also NP-hard.'®

Theorem 4.8. Let k-MCP denote the version of MCP where each gene family is of size at
most k. The problem k-MCP is NP-hard, for any k > 2.

Now we present an approximation algorithm for MCP. Given two related genomes G
and H, a single-match is a pair of identical genes g; and h; from G and H that may have
different signs. A pair-match is a pair of adjacent gene pairs g;g;+1 and hjhji that are
identical or the reversal of each other. Clearly, a pair-match consists of two single-matches.
A common partition {gy, ga, - - - , gn } between G and H can be considered as a one-to-one
mapping M from G to H. When M (g;) = h;, g; and h; form a single-match.

Observe that two pair-matches may not co-exist in a common partition. Such pair-
matches are said to be incompatible. For two related genomes G and H, we can construct
a pair-match graph P(V, E), where V consists of all possible pair-matches between G and
H, and E includes edges connecting incompatible pair-matches. The following lemma is
straightforward.

Lemma 4.9. The maximum independent set problem on P(V, E) is equivalent to the min-
imum common partition problem.

Since the complement of an independent set of P(V, E) is a vertex cover of P(V, E),
we can approximate MCP by using an efficient approximation algorithm for the vertex
cover (VC) (e.g., the standard greedy algorithm with approximation ratio 2). An outline of
our approximation algorithm is shown in Figure 3.

If one assumes that the approximation algorithm for vertex cover has ratio r, we can
obtain an upper bound on the performance of APPROX-MCP as follows.

Lemma 4.10. If the size of the common partition found by the APPROX-MCP algorithm
isl, thenl < (r — 1)(|V| = n) + r - L(G, H), where |V| is the size of the vertex set of
the pair-match graph and n is the size of genome G. In particular for 2-MCP, the above
algorithm achieves an approximation ratio of 1.5.

4.4. Maximum cycle decomposition

The contracted representations of the genomes G and H may still contain duplicates, al-
though we do not expect the number of duplicates to be large. Again, we define another
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Figure 2. The complete graph of two related genomes G = +c—a—b+a+dand H = +c+a+b+a+d.
Each gene is represented by two vertices in the graph.

new problem, called maximum cycle decomposition (MCD), to complete the solution for
SRDD.

The complete graph associated with a pair of related genomes G = (g19» - - - g,) and
H = (hihy---hy,), denoted G(V, E), includes the partial graphs of both G and H as
subgraphs, plus cross-genome edges joining g; and hj, where1 < i < n,1<j <n,
s € {t,h}if g; and h; are identical genes. For example, the complete graph for genomes
G=+c—a—-b+a+dand H = +c+ a+ b+ a + dis shown in Figure 2.

The maximum cycle decomposition (MCD) problem is the problem of decomposing
a given complete graph into a maximal set of cycles such that (1) every vertex belongs
to exactly one cycle, except for the first and last vertices of each genome; (2) the two
vertices representing each gene must be connected respectively to the two vertices of some
(identical) gene in the other genome by edges of the cycles, i.e., the connections satisfy a
pairing condition; and (3) edges within a genome and across genomes alternate in a cycle.
The following theorem is a simple extension of the H-P formula and gives tighter bounds
on reversal distance in terms of MCD compared to the bounds in terms of MCP in the
previous section.

Theorem 4.11. Given two related genomes G and H, we haven — 1 — C < d(G,H) <
n — 1 — C4, where n is the size of G, C is the number of cycles in the maximum cycle
decomposition, and Cy is the maximal number of cycles of size four in any feasible solution
to MCD.

We do not know the complexity of MCD, but we believe it is NP-hard because the
problem of decomposing a general graph into a maximum number of vertex-disjoint cycles
is NP-hard.'® We use a greedy algorithm in SOAR to solve MCD, as outlined in Figure 3.
The basic idea of the algorithm is to find small cycles that satisfy the above three conditions.
Intuitively, small cycles result in large cycle decompositions, although it is not always the
case.

Our heuristic algorithm for SRDD combines the three (sub)optimal ortholog assign-
ment rules, APPROX-MCP and GREEDY-MCD, as outlined in Figure 3. We note that
this algorithm actually works for genomes with unequal gene contents, although the above
discussion assumes related genomes with equal gene content.
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Algorithm ApPROX-MCP(G, H)

/* G and H are a pair of related genomes. */

1. Construct the pair-match graph P(V, E) for G and H

2. Find an approximation of the vertex cover C of P

3. Identify the segments based on the pair-matchesin V — C'
4. Output all the segments as a common partition of G and H

Algorithm GREEDY-MCD(G, H)
1. Construct the complete graph G(V, E) for G and H
2. while V' is not empty do

a. Select a vertex from V
b. Find a shortest cycle that passes through the selected

vertex while not violating the pairing constraint
c. Remove all vertices and edges in the shortest cycle
3. Output all the cycles found as a cycle decomposition

Algorithm ALG-SRDD(G, H)

1. Apply the three (sub)optimal rules given in Lemmas 4.4 — 4.6
2. Run the APPROX-MCP algorithm

3. Run the GREEDY-MCD algorithm

4. Sort G into H according to the above cycle decomposition

Figure 3.  An efficient approximation algorithm for MCP, a greedy algorithm for maximum cycle decomposition,
and an outline of the heuristic for SRDD.

5. Experimental Results

In order to test the performance of SOAR as a tool to assign orthologs, we have applied
it to both simulated data and real genome sequence data, and compared its results with
two algorithms in the literature, namely, an iterated version of the exemplar algorithm® and
INPARANOIDS.

5.1. Simulated data

We use simulated data to assess the performance of our heuristic algorithm for SRDD. In
order to make a comparison test, we implemented the exemplar algorithm of Sankoff? and
extended it into a tool for assigning orthologs. Although the exemplar algorithm was not
originally proposed for the purpose of ortholog assignment, its objective is closely related
to solving the ortholog assignment problem. Namely, it looks for a pair of homologous (or
identical) genes from two genomes that are direct descendants of the same gene in their
most recent common ancestral genome. Therefore, for any two given genomes, the pairs
of genes found by the exemplar algorithm should be orthologous to each other. We can
iterate the exemplar algorithm by making the output orthologs singletons and repeating the
algorithm on the new genomes again and again, until no duplicated genes are left in the
genomes.

The simulated data is generated as follows. Start from a genome G with n distinct
symbols whose signs is generated randomly. Each symbol defines a single gene family.
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Figure 4. Comparison of ALG-SRDD and the exemplar algorithm on simulated data.

Then, randomly combine two gene families into a new family until r singletons are left
in the genome G. In order to obtain a related genome H, perform k reversals on the
genome G. The boundaries of these reversals are uniformly distributed within the size of
the genome. The triple (n,r, k) specifies the parameters for generating a pair of related
genomes.

We ran the exemplar algorithm and ALG-SRDD on 10 random instances for each com-
bination of parameters. Figure 4 shows the average performance of both algorithms over
10 instances in terms of the number of incorrectly assigned orthologs and the reversal dis-
tance. On the average, the number of genes with incorrectly assigned orthologs generally
increases as the number of reversals k increases. However, our heuristic always produces
fewer incorrect ortholog assignments than the exemplar algorithm. In fact, the gap grows
with the number of reversals and the number of duplicates. For n = 100 and r = 80, our
algorithm on average produces at most one mistake for up to 50 reversals and at most 5
mistakes for up to 80 reversals. These statistics indicate that our method is quite reliable in
assigning orthologs.

5.2. Real genome sequence data

We use the X chromosomes of human (Homo sapiens), mouse (Mus musculus) and rat (Rat-
tus norvegicus) genomes in our real data test. Excluding genes whose (protein) sequences
are not available in Genbank, we downloaded 922 genes from the human X chromosome,
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Figure 5. The breakpoint graph of human and mouse X chromosomes. Note that the pictures only show the
orderings of the genes in the genomes, not their actual locations.

1030 genes from mouse, and 899 genes from rat, respectively. At the first step of SOAR,
an all-versus-all sequence comparison was performed between each pair of genomes using
BLASTp. Based on this, the families of homologous genes were constructed. Then, by
using ALG-SRDD SOAR assigned 583 pairs of orthologous genes between human and
mouse, 518 pairs between human and rat, and 599 pairs between mouse and rat as shown
in Table 1.

The genome rearrangement between human and mouse X chomosomes that ALG-
SRDD found consists of 123 reversal operations, and its breakpoint graph is depicted
in Figure 5, which includes 143 breakpoints. In contrast, by studying synteny blocks
instead of genes in the genomes, Pevzner and Tesler?® report that there are at least 7
macrorearrangements (with a DNA sequence span > 1 Mb) and 177 microrearrange-
ments, which may be inaccurate due to assembly errors. Note that the synteny blocks
are required to be unique when generated so that the H-P formula can be applied to
calculate the reversal distance. The breakpoint graphs showing genome rearrangement
for human/rat (117 reversals and 135 breakpoints) and for mouse/rat (155 reversals and
188 breakpoints), both produced by ALG-SRDD, can be found in at the SOAR web-
page (http://www.cs.ucr.edu/ xinchen/soar.htm). With these breakpoint
graphs orthologs between two genomes are assigned in a straightforward way, and the
resulting dot-plot graph showing ortholog mappings between human and mouse X chro-
mosomes is illustrated in Figure 6. Although this dot-plot graph is very similar to the one
obtained by Pevzner and Tesler?® using (unique) synteny blocks, an interesting and no-
ticeable difference between them occurs in the synteny block spanning from 78,691,856bp
to 83,712,889bp in human X chromosome with the block spanning from 100,126,658bp
to 105,951,929bp in mouse X chromosome. Pevzner and Tesler2® reported that these two
synteny blocks correspond to each other with opposite orientations. However, for all the six
gene pairs that are located in the two blocks and assigned orthology by our SOAR system,
each has the same transcription direction, which instead suggests the same orientation of
the whole blocks. We suspect that the anchors (i.e., BBHs) used in Pevzner and Tesler?° to
define these synteny blocks are all from noncoding regions.

Unfortunately, not much is known (or has been experimentally verified) about the true
orthologs among these genes because the functions of the genes are mostly unknown.
Therefore, we took an indirect approach to validate our assignments by using the gene
annotation information in Genbank, in particular, gene names (or symbols). The name of a
gene is usually given to convey the character or function of the gene.?! Genes with identi-
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Figure 6. Dot-plot graphs showing ortholog mapping between pairs of human, mouse and rat X chromosomes.
The X-axis/Y-axis consists of genes from human/mouse/rat X chromosome. A blue point in the graph repre-
sents an orthologous pair of two genes having the same transcriptional direction, while a red point represents an
orthologous pair of two genes that have different transcriptional directions.

cal names are likely to be an orthologous pair, although genes with different names could
still be orthologs due to naming inconsistency in Genbank. We extracted the names of the
above genes from Genbank. Some of the names begin with “LOC”, implying that these
genes have not yet been assigned official names/symbols. Gene pairs involving such names
are ignored in all subsequent statistics. If a pair of genes output by SOAR have completely
identical names, we count them as a true positive pair; otherwise it is a false positive pair.
We also calculated the total number of assignable pairs of orthologs between each pair of
X chromosomes, i.e., the total number of pairs of genes with identical names. For exam-
ple, there are 300 assignable ortholog pairs between human and mouse. Among the 583
ortholog pairs predicted by SOAR, 284 are true positives, 128 involve genes without offi-
cial names and 171 are false positives, resulting in a sensitivity of 94.6% and a specificity
of 62.4% (See Table 1 for definitions). Observe that the specificity number may not be
accurate because genes with different names could still be orthologs.

In order to compare SOAR with existing homology-based methods for ortholog as-
signment, we implemented the INPARANOID algorithm described in Remm et al.® The
latter algorithm relies on BBHs (i.e., bi-directional best hits) between genes from two
genomes. In practice, BBHs have been widely used to assign orthologs between two
species, e.g., the HomoloGene database of Genbank (http://www.ncbi.nlm.nih.
gov/HomoloGene). The comparative results on all three pairs of genomes are summa-
rized in Table 1. The results demonstrate that SOAR and INPARANOID in general make
similar assignments, although they use completely different methods to assign orthologs,
i.e., one is entirely based on homology search (e.g., BBH) and the other relies mainly on
genome rearrangement. SOAR performs slightly better than INPARANOID in terms of
sensitivity, even though the validation method is a bit biased in favor of homology-based
ortholog assignment methods since many genes in Genbank were named via homology
search.

6. Conclusion and Future Research

In this paper, we presented a novel approach to ortholog assignment that takes into ac-
count both sequence similarity and evolutionary events (i.e., reversals) at the genome level.
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Table 1. Comparison of ortholog assignments by INPARANOID and SOAR. The total number of
assignable ortholog pairs between two chromosomes. ¥The total number of ortholog pairs assigned. "The
number of true positives divided by the total number of true positives and false positives (excluding pairs
with unknown names). ¢ The percentage of true positives among all assignable ortholog pairs. & The number
of orthologs assigned by both INPARANOID and SOAR.

assignable INPARANOID SOAR common

orlhologsJr assigned¥ speci.” sensi.© assigned speci. sensi. orthologsE
human/mouse 300 527 65.5% 92.6% 583 62.4% | 94.6% 509
human/rat 116 468 78.8% 93.1% 518 75.8% | 92.2% 448
mouse/rat 115 542 81.8% 98.2% 599 81.4% | 99.1% 524

We formulated the problem as that of computing the signed reversal distance with dupli-
cates between the two genomes of interest. The problem was decomposed into two new
optimization problems (MCP and MCD), for which we designed and analyzed efficient al-
gorithms. We implemented the algorithm in a system for assigning orthologs on a genome
scale, called SOAR.

Our preliminary experiments on simulated and real data have demonstrated that or-
tholog assignment via genome rearrangement is a very promising method. The current
version of SOAR does not consider genome rearrangement events such as transposition,
gene loss, and gene insertion. It also ignores the issue of inparalogs and works only with
single-chromosomal genomes. We plan to look into these extensions in the future.
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