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ABSTRACT
With the tremendous volume of spatial datasets, there is an increas-
ing need to process and analyze spatial data. One of the fundamental
spatial queries is the selectivity estimation problem where users
want to quickly estimate the total number of records in a given
query range. While there have been several approaches to solve
this problem for big data, there is no systematic evaluation and
comparison for these techniques.

In this work, we experimentally examine three of themost widely
used techniques for selectivity estimation, namely, sampling, uni-
form binning, and non-uniform binning. �is evaluation will be a
basis for deciding when to use each of these techniques based on
the application requirements. Furthermore, we study the trade-o�
between memory usage, preprocessing overhead, online query time
and the accuracy of the results. With extensive experiments on
large datasets, we provide an evaluation of these techniques and
we reveal their bene�ts and their weaknesses.
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1 INTRODUCTION
In the recent years, there has been a remarkable increase in the
amount of big data in general, and spatial data in particular. Ac-
cording to recent studies, we generate 2.5 quintillion bytes of data
everyday [14]. A recent McKinsey report [12] shows that 60% of
this data is location-based with an end-user value of $700 billion
in the current decade. Big spatial data is used in many applica-
tions including brain simulation [22, 29], climate studies [11], and
geo-targeted advertising [28].

One of the fundamental spatial analysis techniques is selectivity
estimation which tries to estimate the total number of objects in a
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given spatial range. Selectivity estimation has many applications
in the area of spatial data management including index construc-
tion [19], query load balancing [5], and query optimization [9]. For
example, ScalaGiST [19] uses those estimates to partition and index
the data into equi-sized blocks. On the other hand, AQWA [5]
uses selectivity estimation of both the data records and queries
to be�er balance the load across machines. Another example is
SpatialHadoop [9] which uses it for query optimization where it
is used to direct highly-selective queries to use a single-machine
algorithm while a low-selective query uses MapReduce. Other sys-
tems use it for load balancing in analytic jobs [20, 31]. Selectivity
estimation can be also used to analyze Twi�er trends where the
number of tweets with a speci�c keyword is compared across di�er-
ent query regions and times in order to measure how the keyword
is trending [16, 21].

Two of the most widely used classes of techniques that address
the selectivity estimation problem are sampling and binning. In
sampling-based techniques, a random sample is drawn from the
input data and used to estimate the total number of records in any
selected area. �e performance and accuracy of sampling-based
techniques rely on many factors including the type of the sample,
i.e., biased or unbiased, and the size of the sample. In binning-
based techniques, a two-dimensional histogram is constructed and
used to estimate the number of records. �e performance of these
techniques depends on several factors including the number and
shape of the bins. While they have been applied in big data sys-
tems [5, 9, 10, 19, 20, 31], there is a lack of a thorough comparison
between these two classes of techniques that assists researchers
and practitioners in choosing the most appropriate technique for a
given application, system se�ing and dataset.

In this paper, we provide a comprehensive experimental evalua-
tion of several selectivity estimation techniques based on sampling
and binning. �e goal of this study is to assist researchers and devel-
opers in choosing the most suitable technique for each application.
�e experiments are split into two phases, an o�ine phase that
summarizes the data and an online phase that answers selectivity
estimation queries. �e o�ine phase runs only once in parallel
in the cluster to summarize the data into a prespeci�ed memory
budget (B) which is then stored in the main memory of a single
machine. �e online phase runs on a single machine and uses the
precomputed summary to produce answers to several selectivity
estimation queries. We study the tradeo� between the running time
of the o�ine phase, the running time of the online phase, and the
quality of the results, while varying several parameters including,
the memory budget allo�ed for the summary, the input data size,
the number of machines, and the selectivity ratio. �e results of this
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study will allows users to choose the most appropriate technique
according to the system setup and application preferences.

In our experiments, we found that the sampling method works
be�er in terms of quality and running time when the allo�ed mem-
ory is limited and the selectivity of the query range is small. As
the query range gets bigger and the available memory becomes
larger, the binning methods become faster and more accurate. �is
preliminary experimental evaluation opens the direction for more
thorough experiments by the big data community.

�e remainder of the paper is organized as follows. Section 2
summarizes the related work. Section 3 includes the experimental
setup, giving details about the datasets, themachine setup and query
workload. �e results of the experimental evaluation is included
in Section 4 and in Section 5 we summarize our �ndings. Finally,
Section 6 concludes with future directions and extensions.

2 RELATEDWORK
Selectivity estimation is a fundamental problem that has been stud-
ied for decades. In this section, we categorize the existing research
e�orts into three categories, namely, selectivity estimation for non-
spatial data, selectivity estimation for spatial data and experimental
studies of selectivity estimation.
Selectivity estimation for non-spatial data: �ere has been a
lot of research in the area selectivity estimation for traditional
non-spatial data. �ese techniques use either single-dimensional
histograms [15, 26] or samples [18] to summarize the data and use
the summarized data to answer the selectivity estimation prob-
lem. �ese techniques were designed for one-dimensional data and
cannot directly apply to multidimensional data including spatial
data.
Selectivity estimation for spatial data: �e research work in
this category tries to expand the single-dimensional techniques
described above for multidimensional data. [24, 30] propose smart
sampling techniques that improve over the regular uniform sam-
pling techniques to provide be�er quality. Belussi and Faloutsos [6]
are among the �rst ones who a�empted to research the principles
of spatial data and propose techniques which were addressed specif-
ically for spatial data. [1, 17, 27] propose several histogram-based
techniques which are applied to di�erent types of spatial datasets.
Furthermore, Ching-Tien Ho et al [13] improve histogram-based
techniques where each bin represents the total number of records
in a region of the input domain. Unlike other techniques which
store the total number of records in the area covered by the cor-
responding cell, they store the total number of records that are
to the top of le� of that cell. �is simple addition allows that his-
togram to answer any rectangular selectivity estimation query in
a constant time regardless of its size. �is makes an opportunity
to build a denser histogram without worrying about the running
time of the selectivity estimation query. �is binning technique
was found very e�cient and became popular in many applications
that employ the selectivity estimation problem [4, 5, 8, 23]. In the
proposed work, we do not propose a new technique for selectiv-
ity estimation, rather, we provide an experimental evaluation to
compare the relative performance of the existing techniques in the
distributed se�ing.

Experimental studies on selectivity estimation: Research ef-
forts in this category aim to provide an experimental study for
selectivity estimation techniques from di�erent categories. Poosala
et al [2] is the only work that we believe belongs in this category.
�is work surveys the existing techniques, at that time, for spatial
selectivity estimation and experimentally evaluates them. �ey also
proposed their own techniques which were based on using spatial
indexes or on the notions of spatial density and spatial skew. �is
seems to be the only study that tries to compare di�erent kind of
techniques, because most of the comparison evaluation studies try
to compare similar techniques and then to propose a new method
which improves a li�le bit a previous one.

�is paper belongs to the third category where we provide an
experimental evaluation to compare several techniques. Any of
the techniques listed in the second category can be added to the
experimental evaluation. In this work, we focus on three widely
used techniques, namely, uniform sampling, uniform binning, and
non-uniform binning. We focus on the distributed se�ing where a
preprocessing phase runs in parallel to compute the sample or the
histogram, while a single-machine online phase answers selectivity
estimation queries based on the result of the preprocessing phase.
To the best of our knowledge, this is the �rst experimental study
that evaluates the tradeo� in selectivity estimation in big spatial
data.

3 EXPERIMENTAL SETUP
In this section, we describe the foundation of our experimental
evaluation. First, we provide a formalization of the selectivity
estimation problem in Section 3.1. In Sections 3.2-3.4 we provide the
details of the three methods we study in our experiments, namely,
sampling, uniform binning, and non-uniform binning. Section 3.5
provide the several parameters that we change and the metrics that
we measure in our experiments. Section 3.6 describes the query
workload. Finally, Section 3.7 details the cluster setup in terms of
hardware and so�ware.

3.1 Problem De�nition: Selectivity Estimation
�e selectivity estimation problem is to calculate the number of
points in a given query range. Given a dataset of points, R, and a
query rectangle Q , the output is the number of points in the set
R that lie inside the query rectangle Q . While this query can be
generalized to arbitrary shapes, this paper focuses on the special
case where the input dataset is points. Arbitrarily shaped records
are usually approximated as points given that they are small enough.
In this query, while approximate answers are acceptable a more
accurate result is desired. �is problem has been of a huge interest
in the past and we believe that it will continue to do so. Despite
the huge advance in systems hardware, e.g., CPU and memory, the
amount of data is growing faster than Moore’s law and a fast and
approximate answer will always be useful.

�is query is not to be mixed with the range query where the
desired output is the set of all records that lie in the query range and
where an approximate answer is usually not acceptable. In many
cases, the selectivity estimation query runs as a preparation step
for the actual range query to estimate the answer size and prepare
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the system to receive the answer, e.g., allocate the desired memory
and disk bu�ers, or choose an appropriate level of parallelization.

3.2 Sampling Method
�e �rst technique that we consider is sampling. Sampling method
is a widely-used technique in many algorithms and applications. Its
popularity comes from the simplicity of the implementation that
makes it easy to use and applicable to several problems including
visualization [25], partitioning [10], and approximate queries [3].
In the case of the selectivity estimation query, a range query is
executed on a small sample of the data and the answer is divided by
the sampling ratio to obtain an answer for the selectivity estimation
problem. We implement this algorithm in Spark in three steps,
sample, index, and estimate, as detailed below.

In the sample step, we read a sample from the input �le in par-
allel using the Spark built-in functionality. Spark provides two
sampling functions, namely sample and takeSample. �e sample
method takes as input a sampling ratio in the range [0, 1] and de-
cides for each record to be in the sample independently with the
given probability. On the other hand, takeSample takes as input a
�xed number and returns a sample with this size. While we actually
need to pick a sample with a �xed size, we chose to use the �rst
function, i.e., sample, for two reasons. First, the sample function
is much faster as it operates completely in parallel and requires
no coordination between the nodes while takeSample requires all
the sub-samples acquired by di�erent machines, to be collected in
one central machine to produce the �nal answer with the given
size. Second, sample function de�nes a Spark transformationwhich
allows us to combine it with other transformations for parsing and
processing the �le. takeSample, on the other hand, is an action
and it returns the sampled data to the driver machine which should
continue any further required processing.

In the index step, we insert the sample data into an in-memory
K-d tree index [7] to speed up the in-memory processing of the
third step. A k-d tree can be built e�ciently inO(n logn) time if all
the points are known in advance, where n is the sample size.

�e third estimate step runs only when a user submits a query.
In this case, the K-d tree index is used to retrieve and count the
points in the sample that matches the user query. �e returned
number is divided by the sampling ratio to produce an estimate for
the query results on the entire dataset. For example, if the sampling
ratio is 1%, the result of the range query on the sample is multiplied
by 100 to produce an estimate for the selectivity estimation query.
A range search on the K-d tree tree can be executed in O(

√
n + k),

where k is the number of points in the query region.

3.3 Uniform Binning Method
�e sampling method has two major drawbacks that the binning
method tries to address. First, it relies on a random number genera-
tor which causes it to produce a di�erent answer each time it runs.
�is can be undesirable in some applications. Second, it has to drop
some records during the sampling method which could have been
used to improve the answer.

In the uniform binning method, the entire data is scanned and
a two-dimensional histogram is generated to store the number of

records in each bin. �e uniform histogram is similar to an equi-
width histogram but for a two- or multi-dimensional space. �is
method runs in three steps, histogram, pre�x-sum, and estimate, as
detailed below.

In the histogram step, each machine prepares a two-dimensional
histogram that has n-bins where n is computed according to the
memory budget, n = bB/|b |c where |b | is the size of one bin, typi-
cally, 8-bytes to hold a counter. �en, all machines work in parallel
by scanning all the records stored on that machine, each record is
mapped to a bin in the two-dimensional grid, and the value of the
corresponding bin is incremented by one. �is is done in parallel
on all machines and the results are �nally combined together in
one machine which computes the �nal histogram by adding up the
corresponding bins from all machines.

�e pre�x-sum step aims to speed up the selectivity estima-
tion query, by employing the method proposed by Ching-Tien Ho
et al [13]. �is method computes a pre�x sum along the two dimen-
sions of the histogram. �e result is that the counter in each bin
will represent the total number of points in all the bins that are to
the top or le� of that bin. �is allows a selectivity estimation query
to run in a constant time regardless of its size as detailed in [5, 13].

�e �nal estimate step runs only when a user submits a selectiv-
ity estimation query. First, it maps the four corners of the query
rectangle to the histogram to �nd the corresponding bins. �en,
the estimated selectivity is computed by adding up the values in
the top-le� and bo�om-right corners, and subtracting the values
in top-right and bo�om-le�. �is simple computation makes use
of the pre�x-sum to compute the answer in a constant time. We
further re�ne this step by taking a fraction of the value in a cell that
partially overlaps the query rectangle proportion to the area of the
overlap as compared to the total area of the bin. �is is based on the
assumption that the data is each grid cell is uniformly distributed.

3.4 Non-uniform Binning Method
If the data is uniformly distributed, the uniform binning method
works �ne. However, if the data is highly skewed, it is be�er to use
the non-uniform binning method described below.

�is technique is very similar to the uniform binning method
except that it uses di�erent widths and heights for columns and
rows, respectively, in order to equalize the number of objects in
each bin. �is method is similar to the equi-depth histograms in
single dimension. In two-dimensional space, equi-depth means that
each column and each row has roughly an equal number of objects,
but not necessarily each bin. Actually, the most common case is for
each bin to have di�erent number of objects.

To compute the width and height of each column and row, we
�rst read in parallel a sample of the input �le on the size of our
memory budget (B), as done in the sampling method, and then
in a single machine we use this sample to divide the space into
columns and rows of equal depth, i.e., equal number of points.
Once the widths and heights of columns and rows are computed,
the sample is discarded and its memory is reclaimed to be used
for the histogram. A�er that, we use these widths and heights to
construct the grid and scan the �le again to populate the values of
the histogram as done in the uniform binning method. Once the
two-dimensional histogram is computed, the estimation step runs
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Figure 1: Running time of the o�line phase

exactly as before. Since the widths and heights are di�erent, to �nd
the cell that corresponds to one corner, we need two binary search
operations as one for the row and one for the column. Once the
two corners are determined, the logic of the estimation query is
exactly as in the uniform binning.

3.5 Experimental Parameters
In our experiments, we study the trade-o� between the running
time of both phases, o�ine and online, and the quality of the re-
sults. In doing so, we conduct our experiments while varying four
parameters, (1) the input data size, (2) the memory budget (B) that
is used to hold either the sample of the histogram, (3) the number
of machines in the cluster, and (4) the query rectangle selectivity
(S) measures as the ratio between the query rectangle area and the
input domain area.

For the memory budget (B), we use the values of 10 MB, 100 MB,
250 MB and 500MB. Memory budgets smaller than 10MB are unrea-
sonable given the speci�cations of available commodity machines.
Also, as shown in the next section, we found that the trends of the
results are stable at the values of 500 MB or higher, thus we decided
to report the numbers of up to 500 MB only.

�e ratio of the query area to the input area is called the Se-
lectivity Ratio (S). For example, a selectivity ratio equal with 10%
means that the query rectangle covers 10% of the total area. In
our experiments, we vary the selectivity ratio between the values
{0.0001%, 0.001%, 0.01%, 0.1%, 1%} of total area. Larger values of
selectivity ratio are too large to be used in practice by users. Notice
that this value does not have to be equal to the actual query selec-
tivity which represents the ratio between the number of selected
records and the total number of input records.

3.6 �ery Workload
For the input dataset, we use the 100 GB all nodes dataset pub-
licly available at the website of SpatialHadoop [spatialhadoop.cs.
umn.edu/datasets.html] which contains around 2.7 billion points
covering our whole planet. To test the e�ect of the input size, we
vary the size by taking samples of sizes 20, 40, 60, and 80 GB.

Selectivity estimation queries are determined by picking 20 ran-
dom sample points from the input dataset. �ese points act as the
center of the query ranges. �en, the size of each query range is

determined according to a parameter S which represents the selec-
tivity ratio. For example, if S = 1%, the area of the query rectangle
is 1% of the total input area.

3.7 Cluster Setup
We run the o�ine phase on a Spark cluster on AmazonWeb Services
(AWS) with up-to 20 nodes of type ‘m3.xlarge’ with four cores, 15
GB of RAM, and 80 GB of SSD storage. We used Spark 2.10, Hadoop
2.7.2, and Java 1.8. �e online phase runs on a single machine with
Intel Skylake at 2.5GHz with 16 GB of DRAM.

4 EXPERIMENTAL RESULTS
In this section, we present the results of the conducted experimental
evaluation. We begin with the analysis of the performance of the
o�ine phase while varying the number of machines, the input size,
and the memory budget. We then report the results of the online
phase and highlight the tradeo� between the performance and the
quality of the selectivity estimation problem.

4.1 O�line Phase
For the o�ine phase, we measure the overall running time of this
step. �is helps researchers determine which method is faster
and how the input size and the number of machines a�ect their
performance. �e general view of the o�ine phase for each method
is presented in Figure 1. In Figure 1a, the 100 GB input dataset is
used while the memory budget B is changed from 10 MB to 500 MB.
We observe that for small memory budgets the sampling method
is the fastest. As we increase the value of B, sampling running
time increases faster than the other methods. �is is something
that we expect, since we have used a K-d tree index to store the
sample in memory. �e K-d tree index is a necessary step to make
the online phase works in an real-time manner. Otherwise, each
selectivity estimation query will have to scan the entire sample
which is unpractical and would be too slow, especially, if the system
is expected to answer multiple queries simultaneously. On the other
hand, we notice that uniform binning method scales pre�y well and
it becomes the faster method at B=500 MB and above. �is outcome
is justi�able since each record updates the histogram in a constant
time, and the pre�x sum phase runs in linear time. Lastly, the
running time of the non-uniform binning is slower than the others
because in the histogram construction phase, each records requires

spatialhadoop.cs.umn.edu/datasets.html
spatialhadoop.cs.umn.edu/datasets.html
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Figure 2: Running time of the o�line phase as increasing
the cluster size

log(B) work to �nd the corresponding work since the widths and
heights of the columns and rows are variable.

In Figures 1b and 1c, we measure the running time as the input
size increases from 20 GB to 100 GB while �xing the memory
budget at 10 MB and 500 MB, respectively. As expected, all the
algorithms scale nicely with the increasing input size. Interestingly,
for a small memory budget (B=10 MB) the sampling method is the
fastest while for a larger memory budget (B=500 MB) the uniform
binning becomes faster. �is suggests the use of sampling for small
memory budgets and histograms for larger memory budgets if the
running time of the o�ine phase is of interest.

Finally, since we have conducted our o�ine phase into a cluster,
we could not have omi�ed to examine if the cluster size in terms
of node number e�ects the methods. It seems that the cluster size,
just like the input size, e�ects the time performance of the o�ine
phase, however it does not change the trend of the methods. Figure
2 provides a view of our experiments as we used di�erent cluster
size and di�erent memory budgets.

4.2 Online Phase
For the online phase, we use two measures, the running time of a
single selectivity estimation query, and the accuracy of the result as
compared to the ground truth. As the online selectivity estimation
query runs on a single machine, we only vary the memory budget
B and the selection ratio S .
Time performance: Figure 3 illustrates the running time of a
single selectivity estimation query as we change thememory budget
from 10 MB to 500 MB and the selectivity ratio from 0.0001% to 1%.
We notice that the queries of the two binning methods have equal
performance in all the cases and this was expected, because the
way that a binning query is answered is similar for both cases. Due
to the pre�x sum that we employ, a selectivity estimation query is
answered in constant running time the case of uniform binning, and
almost constant running for non-uniform binning. For the case of
non-uniform binning, an extra binary search has to be made to �nd
the range of columns that overlap the query range. On the other
hand, the sample-based technique has to search the in-memory K-d
tree which takes log(n + k) where k is the result size. Furthermore,
as we increase the memory budget, the histogram-based techniques
deliver almost the same performance while sampling takes more
time with larger values of B as the size of the K-d tree increases.

Looking at the actual numbers, one case easily see that the sam-
pling method is not as scalable as the histogram method. For very

small values of S and B, the sampling method is slightly faster,
however, as the values of S and B increase, the gap becomes huge.
Notice that both of them provide the result in a few milliseconds
which makes them both su�ciently responsive for one query. How-
ever, if the system expects thousand of queries per second, the
performance gap will be huge.
Accuracy: In many applications, the accuracy is the most desir-
able characteristic of the selectivity estimation query. For each
query in the workload, the ground-truth is obtained by running
the corresponding range query on the actual data to obtain the
correct answer, say Z ∗. We run the selectivity estimation query
using either the sampling or histogram methods, and we obtain an
answer Z . �e error is measured as e = |Z

∗−Z |
Z ∗ and the accuracy is

a = 1 − e .
Figure 4 shows the average accuracy of the selectivity estimation

query as we vary both B and S . For each point, we run 20 di�erent
queries, all with the same selectivity S , and report the average accu-
racy. We notice that the sampling method gives a be�er accuracy
for small values of S and B. �is suggests the use of the sampling
method for selectivity estimation when the memory is limited and
the queries are expected to be highly selective. As B and S increase,
both binning-based techniques eventually outperform sampling.
Furthermore, non-uniform binning is consistently more accurate,
even with small di�erence for large S , than uniform binning which
is expected as it has a higher degree of freedom by adjusting the
width and height of each column. One last point that we can notice
is that, if users desire an accuracy that is almost equal to 100%, then
the binning techniques are these that can give such numbers, since
sampling seems to have an upper bound on accuracy. And this is
because there is always the case of a bad sample, which means that
the general average accuracy for the sampling method cannot be
considered close to 100%.

5 DISCUSSION
Our experimental evaluation has as target to provide useful guide-
lines to researchers and developers on how to choose the most
suitable technique for each application. Our experimental results
can be summarized in four observations. Foremost is that there is
no clear winner; no method provides us constantly with the best
running time for both phases, as well as the best accuracy at the
same time.

In the case where the memory budget is equal to or greater than
500MB, Uniform binning is the best choice for two reasons. First,
because its o�ine phase turns out to be the fastest, and secondly
because during the online phase we can have very fast query re-
sponses with generally high accuracy, approaching 100% for large
S .

We also observed that varying parameters such as cluster size
or input size, e�ects in the same degree the o�ine phase of any
method. �is is important because it ensures that we do not need
to change our technique for be�er performance in the event of
changing any of the parameters.

Finally, if we are only seeking to have the best accuracy of our
results, we must pick any of the two binning methods. �is is due
to the fact that, largely, binning methods provide us with higher
result quality, compared to the sampling method. And of course, as
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Figure 4: �ery accuracy for di�erent memory budgets

we have already discussed, in the case of a bad sample, we su�er a
big loss in accuracy.

6 CONCLUSION
We presented an experimental evaluation of three techniques for
the selectivity estimation problem on spatial datasets. �ese tech-
niques represent the two most widely used classes of techniques
addressing the selectivity estimation problem, which are sampling
and binning. By thorough experiments, we revealed their bene�ts
and weaknesses in terms of time performance and query accuracy,
and pointed out when each technique should be used. Our goal for
future work is to compare these techniques with datasets which
have various formats of spatial data, in order to examine if the trend
of the results remains the same.

REFERENCES
[1] Ashraf Aboulnaga and Je�rey F. Naughton. 2000. Accurate Estimation of the

Cost of Spatial Selections. In ICDE. San Diego, CA, 123–134.
[2] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. 1999. Selectivity

Estimation in Spatial Databases. In SIGMOD. Philadelphia, PA, 13–24.
[3] Sameer Agarwal, BarzanMozafari, Aurojit Panda, HenryMilner, Samuel Madden,

and Ion Stoica. BlinkDB: �eries with Bounded Errors and Bounded Response
Times on Very Large Data. In EuroSys.

[4] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. 1998. Automatic Subspace Clustering of High Dimensional Data for Data
Mining Applications. In SIGMOD. Sea�le, WA, 94–105.

[5] AhmedM. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref, Mourad
Ouzzani, Hazem Elmeleegy, and �amir Qadah. 2015. AQWA: Adaptive �ery-
Workload-Aware Partitioning of Big Spatial Data. PVLDB 8, 13 (2015), 2062–2073.

[6] Alberto Belussi and Christos Faloutsos. 1995. Estimating the Selectivity of Spatial
�eries Using the Correlation’ Fractal Dimension. In LDB. 299–310.

[7] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-
ciative Searching. Commun. ACM 18, 9 (1975), 509–517.

[8] Yong-Jin Choi and Chin-Wan Chung. 2002. Selectivity Estimation for Spatio-
temporal �eries to Moving Objects. In SIGMOD. Madison, WI, 440–451.

[9] Ahmed Eldawy, Louai Alarabi, and Mohamed F. Mokbel. 2015. Spatial Partition-
ing Techniques in SpatialHadoop. In PVLDB. Kohala Coast, HI, 1602–1605.

[10] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
Framework for Spatial Data. In ICDE. Seoul, South Korea, 1352–1363.

[11] James Faghmous and Vipin Kumar. 2013. Spatio-Temporal Data Mining for
Climate Data: Advances, Challenges, and Opportunities. Advances in Data Mining,

Springer.
[12] Nicolaus Henke, Jacques Bughin, Michael Chui, James Manyika, Tamim Saleh,

Bill Wiseman, and Guru Sethupathy. 2016. �e Age of Analytics: Competing in a
Data-driven World. Technical Report. McKinsey Global Institute.

[13] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant.
1997. Range�eries in OLAP Data Cubes. In SIGMOD. Tucson, AZ, 73–88.

[14] IBM 2017. Bringing Big Data to the Enterprise. (2017).
[15] Yannis E. Ioannidis. 1993. Universality of Serial Histograms. In LDB. Dublin,

Ireland, 256–267.
[16] Jianfeng Jia, Chen Li, Xi Zhang, Chen Li, Michael Carey, and Simon Su. 2016.

Towards Interactive Analytics and Visualization on One Billion Tweets. In ACM
SIGSPATIAL. Burlingame, California, 85:1–85:4.

[17] Ji Jin, Ning An, and Anand Sivasubramaniam. 2000. Analyzing Range�eries
on Spatial Data. In ICDE. San Diego, CA, 525–534.

[18] Richard J. Lipton, Je�rey F. Naughton, and Donovan A. Schneider. 1990. Practical
Selectivity Estimation through Adaptive Sampling. In SIGMOD. Atlantic City,
NJ, 1–11.

[19] Peng Lu, Gang Chen, Beng ChinOoi, Hoang TamVo, and SaiWu. 2014. ScalaGiST:
Scalable Generalized Search Trees for MapReduce Systems. PVLDB 7, 14 (2014),
1797–1808.

[20] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. E�cient Processing of
k Nearest Neighbor Joins using MapReduce. PVLDB 5, 10 (2012), 1016–1027.

[21] Amr Magdy and others. 2014. Taghreed: A System for�erying, Analyzing, and
Visualizing Geotagged Microblogs. In ACM SIGSPATIAL. 163–172.

[22] Henry Markram. 2006. �e Blue Brain Project. Nature Reviews Neuroscience 7, 2
(2006), 153–160.

[23] Yossi Matias, Je�rey Sco� Vi�er, andMinWang. 1998. Wavelet-Based Histograms
for Selectivity Estimation. In SIGMOD. Sea�le, WA, 448–459.

[24] Frank Olken and Doron Rotem. 1993. Sampling from Spatial Databases. In ICDE.
Vienna, Ausria, 199–208.

[25] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. 2016. Visualization-
aware Sampling for Very Large Databases. In ICDE. Helsinki, Finland, 755–766.

[26] Viswanath Poosala and others. 1996. Improved Histograms for Selectivity Esti-
mation of Range Predicates. In SIGMOD Record. 294–305.

[27] Viswanath Poosala and Yannis E. Ioannidis. 1997. Selectivity Estimation Without
the A�ribute Value Independence Assumption. In LDB. Athens, Greece, 486–495.

[28] Jagan Sankaranarayanan and others. 2009. Twi�erStand: News in Tweets. In
ACM SIGSPATIAL. 42–51.

[29] Farhan Tauheed, Laurynas Biveinis, �omas Heinis, Felix Schürmann, Henry
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