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Abstract
As one of the most fundamental data structures in algorithm design and

programming, trees play an important role in almost every area in computer
science. An advantageous and e�ective design of trees must consider new
challenges proposed by today’s applications. First of all, the large scale of
data requires trees to exploit parallelism and theoretical e�ciency. Secondly,
the comprehensiveness in applications necessitates a wide range of functions
for trees. Lastly, each individual application using trees demonstrates its
particularity. As a result, some generic frameworks on trees is useful in
enabling simplicity and reusability for algorithms and code.

To tackle with these challenges, this thesis studies balanced binary trees
in the parallel setting. This thesis proposes novel algorithms, frameworks,
implementation techniques, and libraries, that are simple and e�cient for a
variety of large-scale applications. The core of this thesis is an algorithmic
framework called the join-based algorithms, which bases all tree algorithms
and functionalities on a single primitive join. The join function captures the
essence for rebalancing, augmentation, and persistence (multi-versioning).
Based on join, a variety of simple and e�cient tree algorithms work generically
across multiple balancing schemes, across multiple abstract augmentations,
as well as for both in-place and persistent updates.

Theoretically, this thesis proposes a wide range of parallel tree algorithms.
They all have optimal work and poly-logarithmic span. By placing conditions
on the join function, we abstract out the preferred properties of a balancing
scheme that ensures the optimal cost bounds of the join-based algorithms.
This also leads to theoretically e�cient parallel solutions to some studied ap-
plications, such as the geometry data structures and the sweepline paradigm.

In practice, the thesis work leads to an implementation of the join-based
parallel trees, called P-Trees, in a C++ library called PAM. The library supports
a complete interface for sequences, ordered sets, ordered maps, and augmented
maps (formally de�ned in this thesis). Applying the library leads to high-
performance implementation of a variety of real-world applications, such as
2D range-based searches and hybrid transactional and analytical processing
(HTAP) database management systems.

P-Trees enable concise and high-performance implementations of all
tested applications. Experiments show that P-Trees achieve speedups ranging
from 40 to 100 across di�erent applications on 72 cores with 2-way hyper-
threading. P-Trees’s performance can be up to magnitudes better than existing
solutions speci�c to these applications, in addition to being more concise.
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Chapter 1

Introduction

One of the most important and fundamental data structure used in algorithm design and
programming is the tree structure. Most importantly, the symmetric order of trees (i.e.,
the in-order traversal) provides an elegant and e�cient interface to organize ordered data.
Although one can use other basic data structures such as arrays or linked lists to maintain
ordering, trees are more e�cient in maintaining dynamic datasets. In particular, any
lookup, single insertion, deletion or update cost O(logn) time on trees with size n instead
of linear. Usually taught in the �rst undergraduate algorithm course, algorithms and the
concept of the tree data structure is the foundation of many advanced algorithms and data
structures, systems, data types, applications, and important theoretical results. As a special
case, the ordering allows for e�ective partitioning of space, and thus many geometry
algorithms make use of trees (e.g., segment trees [52], range trees [56], kd-trees [56]).
Designing e�cient algorithms for trees has always been a pursuit for researchers in
di�erent areas, and are essential for both bounding the theoretical costs and improving
practical performance of these applications.

Although basic algorithms on balanced binary trees are simple and fundamental (even
a sophomore CS student would know them), the real-world applications (such as the above-
mentioned ones) are far more involved than the textbook algorithms. As a result, e�cient
and practical tree data structures need to be adaptive to the requirements of the real-world
application. Some special challenges proposed by today’s applications on trees are that
(1) the datasets are very large, which necessitate considering parallelism and theoretical
e�ciency in tree algorithm design; (2) the required functionality is usually comprehensive,
obligating trees to support a wide range of functions; and (3) each application has its
particularity, which requires generic frameworks on trees unifying multiple settings. The
goal of this thesis is to understand trees in the context of parallelism, and to design and develop
simple and e�cient algorithms, frameworks and implementations for tree data structures
both in theory and for a variety of real-world applications.
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This thesis focuses on balanced binary 1 trees. Binary means that the tree can be either
empty (a nil-node) or some data u and with two trees (noted as the left and right children)
denoted as node(TL,u,TR). Balanced means that tree height is bounded. Because many
operations on trees have cost proportional to the height of the tree, it is necessary to
organize binary trees in a “nearly” balanced manner. The height of a binary tree with n
keys has a lower bound of log2(n+1), and can degenerate to n in the worst case. As a result,
many balancing schemes2, such as AVL trees [12], red-black trees [42], weight-balanced
trees [217], treaps [246], splay trees [254], etc., are designed for bounding the height of
trees. In general, they all bound the tree height by O(logn) (w.h.p.3 for treaps, amortized
for splay trees).

This thesis answers the above challenges and considerations by designing a class of
balanced binary trees. The proposed approaches include novel algorithms, frameworks,
implementation techniques, and libraries, that are simple and e�cient for a variety of large-
scale applications, with special consideration of the multi-core shared-memory parallel
systems. The scope of this thesis includes both theoretical and experimental studies.
This thesis, in particular, proposes the P-Tree structure, or P-Trees, that achieve all the
above-mentioned useful properties. The thesis work also includes an implementation of
P-Trees in a parallel C++ library called Parallel Augmented Maps (PAM). The methodology
in this thesis applies to at least four commonly-used balancing schemes: AVL trees [12],
red-black (RB) trees [42], weight-balance (WB) trees [217] and treaps [246].

The core of the methodology in this thesis is an algorithmic framework called join-
based algorithms, which bases all the algorithms on top of a single primitive join. The
function join (TL, e,TR) for a given balancing scheme takes two balanced binary trees TL,
TR balanced by that balancing scheme, and a single entry e as inputs, and returns a new
valid balanced binary tree, that has the same entries and the same in-order traversal as
node(TL, e,TR), but satis�es the balancing criteria. We call the middle entry e the pivot
of the join. An illustration of the join function is presented in Figure 1.1(a). This thesis
uses join as the only primitive for connecting and rebalancing. Since rebalancing involves
settling the balancing invariants, the join algorithm is speci�c to each balancing scheme.

The highlight of join-based algorithms is that join captures and isolates many impor-
tant functionalities and properties of trees, including rebalancing, augmentation, and
persistence. More details are presented as follows.
Rebalancing. One important observation of the join-based algorithm is that join captures
all balancing criteria of each balancing scheme. As such, all tree algorithms except join

1Note that similar methodology can be extended more generally, but this thesis focuses on the binary case.
Our experiments also shows that our implementation outperforms many state-of-the-art tree structures,
both binary and non-binary.

2Balancing schemes are often discussed in the context of binary search trees (BSTs), but are actually
more general, i.e., the balancing criteria are independent of keys. For example, later in this thesis, balanced
binary trees are used for supporting sequences. In that case the tree is not a search tree.

3Here w.h.p. means that height O(c logn) with probability at least 1 − 1/nc (c is a constant).
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Figure 1.1: The join function and a persistent insertion - Figure 1.1(a): the illustration of the
join function. Figure 1.1(b): the illustration of a persistent insertion using path-copying.

itself can be implemented generically across balancing schemes. These algorithms need
not be aware of the operated balancing scheme, but just rely on the corresponding join
algorithm to do rebalancing. These join-based algorithms range from simple insertions and
deletions, to more involved bulk operations. The generality is not at the cost of e�ciency.
In fact, all the join-based algorithms are still optimal in sequential work, and most of
them can be parallelized with poly-logarithmic span (parallel dependency chain). These
include some non-trivial and interesting theoretical results. For example, the join-based
union algorithm, which combines two balanced binary search trees into one search tree
(keeping the ordering), costs O

(
m log

( n
m + 1

) )
work and O(logn logm) span on two trees

with sizesm and n ≥ m. This work bound is optimal under the comparison model. This
is the �rst ordered set merging algorithm that achieves deterministic optimal work and
poly-logarithmic span.

To show the cost bound of the join-based algorithms, one must consider multiple
balancing schemes. Fortunately, join also uni�es the theoretical analysis. The key idea
is to de�ne a rank function for each balancing scheme, that maps every tree into a real
number, called its rank. The rank can be thought, roughly, as the abstract “height” of
a tree. For example, for AVL trees the rank is simply the height of the tree, and for
weight-balance trees, it is the log of the size. We then de�ne a set of rules about rank and
the join algorithm, that ensures a balancing scheme to be joinable. These rules apply to at
least four existing balancing schemes. Based on these rules we are able to show generic
algorithms and analysis for all joinable trees. Our bounds for join-based algorithms then
hold for any balancing scheme for which these properties hold.
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In Chapter 3, this thesis introduces all the join-based algorithms in detail, including
the analysis of cost bounds.
Augmentation. Another important functionality that join enables on trees is the aug-
mentation. The augmentation discussed in this thesis is to answer fast range sum queries,
e.g., reporting the “sum” of values in a certain key range. This “sum” is abstract that can
be de�ned based on any associative functions, such as taking addition, maximum, union,
etc. This thesis formally de�nes an augmentation framework for a class of augmented
trees, which maintain the partial sums of the subtree in each tree node. We call this
abstract sum the augmented value of the subtree. This augmentation framework de�nes
an augmentation using two functions: a base function д that converts a single data entry
into the augmented value, and a binary combine function f which combines multiple
augmented values. When solving a certain problem using augmented trees, the user
speci�es the two functions in advance (based on the application). As long as the two
functions are properly de�ned, the join-based algorithms and the P-Trees in PAM directly
provide simple and e�cient solutions to the problem, for both theoretical analysis, and an
implementation based on PAM. Most applications discussed in this thesis only requires
around 100 lines of code based on the PAM library.

This thesis further de�nes the ordered map (key-value store) maintained by such an
augmented tree as the augmented map, which I believe is of independent interest. This
augmented map framework appropriately models many real-world applications.

It is worth mentioning that all the maintenance of augmented values in the tree
happens in join. As a result, all the other algorithms are also oblivious to all details about
augmentation. Chapter 4 will present details of augmented trees and augmented maps.
Part II shows multiple applications that make use of the augmentation framework.
Persistence. This thesis also uses join as the only primitive to make trees persistent,
which means that any update on trees yields a new version while preserving the old
version. Persistence is useful to make the data structure purely functional, preserve
history versions, and enable concurrency control on the tree. These functionalities are
important in several applications, such as the snapshot isolation in database systems
[183, 214, 233, 248, 273], the sweepline algorithms in computational geometry algorithms
[242], transactional systems [50], etc. In particular, this thesis enables persistence using
path-copying. Instead of copying the whole old version to preserve it, path-copying copies
the a�ected path on the tree of the update. Figure 1.1(b) presents an illustration of an
insertion on trees using path-copying. The algorithm copies all nodes on the path to the
added node, which is at most O(logn) of them. The copied root of the new tree will then
represent the entry point of T2, and the original root node still represents the input T1.
A large portion of the two trees is shared, making the algorithm space-e�cient. Similar
ideas apply to all join-based algorithms. Another advantage of path-copying is that any
concurrency is safe on P-Trees since they are purely functional. Also, path-copying allows
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for multiple operations on a snapshot to be visible atomically in a lock-free manner, which
is more complicated to achieve using other approaches.

Interestingly, for all join-based tree algorithms, all such copying operations happen
only in join and join’s pivots. In other words, as long as the join algorithm itself is
persistent, there is no explicit e�ort needed to make the other algorithms persistent. The
other algorithms are all oblivious to persistence. Chapter 5 will introduce how to realize
persistence using join by path-copying, and how to do garbage collection based on it.
Implementations, applications and experiments. Based on the above techniques,
this thesis uses join as the only primitive to unify di�erent balancing schemes, enable
generic augmentation, and support persistence. This thesis de�nes such balanced binary
trees using join-based algorithms as P-Trees, and implement them in a parallel C++ library
called PAM. The library e�ectively provides the interface for four abstract data types
(ADT), which are sequences, ordered sets, ordered maps. and augmented maps. Chapter 6
will introduce the implementation details and the interface of the library.

In addition, our framework and P-Trees �t a variety of applications, achieving e�cient
solutions both with theoretical guarantee and high performance. As long as an application
can be appropriately modeled by the framework, P-Trees directly provide support both for
theory and in practice. These applications include range sum queries, hybrid analytical
and transactional processing (HTAP) database management systems (DBMS), geometric
queries (including 1D stabbing queries, 2D range/segment/rectangle queries), inverted
index searching, transactional systems, etc. The interface and framework of PAM also
allow for concise implementations of these applications. While existing implementations
usually involve thousands of lines of code for each application, most of our implementation
only requires about 100 lines of code. In Part II, this thesis will present several of the
applications using P-Trees in details, and show the corresponding experimental results.

This thesis conducts a thorough experimental study on the parallel and sequential
tree algorithms on P-Trees, as well as all the applications based on P-Trees. We compare
our implementation to previous data structures, libraries, and implementations speci�c
to each studied applications, such as database systems, range searches, etc. Experiments
show that the algorithms in PAM are highly-parallelized, achieving 40-100× speedup on
72 cores with hyperthreading. They outperform or are competitive to existing sequential
and parallel libraries. For applications, our implementation based on PAM outperforms
almost all baseline algorithms and systems that are speci�c to those applications, both
sequentially and in parallel.

Using P-Trees for geometric problems are up to 2.5× faster than existing solutions
sequentially. On a mixed workload with concurrent updates and queries, P-Trees achieves
4-9× faster query throughput than state-of-the-art DBMSs, and is competitive in updates.
With reasonable latency allowed, P-Trees can be up to 4× faster than exiting concurrent
data structures on various workloads of concurrent reads and writes with di�erent read-
write ratios.
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The evaluations show that the good performance of P-Trees greatly bene�ts from
better scalability. Some of our application-speci�c optimizations based on P-Trees, e.g.,
index nesting in DBMSs, are shown to be e�ective in improving performance.

In the following, this thesis will present brief introductions about the methodologies
adopted by this thesis, including the join-based algorithms, augmenting trees, and per-
sistence using path-copying. Then we will overview the PAM library and its interface,
and present a quick introduction of the applications. Each section will conclude with
the relevant contributions of the thesis. Finally, this thesis discusses why join-based
algorithms on trees are favorable and useful for modern applications, and concludes with
the thesis statement.

1.1 The Join-based Algorithmic Framework
This thesis, in particular, proposes an algorithmic framework of parallel algorithms on

balanced binary trees based on a single function join. By just plugging in a join function
for each balancing schemes, a variety of tree operations, including union, intersection,
di�erence, �lter , range, build, insert, delete, can be implemented independently of balanc-
ing schemes. This generality is not at the cost of theoretical and practical e�ciency. In the
work-span model (will be de�ned in Section 2.1), all the join-based algorithms have optimal
work (sequential time complexity) and poly-logarithmic span (parallel dependency chain).
We list the cost of the core join-based algorithms in Table 1.1. The work-span model used
in this thesis is described in Section 14.1.

Function Work Span

insert, delete, update, �nd, �rst, last,
O(logn) O(logn)range, split, join2, previous, next, rank,

select, up_to, down_to
union, intersection, di�erence O

(
m log

( n
m + 1

) )
O(logn logm)

map, reduce, map_reduce, to_array O(n) O(logn)
build, �lter O(n) O(log2 n)

Table 1.1: The core join-based algorithms and their asymptotic costs – The cost is given
under the assumption that all parameter functions take constant time to return. For functions
with two input trees (union, intersection and di�erence), n is the size of the larger input, andm of
the smaller.

Supporting e�cient algorithms for basic operations on trees, such as insertion and
deletion, are straight-forward, and were studied previously for each individual balancing
scheme. The highlight of the join-based algorithms is that our framework presents a
generic version for all balancing schemes without sacri�cing the asymptotical cost. There
are also some interesting functions on which supporting e�cient algorithms is non-trivial,
such as the set-set functions, e.g., union, intersection, and di�erence. The lower bound for
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comparison-based algorithms for union, intersection and di�erence for inputs of size n and
m ≤ n, and returning an ordered structure4, is log2

(m+n
n

)
= Θ

(
m log

( n
m + 1

) )
(
(m+n

n

)
is the

number of possible ways n keys can be interleaved withm keys). The bound is interesting
since it shows that merging two sets (or removing a set from another) requires time
proportional to the smaller sizes, instead of the larger one. Sequentially, this bound was
matched by several previous algorithms such as Brown and Tarjan’s sequential algorithm
based on red-black trees [91]. In the parallel setting, the only algorithm before this work
that achieves optimal work and poly-logarithmic depth is Blelloch Reid-Miller’s algorithm
on treaps [71], but the bound is in expectation. This thesis shows the �rst algorithm that
achieves deterministic optimal work and poly-logarithmic depth. Our algorithm is based
on Adams’ algorithm proposed in 1992 [10, 11], which also uses join, but is sequential and
only for weight-balanced trees.

Proving the work-optimality of the algorithms, however, is non-trivial. It is even more
complicated since multiple balancing schemes can be plugged into the algorithms. Besides
enabling generality of algorithm design and implementation, this thesis also uni�es the
theoretical analysis of di�erent balancing schemes in the framework. The key idea is
that for each balancing scheme, we de�ne a value rank to capture the “height” of the
given tree. This rank is used to re�ect the balancing criteria of the tree. For example, as
previously mentioned, an AVL tree, which is height-balanced, has rank proportional to its
height. Similarly, a weight-balanced tree de�nes its rank based on the size. The key to
proving the work-optimality of the algorithms lies in that the rank and join algorithms
have to satisfy a few common rules that make the trees joinable. These rules abstract the
preferred properties that make join-based algorithms theoretically e�cient. As a result,
the theoretical analysis in this thesis for all algorithms are generic across all joinable
balancing schemes.

Besides theoretical e�ciency, all the algorithms are also fairly simple. Figure 1.2
presents several join-based algorithms. They all call join as the primitive for rebalancing.
split and join2 are two other helper functions used in the code. split(T ,k) splits a tree T
by a key k , which returns two trees corresponding to the two parts of T , and a boolean
value indicating if k ∈ T . join2 (T1,T2) is de�ned similarly to join, but without the middle
key. All the �ve algorithms use no more than ten lines of code. For example, insert just
recursively inserts the key into the appropriate subtree, and calls join to connect the two
subtrees back with the root. After inserting into one subtree, imbalance may occur, but
join will be responsible for returning a valid balanced binary tree, guaranteeing a balanced
output for insert. The insert algorithm need not deal with rotations and thus applies to all
balancing schemes.

All the bulk algorithms can also run in parallel and have logarithmic depth. For
example, in the union algorithm, the algorithm �rst splits one tree with the root of the

4By “ordered structure” we mean any data structure that can output elements in sorted order without
any further comparisons—e.g., a sorted array, or a binary search tree.
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other tree, such that the problem is broken up into two subproblems with smaller size.
Then the two subproblems can be solved in parallel. The parallelism comes from divide-
and-conquer.

The join function and corresponding algorithms were previously studied speci�cally
for each balancing scheme. Adams describes a version of set-set algorithms using join on
weight-balanced trees5, which inspires our version of join-based set algorithms. Sleator
and Tarjan describe an algorithm for join based on splay trees which runs in amortized
logarithmic time [254]. Tarjan describes a version for red-black tree that runs in worst-
case logarithmic time [265]. This thesis uni�es multiple balancing schemes, and describes
other algorithms using just join.

Insertion

insert(T , e) {
if T = ∅ then return singleton(e);
〈L, e ′,R〉 = expose(T);
if k(e) = k(e ′) then return T;
if k(e) < k(e ′) then

return join(insert(L, e), e ′,R);
return join(L, e ′, insert(R, e)); } }

Deletion

delete(T ,k) {
if T = ∅ then return ∅;
〈L, e ′,R〉 = expose(T);
if k = k(e ′) then return join2(L,R);
if k < k(e ′) then

return join(delete(L,k), e ′,R);
return join(L, e ′, delete(R,k)); }

Union

union(T1,T2) {
if T1 = ∅ then return T2;
if T2 = ∅ then return T1;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = union(L1,L2) ||

Tr = union(R1,R2);
return join(Tl,k2,Tr );

}

Intersection

intersect(T1,T2) {
if T1 = ∅ then return ∅;
if T2 = ∅ then return ∅;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = intersect(L1,L2) ||

Tr = intersect(R1,R2);
if b then return join(Tl,k2,Tr );
else return join2(Tl,Tr ); }

Di�erence

difference(T1,T2) {
if T1 = ∅ then ∅;
if T2 = ∅ then T1;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = difference(L1,L2) ||

Tr = difference(R1,R2);
return join2(Tl,Tr );

}

Filter

filter(T,f ) {
if T = ∅ then return ∅;
(L,e,R) = expose(T);
L′ = filter(L,f ) || R′ = filter(R,f );
if f (e) then return join(L′,e,R′);
else join2(L′,R′); }

Map and Reduce

map_reduce(T ,д′, f ′, I ′) {
if T = ∅ then return I ′;
〈L,k,v,R〉 = expose(T);
L′ = MapReduce(L,д′, f ′, I ′) ||

R′ = MapReduce(R,д′, f ′, I ′);
return f ′(L′, f ′(д′(k,v),R′)); }

Figure 1.2: Pseudocode of some join-based functions – The syntax S1 | |S2 means that the two
statements S1 and S2 can be run in parallel based on any fork-join parallelism.

Contributions. The contributions of this thesis related to join-based algorithms include
the following.

5Adams’ version had some bugs in maintaining the balance, but these were later �xed [159, 257].
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1. The join-based algorithm framework on balanced binary trees, which uni�es dif-
ferent balancing schemes, including (but not limited to) AVL trees, red-black trees,
weight-balanced trees and treaps. The framework abstracts out rebalancing for other
tree algorithms in join. I believe the framework is general and can be applicable to
even more balancing schemes in future work.

2. The de�nition of joinable trees, which is a set of rules. A balancing scheme �ts in
the join-based algorithm and analysis as long as it satis�es the rules.

3. A list of parallel and sequential algorithms on trees including union, intersection,
di�erence, build, insert, delete, range, �lter , map_reduce, etc., which are all simple,
work-optimal and have polylog depth.

4. The �rst proof of the work-optimality of Adams’ set algorithms as well as its
extension to other balancing schemes.

5. An experimental study of the join-based algorithms and comparison to existing
implementations.

Chapter 3 will introduce the join algorithm on each balancing scheme. The chapter
will then present the join-based algorithmic framework, a variety of join-based algorithms
(many of them in parallel), as well as the theoretical analysis of the work and span bound
of these algorithms.

1.2 Augmented Trees and Augmented Maps
Real-world problems are usually complicated and require much more functionality

than a plain tree could support. In practice, instead of inventing brand-new data structures,
it is common just to augment trees to adapt to speci�c requirements of certain applica-
tions [118]. As such, certain queries can be more e�cient by taking advantage of the
augmentation on trees. This thesis proposes and formalizes an augmentation framework
on balanced binary trees.

Augmentation on trees is a wide concept and is applied in many previous results. For
example, just augmenting each tree node with the size of its subtree can make many
useful queries more e�cient, such as selecting an element with a certain index in a tree.
Another quick example is to answer queries about the “sum” of values in a certain key
range. As an example of such a range sum, consider a database of sales receipts keeping
the value of each sale ordered by the time of sale. When analyzing the data for certain
trends, it is likely useful to quickly query the sum or maximum of sales during a period of
time. Then storing partial sums in each subtree is bene�cial because any such key range
corresponds to at most O(logn) such partial sums. More generally, the augmentation can
be used for quick interval queries, high dimensional range queries, inverted indices (all
described later in this thesis), segment intersection, windowing queries, point location,
rectangle intersection, range overlaps, and many others.
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A tree augmented with the sum of values in each subtree
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Figure 1.3: Augmented trees and range sum queries on augmented trees – An illustration
of a tree augmented with the sum of all values in each subtree and a range sum query on an
augmented tree.

In particular, this thesis formalizes a class of augmented trees, with respect to the data
entries as key-value pairs. For each tree (or subtree), an augmented value is assigned as a
partial sum of all entries in it. This partial sum can be based on any associative operations,
e.g., addition, max, or union. As such, to de�ne an augmented tree, besides the parameters
of the key type and the value type, two augmenting functions are required: a base function
д which gives the augmented value of a single element, and a combine function f (must
be associative) which combines multiple augmented values, giving the “sum” (augmented
value) of the subtree (see more details in Chapter 4). These functions are chosen ahead
of time, based on the applications. For the same dataset, di�erent augmentations (i.e.,
di�erent augmenting functions) can lead to di�erent functionality. In the sales receipts
example, besides using the sum of sales as the augmented value to report sale sum in
a range, the sales above a threshold can also be reported in O(k log(n/k + 1)) (k is the
output size) if the augmentation is the maximum of sales, or in O(k + logn) time [203]
with a more complicated augmentation.

Such augmented trees can be implemented based on the join-based algorithms. Because
of the associativity of the combine function, the augmented value in a node can be directly
computed using the entry in the node itself and the augmented values of its two children.
As a result, all update of the augmented value in a tree node happens only when a node
is assigned a new value or its children get updated. Outside join, such scenario happens
only on the pivotof a join algorithm. As a result, to achieve augmentation on P-Trees,
only the join algorithm need to be “augmented”. All the other algorithms can be oblivious
to the augmentation and need not be changed or re-implemented. Experiments show
that the additional cost for maintaining the augmentation is reasonably small (typically
around 10% for simple augmenting functions such as summing the values or taking the
maximum).

Such augmentation on trees is useful for answering range-related queries because of
the partial sums maintained in the tree. Experiments show that with a simple augmenta-
tion, such as the addition, the range sum queries can be answered almost as fast as a �nd
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operation. It is worth noting that because of the abstract framework on arbitrary augmen-
tation, even high-dimensional range queries (e.g., the augmented values themselves are
trees) can be implemented based on P-Trees with no more di�culty than a simple range
sum. They both only requires to properly de�ne the base and combine functions.
Augmented Maps. The augmented trees as de�ned above represent a special type of
ordered maps (also called key-value store, dictionary, table, or associative array) associated
with the augmentation functions. The ordered map is very important in practice as
is indicated by many large-scale data analysis systems such as F1 [250], Flurry [25],
RocksDB [239], Oracle NoSQL [221], LevelDB [191]. This thesis further de�ne this type
of ordered map as augmented maps. This means to also assign an augmented value using
the base and combine function on an ordered map. This augmented map framework
is a more general concept than augmented trees in modeling a collection of di�erent
real-world applications. In fact, many seemingly-unrelated applications can be modeled by
the framework by just plugging in the keys, values, and augmented functions. Section 1.5
will overview more details about these applications, such as some geometric queries and
inverted indexes searching.

The augmented map, as an abstract data type (ADT), is independent of the data
structure implementation. In fact, using other data structures to support augmented maps
can provide di�erent solutions to certain applications. For example, the pre�x structures,
which is a data structure proposed in this thesis, maintain augmented maps by storing the
augmented values of all pre�xes (i.e., the pre�x sums) of a map. When applied to geometric
problems, such data structures provide solutions similar to sweepline algorithms [259].

As long as a problem can be formalized as augmented maps, by directly plugging
in P-Trees and pre�x structures, one can achieve two di�erent solutions, which can be
appropriate in di�erent settings and answering di�erent queries.
Contributions. The contributions of this thesis on the side of augmentation include the
following.

1. An augmentation formalization framework for augmented trees.
2. The de�nition and interface of augmented maps and the study of its applications on

various areas and problems.
3. The de�nition of the data structure pre�x structures and the parallel algorithms for

them.
4. The implementations of the augmented map algorithms using both join-based

augmented trees and pre�x structures.
5. An experimental study of augmented tree algorithms using join, and the implemen-

tation of augmented maps for various applications.
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Chapter 4 presents algorithms for supporting augmentation on trees, the formal de�-
nition of augmented maps, and the pre�x structures. Several applications of augmentation
are presented in Part II.

1.3 Persistence and Multi-versioning
A persistent data structure means that any update on the data structure does not destroy

the previous version but yield a new version. The concept was proposed since the early
days of Lisp (1960s), and is also employed in maintaining some previous multi-version
data structures [43, 127, 255]. This property is useful in many scenarios. For example, in
a class of sweepline algorithms [249], the algorithm updates a data structure on each
event point. For query purposes, the data structure needs to keep all history versions of
itself, which can be implemented by a persistent data structure [242]. Another example is
the multi-version concurrency control (MVCC) [61, 181, 214, 226, 229, 237] in database
systems with concurrent updates and queries. MVCC aims at letting updates generate new
versions while preserving the old version for ongoing queries. This techniques guarantees
queries to work on a consistent version. MVCC also improves the throughput of the
system because queries and updates do not need to wait for each other or coordinate with
each other by locks.

There are multiple ways to enable persistence on trees. For example, one can copy the
whole old version, or at least a local part (e.g., a subtree) of the update to preserve the
previous version. This approach usually results in unnecessary copying, which is not space-
e�cient. However, this makes each version isolated, which simpli�es queries. Persistence
can also be implemented by the version lists (or version chains) [60, 61, 181, 226, 237, 273],
which maintains a list of all history versions for each object (i.e., a tree node) along with
the timestamps. Then a search query also comes with a timestamp, and will check the
visibility of each version. Although extra metadata needed, any single update only results
in one extra data entry, which is space e�cient. The drawback of such an approach is
that queries may be slowed down because of checking the long list. Another approach is
based on path-copying [242], which means to copy the a�ected path of the update. As
illustrated in Figure 1.1(b), although most of the parts of the tree are shared, a copied
path can distinguish the old and the new version. By copying a logarithmic number of
tree nodes, path-copying also allows for queries to grab an “isolated” current version by
reading just the root pointer. This is a reasonable tradeo� between space and time. There
are also other solutions for persistence using a combination of the three.

This thesis uses path-copying to enable persistence on balanced binary trees. In
particular, this thesis uses join-based algorithm for path-copying. The observation is that
as long as the join algorithm itself is persistent, the only extra copying in the algorithms are
just the pivots of the join algorithms. This again allows for a very simple implementation—
just like the rebalance and augmentation, all the join-based algorithms need not be aware
of persistence, but can rely on join to deal with this. In addition, enabling persistence does
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not increase the asymptotical cost of the join-based algorithms, and the extra space is no
more than the time complexity.

Using path-copying has several advantages in the studied applications in this thesis.
First of all, as mentioned, each version is “isolated” as a snapshot such that grabbing a
version is fast and simple. Secondly, a version is visible immediately after the root is
accessible, and can be invisible before that. This allows multiple updates to be visible
atomically. For example, some the bulk join-based algorithms, such as union, can make a
set of new elements inserted into a tree atomically. Finally, path-copying makes the tree
purely functional. The algorithms never destroy the input. This allows for a high-level
programming-friendly interface of the trees.

On the other hand, path-copying results in a number of copied nodes, which need be
collected once they become out-of-date. The essence that multiple versions share tree
nodes complicates garbage collection (GC) on such path-copying data structures. This
thesis adopts reference counting garbage collector, which means to record the number of
references to each tree node. Once a version is collected, the GC algorithm decrements
the counter of related tree nodes, and frees all whose counter reaches zero.
Contribution. The contribution of this thesis regarding persistence is summarized as
follows.

1. Path-copying algorithms using join for making tree algorithms (especially parallel
algorithms) persistence (or purely functional) and the implementation.

2. Although the general idea of path-copying has a long history, this thesis �rst extends
it to the parallel bulk operations.

3. E�cient and e�ective garbage collection algorithms for path-copying and the im-
plementation of the GC algorithm.

Chapter 5 will present details about using join-based algorithms to achieve persistence
by path-copying. The garbage collection algorithm to reclaim tree nodes is also presented
in the same chapter.

1.4 The PAM Library and the Interface
With all the above-mentioned properties, including parallelism, join-based algorithms,

augmentation and persistence, this thesis de�nes such balanced binary trees as P-Trees.
P-Trees are further implemented in a parallel library PAM (Parallel Augmented Maps).
The interface provided by PAM is based on four abstract data types, including sequences,
ordered sets, maps and augmented maps 6. When creating a speci�c data type, the user
speci�es the parameters (all or part of the key type K , the comparison function < on K ,
the value typeV and the augmentation type auд) based on the applications, then a variety
of functions are supported by the interface. The data types can be summarized as follows.

6They are somehow almost all datatypes one would like to support by binary trees.
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1. Sequence(K). A sequence of keys of type K can be maintained in a balanced binary
tree. join supports many generic functions independent of balancing schemes for
sequences such as build, append, select (pick up the i-th element), split_at (split at
the i-th element), etc.

2. Ordered_set(K,<K). On top of the sequence interface, if K has a total ordering,
which associates K a comparison function <K : K × K 7→ Bool, then an ordered
set implementation can be formed. This makes the tree a binary search tree (BST)
from this point. Beyond the sequence functions, many aggregate functions for sets
(e.g., union, intersection, di�erence, etc.) are then added to the interface. Even the
insertion and deletion can be performed using join within time asymptotically no
more than the best-known sequential algorithms, i.e., O(logn).

3. Ordered_map(K,V,<K). On top of the set interface, if each key is also assigned a
value of type V , then an interface for the ordered map (also known as key-value
store, dictionary, table, or associative array) can be built. The functions in the set
interface are then extended for accepting key-value pairs as entries.

4. Augmented_map(K,V,<K,aug). More functionalities of trees are usually achieved
by smartly augmenting it. In this thesis the abstract data type supported by a special
type of augmented trees is formally de�ned as the augmented map, which associates
an augmentation structure auд to each map7. This augmentation structure is chosen
based on the speci�c desired applications, and consists of an augmented value
type A, a base function д : K × V 7→ A, a combine function f : A × A 7→ A, and
f ’s identity a∅ ∈ A. Formal de�nitions and more details can be found in Chapter
4.4. The augmented map data type is specially designed for quick range-based
operations. On top of the ordered map interface, some functions can be supported
more e�ciently making use of the augmentation, which forms an interface speci�c
for augmented maps.

In addition to the wide range of functions supported, the library is also theoretically-
e�cient and highly parallelized. All algorithms are work-e�cient meaning that their
theoretical work bound asymptotically no more than the best known sequential algorithms.
All parallel algorithms have polylog depth. Experiments show that all algorithms in the
library achieve good speedup and scalability in practice. The library also support generic
user-speci�ed augmentations. The interface for augmentation is concise, and the library
directly gives an e�cient underlying implementation. Also, the tree structure in PAM is
persistent, implemented by path-copying. Experiments show that the extra cost of both
maintaining augmentation and persistence is small. Because of path-copying, PAM also
supports multi-versioning, which makes it safe for concurrency. Each concurrent process

7Note that as a data type, the augmented map abstraction itself does not depend on augmented trees.
See Chapter 4.4 for more details.
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n m T1 T144 Spd.
PAM (with augmentation and persistence)
Union 108 108 12.517 0.2369 52.8
Union 108 105 0.257 0.0046 55.9
Find 108 108 113.941 1.1923 95.6
Insert 108 − 205.970 − −

Build 108 − 16.089 0.3232 49.8
Build 1010 − 1844.38 28.24 65.3
Filter 108 − 4.578 0.0804 56.9
Multi-Insert 108 108 23.797 0.4528 52.6
Multi-Insert 108 105 0.407 0.0071 57.3
Range 108 108 44.995 0.8033 56.0
AugLeft 108 108 106.096 1.2133 87.4
AugRange 108 108 193.229 2.1966 88.0
AugRange 1010 108 271.09 3.04 89.2

Table 1.2: Timings in seconds for various functions in PAM – “T144” means on all 72 cores
with hyperthreads (i.e., 144 threads), and “T1” means the same algorithm running on one thread.
“Spd.” means the speedup (i.e., T1/T144). For insertion we test the total time of n insertions in
turn starting from an empty tree. n is the size of the operand tree. m for �nd, range, aug_left
and aug_range means the number of invocations of these functions. m for union and multi_insert
means the size of the other operand.
can access the same version of a tree and get a snapshot of it. Then each process can
modify their local copy without a�ecting or being a�ected by other processes.

The top-most level of the interface, which is the augmented map, is an abstraction
�tting many real applications. The augmented map abstraction and the PAM interface
greatly simplify the implementation of these applications. Most applications mentioned in
this thesis, which needs thousands of lines of code even sequentially, can be implemented
atop the PAM library, in parallel, with around 100 lines of code.

Beyond being very concise and e�ective, the implementation based on PAM is also
parallel and e�cient both theoretically and in practice. Some results are shown in Table 7.1.
Sequentially the code achieves performance that matches or exceeds exiting libraries
designed specially for a single application, and the parallel implementation gets speedups
ranging from 40 to 90 on 72 cores with 2-way hyperthreading.
Contributions. The contribution of this thesis regarding the library is as follows.

1. A parallel C++ library PAM implementing P-Trees, supporting full-featured in-
terfaces for sequences, ordered sets, ordered maps and augmented maps using
join-based algorithms. The library is highly-parallelized, safe for concurrency,
theoretically-e�cient, persistent (purely functional), supporting general augmenta-
tions, supporting MVCC with e�ective garbage collection, and applicable to four
balancing schemes. The library is open source [261].

2. An implementation of pre�x structures for augmented maps.
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3. An experimental study of all set and map algorithms in PAM.

Chapter 6 will introduce the library, including the functions supported, the user
interface and some implementation details. The experimental results are demonstrated in
each application in Part II.

1.5 Applications
The balanced binary trees are widely-used for a variety of applications. Plugging

P-Trees in, we can obtain interesting new results and solutions to these applications.
Furthermore, using the PAM library can also provide e�cient implementations for these
applications. Because of the properties of P-Trees and the PAM library, these solutions
are usually e�cient both in theory and in parctice.
Range-based Computational Geometry Queries. A class of applications that this
thesis studies are the range-based computational geometry queries. In particular, this
thesis looks at range, segment and rectangle queries in 2D Euclidean space. These queries
are fundamental problems in computational geometry, with extensive applications in
many domains. The queries take a list of input points, segments or rectangles, and report
the relevant objects in a given range (e.g., all points in a query rectangle, all segments
intersecting with a query segment, etc.). The de�nitions of these problems are formally
stated in Chapter 2. E�cient solutions to these problems are mostly based on variants of
range trees [57], segment trees [52], sweepline algorithms [249], or combinations of them.

Although there is a large body of work on sequential algorithms and data structures [56,
58, 101, 106, 130, 131], in parallel, there have been a gap between theory and practice. There
exist many theoretical results on parallel algorithms and structures for such queries [17, 32,
35, 141], but e�cient implementations of these structures can be complicated. The parallel
implementations we know of [100, 161, 172, 205] do not have useful theoretical bounds.
One major reason is the delicate design of algorithmic details required by the theoretically-
e�cient structures. Also, various types of such data structures, such as range trees,
segment trees, sweepline data structures, are involved. They are designed di�erently such
that implementing even one of them is di�cult, not to mention implementing multiple
such data structures for di�erent queries. To overcome these challenges, this thesis
develops theoretically e�cient algorithms which can be implemented with ease and also
run fast in practice, especially in parallel.

Our approach is based on the augmented maps de�ned in this thesis. In particular,
all the three problems can be modeled as two-level map structures: an outer level map
augmented with an inner map structure. For di�erent settings and query types, this
thesis develops �ve structures on top of the augmented map interface corresponding to
di�erent problems and queries. To implement these augmented maps, this thesis uses
both the augmented tree structures, and pre�x structures, both introduced in this thesis.
By combining the �ve two-level map structures with the two underlying data structures

16



Build Query
Work Span List-all Count

Range Sweepline n logn nϵ logn + k log
(n
k + 1

)
logn

Query Tree n logn log3 n log2 n + k log2 n
Segment Sweepline n logn nϵ logn + k logn
Query Tree n logn log3 n log2 n + k log2 n

Rectangle Sweepline n logn nϵ logn + k log
(n
k + 1

)
logn

Query Tree n logn log3 n log2 n + k log
(n
k + 1

)
log2 n

Table 1.3: Theoretical costs of 2D geometric queries - Bounds are asymptotical in Big-O
notation. n is the input size, k the output size. ϵ < 1 can be any given constant. “Sweepline” means
the sweepline algorithms, “Tree” the two-level trees. “List-all” means to list all relevant objects.
“Count” means to return the number of relevant objects. We note that not all query bounds are
optimal, but they are o� optimal by at most a logn factor.

as the outer map (the inner maps are always implemented by augmented trees), this thesis
presents a total of ten di�erent data structures for the geometric queries.

Especially, the construction algorithms of the pre�x structures for the three problems
share some common properties in the augmenting functions. This thesis also proved
the cost bound of the parallel construction algorithm of the pre�x structures for these
three problems. Interestingly, the algorithms based on the pre�x structures resemble the
standard sweepline algorithms. Therefore, our algorithms also parallelize a family of
sweepline algorithms that are e�cient both in theory and practice.

All the proposed data structures are e�cient in theory. We summarize the theoret-
ical costs in Table 1.3. All the proposed data structures are also fast in practice. Our
implementation achieves a 33-to-68-fold self-speedup in construction on 72 cores (144
hyperthreads), and 60-to-126-fold speedup in queries. Sequentially, our implementation is
competitive or can be orders of magnitudes faster than existing implementations.

Beyond being fast, our implementation is also concise and simple. On top of PAM,
each application only requires about 100 lines of C++ code even for the parallel version.
We note that PAM implements general-purpose augmented maps, and does not directly
provide anything special for computational geometry. For the same functionality, existing
implementations use hundreds of lines of code for each sequential implementation.
HTAP Database Systems. An important application of trees is to build indexes for
database management systems (DBMS). There are two major trends in modern data
processing applications that make them distinct from database applications in previous
decades [230]. The �rst is that analytical applications now require fast interactive re-
sponse time to users for queries. The second is that they are noted for their continuously
changing data sets. There has been research on studying specialized DBMS for online
analytical processing (OLAP) which makes complicated analytics fast by some query opti-
mizations. On the other hand, for enhancing updates, there are also research focusing on
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improve online transactional processing (OLTP) throughput. More recently, the concept
of HTAP (hybrid of transactional and analytical processing) gains attention, aiming at
achieving both analytical queries and transactional updates e�ciently and correctly. This
poses several challenges to the DBMSs, especially in the parallel and concurrent setting.
Foremost is that queries need to analyze data that are up-to-date. Data has immense
value as soon as it is created, but that value can diminish over time. Thus, it is imperative
that the queries access the newest data generated, without being blocked or delayed by
ongoing updates or other queries. Secondly, the DBMS must guarantee that each query
has a consistent view of the database. This requires that the DBMS atomically commit
transactions e�ciently in a non-destructive manner (i.e., maintaining existing versions
for ongoing queries). Finally, both updates and queries need to be fast, e.g., exploiting
parallelism or employing speci�c optimizations.

Unfortunately, existing solutions of query optimizations usually su�er from overhead
when dealing with dynamic data, which slows down updates. To make updates to proceed
faster, on the other hand, usually requires some form of multi-version concurrency
control (MVCC) [62, 211, 269]. Instead of updating tuples in-place, with MVCC each write
transaction creates a new version without a�ecting the old one so that readers accessing
old versions still get correct results. One common solution to MVCC is to use snapshot
isolation (SI) [59], where every transaction sees only versions of tuples (the “snapshot”)
that were committed at the time that it started. However, this again is di�cult (or costs
overhead) to be combined with many e�ective query optimizations and may slow down
queries. More detailed explanation will be presented in Section 11.1.

To overcome these challenges and enable fast concurrent updates and queries, this
thesis proposes a solution based on P-Trees. Being persistent using path-copying, P-
Trees by default allows any thread to see a snapshot of the current version. As stated in
Section 1.3, using path-copying has several bene�ts, such as making reading a snapshot
fast and allowing for multiple operations to be atomic, which are all useful for DBMSs.

Additionally, because the P-Tree interface supports arbitrary key and value types,
it is easy to set the value type also as a tree. This allows for nested tree structures for
building nested indexes. In OLAP workloads, nested indexes can e�ectively represent
the logical hierarchy on data. In many cases, the nested indexes provide a similar if not
equivalent functionality as table denormalization and materialized view of a pre-join8.
As such, nested indexes makes queries faster, and path-copying makes updates on such
nested indexes still reasonably e�cient.

Finally, the join-based algorithms supports high parallelism. For example, multiple
updates can be committed atomically and in parallel by a multi_insert or multi_delete
algorithms (they both use divide-and-conquer similar to the union and di�erence algo-

8It is worth noting that this “join” terminology is not the balanced binary tree primitive in this thesis,
but is the operation in the relational database.
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Figure 1.4: A summary of P-Trees’ performance on an HTAP database system – The
workload consists of concurrent analytical queries from TPC-H, and transactional updates similar
to TPC-C.

rithms). Also, some other operations, such as range, �lter , map_reduce, etc., allows to
analyze on a snapshot e�ciently.

Combining all these techniques, P-Trees demonstrate good performance on HTAP
workloads. We tested P-Trees on an arti�cial HTAP benchmark which combines TPC-H
[7] queries and TPC-C-style transactions [6] adapted into TPC-H workload. A summary
of the result is shown in Figure 1.4. Compared to two state-of-the-art in-memory DBMSs,
P-Trees is 4-9× faster in queries, and almost competitive in updates. Evaluations show
that the performance gain mainly comes from good parallelism (about 70× speedup on
72 cores with hyperthreading), and the index nesting optimization (2× improvement on
average).
A Data Structure for Concurrent Reads and Writes. One potential issue of path-
copying-based data structures is that concurrent operations on the tree do not come into
e�ect on the same version. In particular, any concurrent thread only updates its local
snapshot. To guarantee serializability, it is essential to employ additional techniques.

For simple point updates, this thesis proposes to use batching. This means to only
use one global writer to collect all the concurrent updates, coordinate internally, and
commit altogether in parallel. Because of the parallel bulk operations supported by P-
Trees using divide-and-conquer, such bulk operations (e.g., multi_insert) avoid con�ict and
contention, which is likely to be more e�cient than invoking all operations concurrently.
Similar approaches have also been shown to be e�cient in practice in previous work
[1, 18, 155, 247, 266].

Theoretically, P-Trees with batching yields a concurrent data structure allowing
for lock-free (guaranteed system-wide progress) writes, such as insertion, deletion and
updates, as well as wait-free (guaranteed per-thread progress) read-only queries, such as
searching and range queries.
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Experiments show that using the P-Tree with batching is e�cient on workloads of
concurrent updates and searching with di�erent read-write ratios. We use four workloads
in YCSB (Yahoo! Cloud Serving Benchmark). On all tested workloads, with reasonable
latency, P-Trees outperforms state-of-the-art concurrent data structures which even do
not support snapshotting.
Version Maintenance on Concurrent Systems. In a concurrent system, concurrent
read-only transactions access the latest state of the system, and concurrent write transac-
tions update the latest state of the system and commit. Such a system is useful in database
management systems (DBMS) [61, 181, 214, 226] software transactional memories (STM)
[229, 237], operating systems [206, 207], etc. Some solutions, such as Read-Copy-Update
(RCU), makes writers wait until the current version is not used by any other threads. This
is not e�ective when readers can be arbitrary long.

Many other solutions are based on multi-versioning, which allows readers and writers
to proceed because they each work on an isolated version. Despite the e�ciency in the
transactions, a special consideration of such multi-versioned systems is that old versions
can be kept even after new versions are generated. As a result, these old versions eventually
need to be detected and collected in time, when no future queries will access it, sooner the
better. The detection of such out-of-date versions is de�ned as the version maintenance
(VM) problem. Ben-David et al. [50] propose a framework to VM problems. Detecting
when a version is safe to collect, this framework requires an underlying functional data
structure which supports appropriated garbage collection. The property that P-Trees
support snapshotting using path-copying and reference counter GC makes P-Trees good
candidates for a VM solution. This thesis combines P-Trees with a simple lock-free VM
solution, yielding a multi-versioning transactional system that is lock-free, serializable,
guaranteeing no-abort for all readers and one writer, and with safe and precise GC. P-Trees
can also be combined with other VM solutions in previous work such as hazard pointers
[210], epoch-based GC [111], Read-Copy-Update (RCU) [206, 207], and a wait-free safe
and precise (WFPS) VM solution [50].
Other Applications. This thesis also tested other interesting applications of P-Trees.
They include simple range-sum and range-max searching, interval trees for 1D stabbing
query based on the augmented map interface, inverted index searching with ranked search
and write-e�cient set operations.
Contribution. The contribution of this thesis on the application side can be summarized
as follows.

1. A simple and e�cient parallel interval tree implementation using augmented maps
in PAM.

2. A framework and simple and e�cient parallel implementations for various 2D-
range based queries. This thesis proposes approaches and implementation based on

20



both the multi-level P-Trees and sweepline algorithms using P-Trees with pre�x
structures, respectively.

3. A concurrent data structure using batching and parallel bulk algorithms in P-Trees
supporting concurrent insertion, deletion, update, and various read-only operations
such as lookup, select, and range searches. The system supports wait-free reads
(e.g., lookup and range query) and lock-free writes (insertion, deletion and update).

4. An approach for MVCC with precise and safe garbage collection in transactional
systems based on P-Trees.

5. De�ning and formalizing the nested index in DBMS index building, along with an
implementation of them using nested P-Trees. The index nesting can enable similar
query optimizations as denormalization and pre-join, but in a more space-e�cient
manner and allowing for fast updates. The index nesting can greatly improve OLAP
query performance.

6. An in-memory HTAP DBMS supporting TPC-H analytical queries and TPC-C-style
transactions, which outperforms state-of-the-art systems.

7. Thorough experimental study on the applications based on P-Trees. This thesis
compares our implementation with previous data structures, libraries, and imple-
mentations speci�c to each studied applications, such as database systems, range
searches, etc.

8. The �rst experimental study of write-e�cient tree-based set algorithms.

Part II introduces all applications in details, including how they �t in the frame-
work, some application-speci�c optimizations, the implementation, and experimental
evaluations.

1.6 Outline of This Thesis
The results in this thesis are primarily based on some previous publications, and also

include new results that are unpublished. They are listed below.

• [74] (full version in [69]) Just Join for Parallel Ordered Sets. Guy E. Blelloch, Daniel
Ferizovic, and Yihan Sun. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2016. Included in this thesis in Chapter 3.

• [262] (full version in [260]) PAM: Parallel Augmented Maps. Yihan Sun, Daniel
Ferizovic, and Guy E. Blelloch. In Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2018. Included in this thesis in Chapters 4 to 6, 8, 9, 12, and 13.

• [259] (full version in [258]) Parallel Range, Segment and Rectangle Queries with
Augmented Maps. Yihan Sun and Guy E. Blelloch. In Algorithm Engineering and
Experiments (ALENEX), 2019. Included in this thesis in Chapters 4 and 9.
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• [263] On Supporting E�cient Snapshot Isolation for Hybrid Workloads with Multi-
versioned Indexes. Yihan Sun, Guy E Blelloch, Andrew Pavlo, and Wan Shen Lim.
In Proceedings of the VLDB Endowment (PVLDB), 2020. Included in this thesis in
Chapter 11.

• [50] (full version in [48]) Multiversion Concurrency With Bounded Delay and
Precise Garbage Collection. Naama Ben-David, Guy E. Blelloch, Yihan Sun, and
Yuanhao Wei. In Symposium on Parallel Algorithms and Architectures (SPAA), 2019.
Partially included in this thesis in Chapters 5, 10, and 12.

• [148] (full version in [149]) Algorithmic Building Blocks for Asymmetric Memories.
Yan Gu, Yihan Sun, and Guy E. Blelloch. In European Symposium on Algorithms
(ESA), 2018. Partially included in this thesis in Chapter 14.

Many other papers [76, 77, 78, 80, 146] by the thesis author in the graduate school are
not included in this thesis.

1.7 Why join-based Algorithms?
As stated join-based algorithms can enable multiple useful functionalities on trees,

but why they are essential and e�ective for today’s applications? Now this question
can be better answered after overviewing the challenges, techniques and the scope of
applications that are interested to this thesis. To understand the advantage of the join-based
algorithms, recall the real-world applications and the three features of them mentioned at
the beginning of this thesis, which are the large scale of the dataset, the comprehensiveness
of the functionality required, and the speci�city and complication of each application.
They all put forward new challenges to the tree algorithm design. This section will discuss
each challenge respectively and show how join can deal with the challenges.

The large scale of dataset to be dealt with requires higher performance of trees. For
example, a database can be dealing with terabytes of data. Even sequentially reading or
scanning all of them in memory requires hours, not to mention applying complicated
algorithms on the data. This necessitates parallelism, concurrency, and theoretically e�-
ciency in the tree algorithm design. Fortunately, the advent and popularization of parallel
systems allow for much better throughput, which is capable to handle the scale of data
we are facing. Especially, even a single multi-core machine, which is the main setting
considered by this thesis, can have terabytes of data in memory, and hundreds of physical
threads, suggesting signi�cant potential of performance improvement. On the other hand,
new theoretical models and tools for studying parallelism are gradually getting matured,
which allow for rigorous theoretical analysis on predicting and bounding the worst-case
performance of parallel tree algorithms. To achieve high performance on trees, one should
consider optimal work (sequential time complexity) and polylogirithmic depth (parallel
dependency chain), linear scalability in practice, as well as lock-freedom or wait-freedom
for concurrency.

22



The comprehensiveness of the functionality required by a variety of applications
further requires a full-featured interface supporting various data types and functions, as
well as the ability to handle analytical queries and dynamic updates (and even a combination
of both simultaneously) correctly and e�ciently. This requirement is more than just
supporting simple insertions, deletions and lookups, as most of the previous work focuses
on. For example, in the geometric applications as mentioned, many queries are related
to range-based searching. Similarly in database systems, instead of dealing with point
updates and lookups, some bulk operations on the whole database, such as �ltering,
reducing, and bulk updates, can be useful. These bulk updates are likely to be more
e�cient than doing multiple point operations. Correctness criteria such as serializability
and atomicity are also important for large and concurrent transactions. Multi-versioning is
also favorable for duarbility, transaction isolation and concurrency control, which further
necessitates timely and safe garbage collection.

The third feature is the speci�city and complication of each application. As a result,
a large number of di�erent tree structures are proposed to achieve di�erent speci�c
functionalities. For example, to keep trees balance, many balancing schemes are proposed
from back to the 70s. They have di�erent properties in speci�c settings, maintain di�er-
ent balancing information, can achieve di�erent bounds in certain problems, and thus
need di�erent algorithms in design. Another example is also the range-based geometric
problems, many di�erent tree structures are proposed for di�erent query types, including
interval tree [118], range tree [53], segment tree [55], etc. Although all based on trees and
sharing some similarities (e.g., they are all space-partitioning), it was believed that their
designing focus and details make their implementation fairly di�erent, and to implement
all of them, little code can be reused. The combination of di�erent balancing schemes,
algorithms, and applications complicates the situation such that usually one needs to
design and implement a di�erent tree structure for each case. Further considering the
above two challenges, e.g., parallelism, theoretical analysis and multi-versioning, this
greatly increases designing and coding e�ort. As a result, it would be nice if some useful
frameworks and generic methodology can be developed on trees, both for simplifying
theory analysis and for reducing the coding and debugging e�ort in practice.

Balanced binary trees have been studied for more than 50 years. Why are traditional
algorithms on balance binary trees facing new challenges as mentioned above? One
possible reason lies in that traditional algorithm design on balanced binary trees usually
uses insertion and deletion as primitives, which are plagued with these new challenges.
First of all, these two primitives are inherently sequential. Even though multiple insertions
and deletions can be processed simultaneously, they still have to be sequentialized when
multiple updates occur at the same location. Secondly, they both operate on a single
element at a time, which is less practical for implementing bulk functions. For example,
if one wants to insert multiple elements into a tree, adding them using multiple single
insertions is often not a good solution because it has worse cache locality and is harder to
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achieve parallelism. Finally, conventional insertion and deletion algorithms on balanced
binary trees are proposed for each speci�c balancing scheme, making implementations
less generic even in the sequential setting, and much more complicated in parallel.

Instead of using insertions and deletions, using join as the primitive provides e�ective
solutions to the three challenges.

First of all, join can easily enable the use of divide-and-conquer in algorithms, i.e.,
divide trees into parts, solve subproblems and join them back as the result. This scheme
is friendly to parallelism because the subtrees in the recursive subproblems are non-
overlapping, and thus can be dealt with in parallel. Our experiments show that P-Trees
achieve almost linear speedup in most implemented algorithms and applications.

Secondly, join is especially useful for some bulk operations such as merging two trees
because join operates two trees instead of single elements. As a result, based on join, it is
simple to design many bulk algorithms including inserting a batch of elements, �ltering
by a certain predictive, extracting a key range, etc. They are all implemented in the PAM
library.

Most importantly, using join as a primitive allows for generality on trees. This is
embodied in two aspects: (1) join captures low-level rebalancing criteria, such that a
variety of tree operations can be implemented generically, independent of balancing
scheme; In fact, for each function (except join) in PAM, all balancing schemes share the
code; and (2) join captures high-level functionalities of augmentation and persistence, such
that a variety of real-world problems can be implemented all by the join-based algorithms
with minimal variance; In fact, all applications in this thesis can be implemented directly
on top of P-Trees in PAM, most of them using only 100 lines of code. This versatility and
generality simplify algorithm design and programming. First of all, this minimizes the
coding e�ort to re-create the tree structure when necessary (in another programming
language, for example). Furthermore, this reduces the incremental e�ort for users to adapt
our tree structure simply as a black box to their own applications.

With all arguments above comes the statement of this thesis.
Thesis Statement . Using join as a primitive yields e�cient parallel algorithms and im-
plementations for balanced binary trees, that enables simplicity, theoretical and practical
e�ciency, balancing-scheme-independency, generic augmentation, persistence, and multi-
versioning, which is e�ective and e�cient for a wide range of applications.
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Chapter 2

Preliminaries

2.1 Theoretical Analysis
Parallel Cost Model. Our algorithms are based on nested parallelism with nested fork-
join constructs and no other synchronization or communication among parallel tasks.1
All analysis is using the binary-forking model [81], which is based on nested fork-join,
but only allows for two branches in a forking. All algorithms are deterministic2. To
analyze asymptotic costs of a parallel algorithm we use workW and span S (or depth
D), where work is the total number of operations and depth is the length of the critical
path. In the algorithm descriptions the s1 | | s2 notation indicates that statement s1 and
s2 can run in parallel (and obviously can run in order as in the sequential setting). For
theoretical analysis, we use the simple composition rulesW (e1 | | e2) =W (e1) +W (e2) + 1
and S(e1 | | e2) = max(S(e1), S(e2)) + 1. For sequential computation both work and span
compose with addition. Any computation with W work and S span will run in time
T < W

P + S assuming a PRAM (random access shared memory) [169] with P processors
and a greedy scheduler [83, 88, 143]. We assume concurrent reads and exclusive writes
(CREW).
Notation. We call a key-value pair in a map an entry denoted as e = (k,v). We use k(e)
and v(e) to extract the key and the value from an entry. We use 〈P〉 for a sequence of
elements of type P . We use 〈·, ·〉 to denote a pair (similarly for tuples and sequences).
Others. We use with high probability (w.h.p.) to mean that for an input of size n the
bound holds with probability at least 1 − 1/nc (c > 0 is a constant).

1This does not preclude using our algorithms in a concurrent setting.
2Note that the bounds and the data structure themselves are not necessarily deterministic. For example,

the treaps depends on random priorities. However as long as the priorities are known (independently of the
algorithms), the algorithm does not use randomization.
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2.2 Balanced Binary Trees
A binary tree is either a nil-node, or a node consisting of a left binary tree Tl , an entry

e , and a right binary tree Tr , and denoted node(Tl , e,Tr ). The entry can be simply a key,
or more data associated to it. The size of a binary tree, or |T |, is 0 for a nil-node and
|Tl | + |Tr | + 1 for a node(Tl , e,Tr ). The weight of a binary tree, or w(T ), is one more than
its size (i.e., the number of leaves in the tree). The height of a binary tree, or h(T ), is 0
for a nil-node, and max(h(Tl ),h(Tr )) + 1 for a node(Tl , e,Tr ). Parent, child, ancestor and
descendant are de�ned as usual (ancestor and descendant are inclusive of the node itself).
We use lc(T ) and rc(T ) to extract the left and right child (subtree) of T , respectively. A
node has depth d if taking its parent d times returns the root. Di�erent from some previous
work, we use the nil-node to refer to an external (empty) node with no data stored in it. A
node is called a leaf when its both children are nil nodes. The left spine of a binary tree
is the path of nodes from the root to a leaf always following the left tree, and the right
spine the path to a leaf following the right tree. The in-order values (also referred to as
the symmetric order) of a binary tree is the sequence of values returned by an in-order
traversal of the tree. When the context is clear, we use a node u to refer to the subtree Tu
rooted at u, and vice versa.

A balancing scheme for binary trees is an invariant (or set of invariants) that is true
for every node of a tree, and is for the purpose of keeping the tree nearly balanced. In
this thesis we consider four balancing schemes that ensure the height of every tree of
size n is bounded by O(logn). When keys have a total order and the in-order of the tree
is consistent with the order, then we call it a binary search tree (BST). We note that the
balancing schemes de�ned below, although typically applied to BSTs, do not require that
the binary tree be a search tree.
AVL Trees [12]. AVL trees have the invariant that for every node(Tl , e,Tr ), the height
of Tl and Tr di�er by at most one. This property implies that any AVL tree of size n has
height at most logϕ(n + 1), where ϕ = 1+

√
5

2 is the golden ratio.
Red-black (RB) Trees [42]. RB trees associate a color with every node and maintain two
invariants: (the red rule) no red node has a red child, and (the black rule) the number of
black nodes on every path from the root down to a leaf is equal. All nil nodes are always
black. Unlike some other presentations, we do not require that the root of a tree is black.
Although this does not a�ect the correctness of our algorithms, our proof of the work
bounds requires allowing a red root. We de�ne the black height of a node T , denoted ĥ(T )
to be the number of black nodes on a downward path from the node to a leaf (inclusive of
the node). Any RB tree of size n has height at most 2 log2(n + 1).
Weight-balanced (WB) Trees [217]. WB trees with parameter α (also called BB[α]
trees) maintain for every T = node(Tl , e,Tr ) the invariant α ≤ w(Tl )

w(T ) ≤ 1 − α . We say two
weight-balanced trees T1 and T2 have like weights if node(T1, e,T2) is weight balanced.
Any α weight-balanced tree of size n has height at most log 1

1−α
n. For 2

11 < α ≤ 1 − 1√
2
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Notation Description
|T | The size of tree T
h(T ) The height of tree T
ĥ(T ) The black height of an RB tree T

rank(T ) The rank of tree T
w(T ) The weight of tree T (i.e, |T | + 1)
p(T ) The parent of node T
k(T ) The key of node T
lc(T ) The left child of node T
rc(T ) The right child of node T
A(T ) The augmented value of a node T

expose(T ) 〈lc(T ),k(T ), rc(T )〉
Table 2.1: Summary of notation.

insertion and deletion can be implemented on weight balanced trees using just single and
double rotations [82, 217]. We require the same condition for our implementation of join,
and in particular use α = 0.29 in experiments. We also denote β = 1−α

α , which means that
either subtree could not have a size of more than β times of the other subtree.
Treaps [246]. Treaps associate a uniformly random priority with every node and
maintain the invariant that the priority at each node is no greater than the priority of its
two children. Any treap of size n has height O(logn) with high probability (w.h.p).

The notation we use for binary trees is summarized in Table 2.1. Some concepts
in Table 2.1 will be introduced later in this thesis.

2.3 Persistent and Functional Data Structures
Persistent Data Structures. A persistent data structure [127] is a data structure that
preserves previous versions of itself. When being modi�ed, it always creates a new
updated structure. For BSTs, persistence can be achieved by path-copying [242]. In path-
copying, only the a�ected path related to the update is copied, so the asymptotical cost
for an update remains unchanged.
Purely Functional Data Structures. a purely functional data structure is a data struc-
ture that can be implemented in a purely functional language. A purely functional data
structure is (strongly) immutable. Obviously all purely functional data structures are
persistent. This can be abstracted as the pure LISP machine [45, 219, 232] (PLM), which,
like the random access machine model (RAM), has some constant number of registers.
However, the only instructions for manipulating memory, are (1) a tuple(v1, . . . ,vl )
instruction, which takes l registers (for some small constant l) and creates a tuple in
memory containing their values, and (2) a nth(t, i) instruction, which, given a pointer t
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to a tuple and an integer i (both in registers), returns the i-th element in this tuple. Values
in the registers and tuples are either primitive, or a pointer to another tuple. There is
no instruction for modifying a tuple. This thesis focuses on binary trees, which means
that l = 3, and each tuple (tree node) maintains three elements: the left child pointer,
the right child pointer, and the data in this node. Changing a data structure using PLM
instructions are done via path copying, meaning that to change a node, its ancestors in
the data structure must be copied into new tuples, but the remainder of the data remains
untouched. Using PLM instructions, one can create a DAG in memory, which we refer to
as the memory graph. An example of using path-copying to insert a value into a binary
tree memory graph is shown in Figure 1.1(b).

2.4 Computational Geometry
Notation. In two dimensions, letX , Y and D = X ×Y be the types of x- and y-coordinates
and the type of points, where X and Y are two sets with total ordering de�ned by <X and
<Y respectively. For a point p ∈ D in two dimensions, we use x(p) ∈ X and y(p) ∈ Y to
extract its x- and y-coordinates, and use a pair (x(p),y(p)) to denote p. For simplicity, we
assume all input coordinates are unique. Duplicates can be resolved by slight variations
of algorithms in this thesis. We use two endpoints to represent a segment. We use two
diagnose points to represent a rectangle.
Sweepline Algorithms. A sweepline algorithm (or plane sweep algorithm) is an algorith-
mic paradigm that uses a conceptual sweep line to process elements in order [249]. It uses
a virtual line sweeping across the plane, which stops at some points (e.g., the endpoints
of segments) to make updates. We refer to the points as the event points. A more detailed
overview and formalization of such sweepline algorithms are in Section 9.2.3.
Problem De�nitions. In this thesis, we study several computational geometry problem.
In one dimension, we study the stabbing query. For a set S of input intervals on the
number line (represented as two endpoints) and a query point q, the stabbing query asks
about some information about the subset S′ ∈ S containing the intervals that overlap q. In
particular, the query can be about whether S′ is empty, the size of S′, or all the elements
in S′. In two dimensions, this thesis studies the range, segment and rectangle queries. We
focus on 2D Euclidean space.

The range query problem is to maintain a set of points, and to answer queries regarding
the points contained in a query rectangle.

The segment query problem is to maintain a set of non-intersecting segments, and to
answer questions regarding all segments intersected with a query vertical line.

The rectangle stabbing query (also referred to as the enclosure stabbing query) problem
is to maintain a set of rectangles, and to answer questions regarding rectangles containing
a query point.
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For all problems, we discuss queries of both listing all queried elements (the list-all
query), and returning the count of queried elements (the counting query). Some other
queries, can be implemented by variants (e.g., the weighted sum of all queried elements) or
combinations (e.g. rectangle-rectangle intersection queries) of the queries in this thesis.

2.5 Database Management Systems
Transaction Isolation Levels. A transaction’s isolation level determines what anomalies
it may be exposed to during its execution. These were originally de�ned in the context of
pessimistic two-phase locking concurrency control in the 1990s. Snapshot isolation (SI) is
an additional level that was proposed later after the original standard was released [59]. SI
is a popular isolation level and is often good enough for HTAP environments because its
OLAP queries will be read-only. Marking an OLAP transaction as read-only means that
the database does not need to maintain its read-write set while it executes. All transactions
still check the visibility of each tuple. A DBMS is serializable if its outcome of executing
any concurrent transactions (e.g., the resulting state) is equal to executing its transactions
in a serial order.
OLTP, OLAP and HTAP Database Systems. Online transaction processing (OLTP)
describes systems that facilitate and manage transaction-oriented applications. Such
transactions focus on updates that commits changes to the database. OLTP usually
requires the system to respond immediately to user requests. Online analytical processing,
or OLAP, is an approach to answer multi-dimensional analytical (MDA) queries swiftly
in computing. It aims at answering complex analytical and ad hoc queries with a high
throughput. Whereas OLTP systems process all kinds of queries (read, insert, update and
delete), OLAP is generally optimized for read only and might not even support other kinds
of queries. More recently, the term hybrid transaction/analytical processing (HTAP) is
proposed to “break the wall” between transaction processing and analytics. It means that
while transactions makes changes to the database and get timely response, the database
can also conduct complex analytical queries correctly and e�ciently.
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Chapter 3

Join-based Algorithms

In this chapter, we will present the join-based algorithms on balanced binary trees. We
will abstract out the required rule for a balancing scheme that ensures the correctness and
e�ciency of join-based algorithms. These rules apply to at least four balancing schemes:
AVL trees, RB trees, WB trees and treaps.

All join-based aggregated functions, such as build, union, intersection, �lter , etc., can
run in parallel. All these algorithms are designed based on the primitive join, which
captures all balancing criteria such that it is the only function dealing with rebalancing
and rotations. Making use of join, all the other functions can be expressed in a manner
that is generic across balancing schemes, and thus share the same code in implementation.
We summarize the common conditions making a balancing scheme joinable. This means
to associate with each balancing scheme, an e�cient join algorithm and a e�ective rank
function re�ecting the balancing criteria, such that they satisfy several rules. As a result,
all algorithms and theoretical analysis in this chapter are generic and applicable to all
such joinable trees.

Almost all the join-based algorithms introduced in this chapter are theoretically-
e�cient in that they have optimal work. Furthermore, all of them have poly-logarithmic
span which implies a great amount of parallelism. Although it is relatively straightforward
to get optimal O(logn) work algorithms for �nd, insert, and delete using balanced trees,
achieving this for the aggregate functions is more challenging. For example, for two
trees of sizesm and n wherem ≤ n, the join-based set-set operations (union, intersection,
di�erence) on joinable-trees take no more than O(m log(n/m + 1)) work. This is optimal
under the comparison model [164]. This work bound is sublinear in the total size of the
inputs, and when m is signi�cantly smaller than n this bound is signi�cantly less than
O(m+n), and is obviously smaller thanO(m logn). This bound implies that taking unions
(or intersections or di�erences) of two unequal sized ordered sets can be signi�cantly
faster than array-based implementations, and is also faster than inserting all elements in
the small set (tree) into the larger one. This is especially useful when inserting/deleting
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a small batch of elements to the current database using union, and the work is only
proportional to the size of the batch, but never asymptotically exceed the size of the
large batch. These algorithms are also parallel with poly-logarithmic span. For these
set functions, although similar algorithms has been introduced in previous research, to
the best of our knowledge, there has been no detailed analysis of the e�ciency of those
algorithms other than [71], which analyzed the work and span only for treaps. Besides
their algorithm is di�erent from the join-based algorithms in the sense that they always
use the heavier root as the pivot. We will show a detailed analysis for the join-based
set-set algorithms in this section. The analysis is a relatively general proof across di�erent
balancing schemes, and is very di�erent from and much simpler than [71].

The function join (Tl , e,Tr ) takes two binary treesTl andTr , and an entry e , and returns
a new binary tree for which the symmetric order is a concatenation of the symmetric order
of Tl , then e , and then the symmetric order of Tr . If the binary trees are BSTs, then the
join function connects all entries in the input in order. However, binary trees can also be
used to represent sequences, and join might be useful for sequences. We use a generalized
version of join that works for any binary tree, whether a BST or not. We call the middle
entry e the pivot of the corresponding join function. It can be a single key for sequences
and sets, or a key-value pair for maps or augmented maps. In the implementation, the
middle entry e is usually provided as a pointer to a tree node storing the corresponding
key and value.

Generally, beyond join, the only access to the tree that the algorithms in this chapter
make use of is through expose(·), size(·) and the comparison function on keys <K . For sim-
plicity, we use <, >, ≤, and ≥ as the standard notation to represent the result of comparing
two keys based <K . We also use e(·), k(·) and v(·) to extract the entry, the key and the
value, respectively. All the update (write) operations are done through new_node(·) and
update_value(·, ·). All these functions (expose, <K , new_node and update_value) basically
only read the root and we assume they all take constant time. Note that this may not
be true for <K and new_node for very complicated key types, but we assume so for the
convenience of theoretical analysis.

All the join-based algorithms can also be made purely-functional, in which all updates
are done through copies. This also makes the tree a persistent [127] data structure. In
that case, update_value(·, ·) is disallowed. We will present more details about persistence
in Chapter 5.

We start with presenting the rules for joinable trees with some useful lemmas and
theorems. Then we present the join algorithms on trees in Section 3.2. We then present
the parallel set-set algorithms (union, intersection and di�erence) along with the proof of
its work and span in Section 3.3.2. Some other join-based algorithms will be presented
in Section 3.3.4. We then discuss how to extend some algorithms to support a combine
function on values in Section 3.3.5. Finally we show some further discussions about the
extension of the algorithmic framework in Section 3.4.
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3.1 Joinable Trees
We here de�ne the preferred properties that makes a tree joinable. The concept of

joinable trees relies on two subcomponents: a variable for each tree node (subtree) called
rank, and a proper join algorithm. The de�nition of rank and the join algorithm depend
on the balancing scheme. The rank of a tree node only relies on the shape of the subtree
rooted at it. For a tree T , we denote the rank of it as rank(T ).

De�nition 1 (Strongly Joinable Trees). A balancing scheme S is strongly joinable, if we
can assign a rank for each subtree from S, and there exists a join (T1, e,T2) on two trees from
S, such that the following rules hold:

1. empty rule. The rank of a nil-node is 0.
2. monotonicity rule. For C = join(A, e,B), max(rank(A), rank(B)) ≤ rank(C).

3. submodularity rule. Suppose C = node(A, e,B) and C′ = join(A′, e,B′). If 0 ≤
rank(A′) − rank(A) ≤ x and 0 ≤ rank(B′) − rank(B) ≤ x , then 0 ≤ rank(C′) −
rank(C) ≤ x (increasing side). In the other direction, if 0 ≤ rank(A) − rank(A′) and
0 ≤ rank(B) − rank(B′), then 0 ≤ rank(C) − rank(C′) (decreasing side).

4. cost rule. join(A, e,B) uses time O(|rank(A) − rank(B)|).

5. balancing rule. For a node A,

max(rank(lc(A)), rank(rc(A))) + cl ≤ rank(A) ≤ min(rank(lc(A)), rank(rc(A))) + cu

where cl ≤ 1 and cu ≥ 1 are constants.

The last rule about balancing says that the ranks of a child and its parent cannot di�er
by much. This is not true for some randomization-based balancing schemes such as treaps.
In fact, we de�ne a weakly joinable tree as follows.

De�nition 2 (Weakly Joinable Trees). A balancing scheme S is weakly joinable, if it
satis�es the empty rule, monotonicity rule and submodularity rule in De�nition 2,
and the relaxed balancing rule and weak cost rule as follows:

• relaxed balancing rule. There exist constants cl , cr , 0 < pl ≤ 1 and 0 < pu ≤ 1,
such that for a node A and any of its child B:

1. rank(B) ≤ rank(A) − cl happens with probability at least pl .

2. rank(B) ≥ rank(A) − cu happens with probability at least pu .
• weak cost rule. join(A, e,B) uses time O(rank(A) + rank(B)) w.h.p.

In this thesis, we use joinable to refer to weakly joinable trees. Later in this section,
we will show that AVL trees, RB trees and WB trees are strongly joinable, and treaps are
weakly joinable.
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We also say a tree T is strongly (weakly) joinable if T is from a strongly (weakly)
joinable balancing scheme.

Here we present some properties of joinable trees.

Theorem 3.1.1. For a strongly joinable tree T , clh(T ) ≤ rank(T ) ≤ cuh(T ).

This can be inferred directly from the balancing rule.

Theorem3.1.2 (Logarithmic rank for strongly joinable balanced trees). For a strongly
joinable tree T , rank(T ) = O(logw(T )), wherew(T ) = |T | + 1 is T ’s weight.

Proof. Let f (r ) be a function denoting the minimum weight that T can have when T has
rank r , i.e., f (r ) = minrank(T )=r w(T ). We now look at the two children of T , noted as L
and R. WLOG assume w(L) ≥ w(R). In the balancing rule, we know that rank(T ) − cu ≤
rank(R) ≤ rank(T ) − cl . The total weight of T is at most 2w(R). In other words,

f (r ) ≥ 2 min
r−cu≤r ′≤r−cl

f (r ′)

This means that f (r ) ≥ c · 2r/cu for some constant c . Thus rank(T ) is at most O(logw(T )).
�

From the above lemma we have:

Theorem 3.1.3 (Logarithmic height for strongly joinable balanced trees). For a
strongly joinable tree T with weight n, h(T ) = O(rank(T )) = O(logn).

From the balancing rule we have:

Theorem 3.1.4 (Similar ranks for balanced strongly joinable trees). For a strongly
joinable tree T = node(lc(T ), e, rc(T )), then rank(lc(T )) and rank(rc(T )) di�er by at most a
constant.

This means that when two strongly joinable trees are balanced with each other, their
ranks di�er by at most a constant.

For weakly joinable trees, we also have similar property for rank and height.

Theorem 3.1.5 (Logarithmic height for weakly joinable balanced trees). For a
weakly joinable tree T with weight n, h(T ) = O(rank(T )) = O(logn) w.h.p.

Proof. First of all, note that for a parent node A and a child node B, h(A) = h(B) + 1, but
rank(A) ≥ rank(B) + cl happen only with a constant probability. Thus h(T ) = O(rank(T )).

Consider a node T with rank r = rank(T ). We follow the path and always go to the
smaller subtree (with smaller weight). We call it a round every time we go down one level.
Afterm rounds we hit the leaf. Obviouslym ≤ logn since every time we go to the smaller
side of the subtree.
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We note that every such round, the rank increase by no more than cu with a constant
probability. Adding all the m round gets r , which is the rank of T . Based on Cherno�
bound, we know that Pr[r ≥ (1 + δ )cupum] ≤ e−

δcupum
3 . Let (1 + δ )cupum be c logn for

su�cient large c , we have:

Pr[r ≥ c logn] ≤ e−
c logn−cum

3

= n−c/3 · e
cupum

3

≤ n−c+cupu/3·

�

We then extend the monotonicity rule and prove the following theorem:

Theorem 3.1.6 (Bounded rank increasing by join). For a joinable treeC = join(A, e,B),
there exists a constant c′ ≤ cu , such that

max(rank(A), rank(B)) ≤ rank(T ) ≤ max(rank(A), rank(B)) + c′

Proof. The left half of the inequation holds because of the monotonicity rule.
For the right half, consider a single tree node v = node(nil-node, e, nil-node). rank(v)

is at most cu (the balancing rule). Consider v′ = join(A, e,B), which increases the rank
of both side by at most max(rank(A), rank(B)). Then

rank(v′) ≤ rank(v) +max(rank(A), rank(B)) ≤ cu +max(rank(A), rank(B))

�

We then prove some useful theorems and lemmas that will be used in later proofs of
the join-based algorithms.

Theorem 3.1.7. For a joinable tree, suppose a node T has rank r , then the number of its
descendants with rank more than r − 1 is a constant.

Proof. From the balancing rule we know that after 1/cl generations from T , the rank of
the tree node must be smaller than r − 1. That is to say, there are at most 21/cl such nodes
in T ’s subtree with rank no smaller than r − 1. �

For any node T , these tree nodes with rank in range (rank(T ) − 1, rank(T )] form a
contiguous tree-structured component. We call this component the rank cluster of T .

De�nition 3. In a joinable tree, we say a node T in layer i if i ≤ rank(T ) < i + 1.

De�nition 4. In a joinable tree, we say a nodev is a rank root, or a rank(i)-root ifv in layer
i and v’s parent is not in layer i .
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We use si(T ) to denote the number of rank(i)-root nodes in treeT . When the context is
clear, we simply use si . We use d(v) of a rank root v to denote the size of its rank cluster.

De�nition 5. In a BST, a set of nodes V is called ancestor-free if and only if for any two
nodes v1,v2 in V , v1 is not the ancestor of v2.

Obviously for each layer i , all the rank(i)-root nodes form an ancestor-free set.
The following lemma is important for proving the work bound of the join-based set-set

algorithms in Section 3.3.3.

Lemma 3.1.8. There exist a constant t such that for a strongly joinable tree with size N ,
si ≤

N
2 bi/t c . More precisely, t = 1 + dcue.

Proof. We now organize all rank roots from layer kt to layer (k + 1)t − 1 into a group k ,
for an integer k . Assume there are s′

k
such rank roots in root layer k . We �rst prove that

s′
k
≤ s′

k−1/2, which indicates that s′
k
≤ N

2k .
For a node u in group k , we will show that its subtree contains at least two nodes

in group k − 1, one in each subtree. u’s rank is at least kt − 1 (because of rounding),
but at most (k + 1)t − 1. For the left subtree (the right one is symmetric), we follow
one path until we �nd a node in group k but its children v group smaller than k , so
rank(v) ≤ kt − 1. We will prove that v must be in group k − 1. Because of the balancing
rule, rank(u) − cu ≤ rank(v) ≤ kt − 1. Considering the range of u’s rank, we have:
(k − 1)t ≤ rank(v) ≤ kt − 1. This means that v is in group k − 1. Therefore, every node in
group k corresponds to at least two nodes in group k + 1. This proves s′

k
≤ s′

k−1/2.
Obviously, each set of rank(i)-root is a subset of the corresponding group. This proves

the above lemma. �

Figure 3.11 (b) shows an example of the layers of an AVL tree, which we set the rank
of a node to be its height. Because the rank of all AVL nodes are integers, all nodes are
rank roots. Theorem 3.1.8 says that from bottom up, every three layers, the number of
nodes in an AVL shrinks by a half.1

3.2 The joinAlgorithms andRanks for EachBalancing
Scheme

Here we describe algorithms for join for the four balancing schemes we de�ned in
Chapter 2, as well as de�ne the rank for each of them. We will then prove they are joinable.
For join, the pivot can be either just the data entry (such that the algorithm will create a
new tree node for it), or a pre-allocated tree node in memory carrying the corresponding
data entry (such that the node may be reused, allowing for in-place updates).

1Actually, consider that there is no rounding issue for AVL trees, this means that from bottom up, every
two layers, the number of nodes in an AVL shrinks by a half.
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As mentioned in the introduction and the beginning of this chapter, join fully captures
what is required to rebalance a tree and can be used as the only function that knows about
and maintains the balance invariants. For AVL, RB and WB trees we show that join takes
work that is proportional to the di�erence in rank of the two trees. For treaps the work
depends on the priority of k . All the join algorithms are sequential so the span is equal to
the work. We show in this thesis that the join algorithms for all balancing schemes we
consider lead to optimal work for many functions on maps and sets.

3.2.1 AVL Trees

1 joinRightAVL(Tl ,k,Tr ) {
2 (l,k ′, c) = expose(Tl );
3 if h(c) ≤ h(Tr ) + 1 then {
4 T ′ = node(c,k,Tr );
5 if h(T ′) ≤ h(l) + 1 then return node(l,k ′,T ′);
6 else return rotateLeft(node(l,k ′, rotateRight(T ′)));
7 } else {
8 T ′ = joinRightAVL(c,k,Tr );
9 T ′′ = node(l,k ′,T ′);

10 if h(T ′) ≤ h(l) + 1 then return T ′′; else return rotateLeft(T ′′); }}

11 join(Tl ,k,Tr ) {
12 if h(Tl ) > h(Tr ) + 1 then return joinRightAVL(Tl ,k,Tr );
13 else if h(Tr ) > h(Tl ) + 1 then return joinLeftAVL(Tl ,k,Tr );
14 else return node(Tl ,k,Tr ); }

Figure 3.1: The join algorithm on AVL trees – joinLeftAVL is symmetric to joinRightAVL.

For AVL trees, we de�ne the rank as the height, i.e., rank(T ) = h(T ). Pseudocode for
AVL join is given in Figure 3.1 and illustrated in Figure 3.2. Every node stores its own
height so that h(·) takes constant time. If the two trees Tl and Tr di�er by height at most
one, join can simply create a new node(Tl , e,Tr ). However if they di�er by more than one
then rebalancing is required. Suppose that h(Tl ) > h(Tr ) + 1 (the other case is symmetric).
The idea is to follow the right spine of Tl until a node c for which h(c) ≤ h(Tr ) + 1 is
found (line 3). At this point a new node(c, e,Tr ) is created to replace c (line 4). Since either
h(c) = h(Tr ) or h(c) = h(Tr ) + 1, the new node satis�es the AVL invariant, and its height is
one greater than c . The increase in height can increase the height of its ancestors, possibly
invalidating the AVL invariant of those nodes. This can be �xed either with a double
rotation if the invalid is at the parent (line 6) or a single left rotation if the invalid is higher
in the tree (line 10), in both cases restoring the height for any further ancestor nodes. The
algorithm will therefore require at most two rotations, as we summarized in the following
lemma.

Lemma 3.2.1. The join algorithm in Figure 3.1 on AVL trees requires at most two rotations.
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Figure 3.2: An example for join on AVL trees – An example for join on AVL trees (h(Tl ) >
h(Tr ) + 1). We �rst follow the right spine of Tl until a subtree of height at most h(Tr ) + 1 is found
(i.e., T2 rooted at c). Then a new node(c,k,Tr ) is created, replacing c (Step 1). If h(T1) = h and
h(T2) = h + 1, the node p will no longer satisfy the AVL invariant. A double rotation (Step 2)
restores both balance and its original height.

Lemma 3.2.2. For two AVL trees Tl and Tr , the AVL join algorithm works correctly, runs
with O(|h(Tl ) − h(Tr )|) work, and returns a tree satisfying the AVL invariant with height at
most 1 +max(h(Tl ),h(Tr )).

Proof. Since the algorithm only visits nodes on the path from the root to c , and only
requires at most two rotations (Lemma 3.2.1), it does work proportional to the path length.
The path length is no more than the di�erence in height of the two trees since the height
of each consecutive node along the right spine ofTl di�ers by at least one. Along with the
case when h(Tr ) > h(Tl ) + 1, which is symmetric, this gives the stated work bounds. The
resulting tree satis�es the AVL invariants since rotations are used to restore the invariant.
The height of any node can increase by at most one, so the height of the whole tree can
increase by at most one. �

Theorem 3.2.3. AVL trees are strongly joinable.

Proof. The AVL invariant and the de�nition of AVL’s rank is ensures the empty rule and
balancing rule (cl = 1, cu = 2). Lemma 3.2.2 ensures the cost rule and monotonicity
rule. The only tricky part is the submodularity rule. We prove as follows.

We start with the increasing side.
First note that the ranks of AVL trees are always integers. For C = node(A, e,B) and

C′ = join(A′, e,B′), WLOG suppose rank(A) ≥ rank(B).
When 0 ≤ rank(A′) − rank(A) ≤ x and 0 ≤ rank(B′) − rank(B) ≤ x , the larger rank of

A′ and B′ is within rank(A)+ x . Then the rank ofC′ is in range [rank(A), rank(A)+ x + 1]
(Lemma 3.2.4). On the other hand,C = node(A, e,B),C is no smaller than rank(A)+1 (based
on AVL invariants). Thus 0 ≤ rank(C)− rank(C′) ≤ x except for when rank(C′) = rank(A)
and rank(C) = rank(A) + 1. We will show that this is impossible.

First of all, rank(C′) = rank(A)means that rank(A′) = rank(A). Also, rank(B′)must be
at most rank(A) − 2, otherwise the join will directly connect A′ and B′, and rank(C′) will
be at least rank(A) + 1. Considering rank(B′) ≥ rank(B), this means that A and B cannot
be balanced, which leads to a contradiction.
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This proves the increasing side of submodularity rule. We then prove the decreasing
side. Both rank(A) and rank(B) are at most rank(C) − 1. Based on Lemma 3.2.2, joining
them back gets C′ with rank at most rank(C).

�

1 joinRightRB(Tl ,k,Tr ) {
2 if (rank(Tl ) = brank(Tr )/2c × 2) then return node(Tl , 〈k, red〉,Tr ); else {
3 (L′, 〈k ′, c ′〉,R′)=expose(Tl);
4 T ′ = node(L′, 〈k ′, c ′〉,joinRightRB(R′,k,Tr ));
5 if (c ′=black) and (color (rc(T ′)) = color (rc(rc(T ′)))=red) then {
6 set rc(rc(T ′)) as black;
7 return rotateLeft(T ′);
8 } else return T ′; }}

9 joinRB(Tl ,k,Tr ) {
10 if brank(Tl )/2c > brank(Tr )/2c then {
11 T ′ =joinRightRB(Tl ,k,Tr );
12 if (color (T ′)=red) and (color (rc(T ′))=red) then return node(lc(T ′), 〈k(T ′), black〉, rc(T ′));
13 else return T ′;
14 } else if brank(Tr )/2c > brank(Tl )/2c then {
15 T ′ =joinLeftRB(Tl ,k,Tr );
16 if (color (T ′)=red) and (color (lc(T ′))=red) then return node(lc(T ′), 〈k(T ′), black〉, rc(T ′));
17 else return T ′;
18 } else {
19 if (k is a increase-2 node) then
20 return node(Tl , 〈k, black〉,Tr );
21 else if (color (Tl )=black) and (color (Tr )=black)
22 return node(Tl , 〈k, red〉,Tr );
23 else return node(Tl , 〈k, black〉,Tr ); }
24 }

Figure 3.3: The join algorithm on red-black trees – The join algorithm on red-black trees.
joinLeftRB is symmetric to joinRightRB.

3.2.2 Red-black Trees

In RB trees rank(T ) = 2(ĥ(T ) − 1) if T is black and rank(T ) = 2ĥ(T ) − 1 if T is red.
Tarjan describes how to implement the join function for red-black trees [265]. Here we
describe a variant that does not assume the roots are black (this is to bound the increase
in rank by union). The pseudocode is given in Figure 3.3. We store at every node its black
height ĥ(·). Also, we de�ne the increase-2 node as a black node, whose both children
are also black. This means that the node increases the rank of its children by 2. In the
algorithm, the �rst case is when ĥ(Tr ) = ĥ(Tl ). Then if the input node is a increase-2 node,
we use it as a black node and directly concatenate the two input trees. This increases the
rank of the input by at most 2. Otherwise, if both root(Tr ) and root(Tl ) are black, we create
red node(Tl , e,Tr ). When either root(Tr ) or root(Tl ) is red, we create black node(Tl , e,Tr ).
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The second case is when ĥ(Tr ) < ĥ(Tl ) = ĥ (the third case is symmetric). Similarly
to AVL trees, join follows the right spine of Tl until it �nds a black node c for which
ĥ(c) = ĥ(Tr ). It then creates a new red node(c,k,Tr ) to replace c . Since both c and Tr have
the same height, the only invariant that can be violated is the red rule on the root of
Tr , the new node, and its parent, which can all be red. In the worst case we may have
three red nodes in a row. This is �xed by a single left rotation: if a black node v has
rc(v) and rc(rc(v)) both red, we turn rc(rc(v)) black and perform a single left rotation
on v , turning the new node black, and then performing a single left rotation on v . The
update is illustrated in Figure 3.4. The rotation, however can again violate the red rule
between the root of the rotated tree and its parent, requiring another rotation. Obviously
the triple-red issue is resolved after the �rst rotation. Therefore, expect the bottommost
level, a triple-red issue does not happen. The double-red issue might proceed up to the
root ofTl . If the original root ofTl is red, the algorithm may end up with a red root with a
red child, in which case the root will be turned black, turning Tl rank from 2ĥ − 1 to 2ĥ. If
the original root of Tl is black, the algorithm may end up with a red root with two black
children, turning the rank of Tl from 2ĥ − 2 to 2ĥ − 1. In both cases the rank of the result
tree is at most 1 + rank(Tl ).

We note that the rank of the output can increase the larger rank of the input trees by
2 only when the pivot is an increase-2 node and the two input trees are balanced both
with black roots. This additional condition is to guarantee the submodularity rule for
RB trees.

Lemma 3.2.4. For two RB trees Tl and Tr , the RB join algorithm works correctly, runs with
O(|rank(Tl ) − rank(Tr )|) work, and returns a tree satisfying the red-black invariants and
with rank at most 2 +max(rank(Tl ), rank(Tr )).

Proof. The base case where h(Tl ) = h(Tr ) is straight-forward. For symmetry, here we only
prove the case when h(Tl ) > h(Tr ). We prove the proposition by induction.

We �rst show the correctness. As shown in Figure 3.4, after appending Tr to Tl , if p is
black, the rebalance has been done, the height of each node stays unchanged. Thus the
RB tree is still valid. Otherwise, p is red, p’s parent д must be black. By applying a left
rotation on p and д, we get a balanced RB tree rooted at p, except the root p is red. If p is
the root of the whole tree, we change p’s color to black, and the height of the whole tree
increases by 1. The RB tree is still valid. Otherwise, if the current parent of p (originally
д’s parent) is black, the rebalance is done here. Otherwise a similar rebalance is required
on p and its current parent. Thus �nally we will either �nd the current node valid (current
red node has a black parent), or reach the root, and change the color of root to be black.
Thus when we stop, we will always get a valid RB tree.

Since the algorithm only visits nodes on the path from the root to c , and only requires
at most a single rotation per node on the path, the overall work for the algorithm is
proportional to the depth of c in Tr . This in turn is no more than twice the di�erence in
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black height of the two trees since the black height decrements at least every two nodes
along the path. This gives the stated work bounds.

For the rank, note that throughout the algorithm, before reaching the root, the black
rule is never invalidated (or is �xed immediately), and the only invalidation occurs on the
red rule. If the two input trees are originally balanced, the rank increases by at most 2.
The only case that the rank increases by 2 is when k is from an increase-2 node, and both
root(Tr ) and root(Tl ) are black.

If the two input tree are not balanced, the black height of the root does not change
before the algorithm reaching the root (Step 3 in Figure 3.4). There are then three cases:

1. The rotation does not propagate to the root, and thus the rank of the tree remains
as max(ĥ(Tl ), ĥ(Tr )).

2. (Step 3 Case 1) The original root color is red, and thus a double-red issue occurs at
the root and its right child. In this case the root is colored black. The black height
of the tree increases by 1, but since the original root is red, the rank increases by
only 1.

3. (Step 3 Case 1) The original root color is black, but the double-red issue occurs at
the root’s child and grandchild. In this case another rotation is applied as shown
in Figure 3.4. The black height remains, but the root changed from black to red,
increasing the rank by 1.

�

Theorem 3.2.5. RB trees are joinable.

Proof. The RB invariant and the de�nition of RB’s rank is ensures the empty rule and
balancing rule (cl = 1, cu = 2). Theorem 3.2.4 ensures the cost rule and monotonicity
rule. The only tricky part is the submodularity rule. We prove as follows.

We start with the increasing side.
First note that the ranks of RB trees are always integers. For C = node(A, e,B) and

C′ = join(A′, e,B′). WLOG suppose rank(A) ≥ rank(B).
When 0 ≤ rank(A′) − rank(A) ≤ x and 0 ≤ rank(B′) − rank(B) ≤ x , the larger rank of

A′ and B′ is within rank(A)+ x . Then the rank ofC′ is in range [rank(A), rank(A)+ x + 2]
(Lemma 3.2.4). On the other hand,C = node(A, e,B),C is either rank(A)+ 1 or rank(A)+ 2
(because all ranks are integers). Thus 0 ≤ rank(C′) − rank(C) ≤ x except for the following
cases.

1. rank(C′) = rank(A) = r .
2. rank(C′) = r + 1, but rank(C) = r + 2.
3. rank(C′) = r + x + 2, but rank(C) = r + 1.

We �rst show that case 1 is impossible.
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Figure 3.4: An example of join on red-black trees – An example of join on red-black trees
(ĥ = ĥ(Tl ) > ĥ(Tr )). We follow the right spine of Tl until we �nd a black node with the same
black height as Tr (i.e., c). Then a new red node(c,k,Tr ) is created, replacing c (Step 1). The only
invariant that can be violated is when either c’s previous parent p or Tr ’s root d is red. If so, a left
rotation is performed at some black node. Step 2 shows the rebalance when p is red. The black
height of the rotated subtree (now rooted at p) is the same as before (h + 1), but the parent of p
might be red, requiring another rotation. If the red-rule violation propagates to the root, the root
is either colored red, or rotated left (Step 3).

First of all, rank(A′) ≥ rank(A) = rank(C′). On the other hand rank(C′) ≥ rank(A′)
because C′ = join(A′, e,B′). Therefore rank(A′) = rank(C′) = rank(A).

Also, rank(B) is at least r − 1 because A and B are balanced. Considering rank(B′) ≥
rank(B), rank(B′) is at least r − 1, but at most rank(C′) = r .

If A′ and B′ are balanced, the rank of C′ is at least rank(A) + 1, which leads to a
contradiction.

If A′ and B′ are not balanced, but their ranks di�er by only 1. This is only possible
when one of them has black height h with a black root, and the other one has black height
h − 1 with a red root. However, the join algorithm result in double-red on the root’s
child and its grandchild. After �xing it the rank also increases by 1, which leads to a
contradiction.

We then show that case 2 is impossible.
First of all, rank(B) is at least rank(A) − 1 because A and B are balanced. Considering

rank(B′) ≥ rank(B), rank(B′) is at least rank(A′) − 1.
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If rank(C) = r + 2, C must be an increase-2 node. This means that rank(A) =
rank(B) = r , and they are both black. rank(A′) ≥ rank(A) = rank(C′) − 1. On the other
hand rank(C′) ≥ rank(A′) because C′ = join(A′, e,B′). Therefore rank(A′) = rank(C′) or
rank(A′) = rank(C′) − 1 = rank(A).

1. If rank(A′) = rank(C′), from the same statement of case 1, we can show this is
impossible. This is because the join algorithm will always lead to the result where
C′ has rank larger than A′.

2. If rank(A′) = rank(C′) − 1 = rank(A), A′ must be black since rank(A) is even. In this
case, rank(B′) is r , or r + 1.
If rank(A′) = rank(B′) = r , B′ is also black. In this case the algorithm will result in
C′ = r + 2. This leads to a contradiction.
If rank(B′) = r + 1, B′ is red but is still balanced with A′. In this case, the algorithm
also results in C′ with rank r + 2. This also leads to a contradiction.

Finally we prove that case 3 is impossible.
rank(C′) = r + x + 2 means that A′, B′ and C′ are all black. Also A′ and B′ must both

have rank r + x and black roots. This means that C′ (and also C) is an increase-2 node.
Thus rank(C) must be r + 2, which leads to a contradiction.

This proves the increasing side of the submodularity rule. Next we look at the
decreasing side. There are two cases.

1. Both rank(A′) < rank(A) and rank(B′) < rank(B) hold. They have to decrease
by at least one because the rank of a RB tree is always integer. We know that
rank(C′) ≤ max(rank(A′), rank(B′)) + 2.
If rank(C′) = max(rank(A′), rank(B′)) + 2, C′ must be a increasing-2 node. rank(C)
is rank(A) + 2 (also rank(B) + 2). Also, A, B, C , A′, B′ and C′ are all black. Then
rank(A′) and rank(B′) can be at most rank(A) − 2 and rank(B) − 2, respectively.
joining A′ and B′ increase the maximum rank by at most 2. Therefore rank(C′) is
no more than rank(C) holds.
If rank(C′) ≤ max(rank(A′), rank(B′)) + 1, joining them back results in an output
tree of rank at most max(rank(A′), rank(B′)) + 1. This proves rank(C′) ≤ rank(C).

2. Either rank(A′) = rank(A) or rank(B′) = rank(B). WLOG assume rank(A′) =
rank(A) and rank(B′) ≤ rank(B). There are three cases.

(a) A (so is A′) is black with rank 2h, and C is red with rank 2h + 1. rank(B′) ≤
rank(B) = 2h. Therefore rank(C′) ≤ rank(A′) + 1 = rank(C).

(b) A (so is A′) is black with rank 2h, and C is black with rank 2h + 2. rank(B′) ≤
rank(B) ≤ 2h + 1. When rank(B′) ≤ 2h, rank(C′) ≤ rank(A′) + 2 = rank(C).
When rank(B′) = 2h + 1, B is red andC′ is not an increasing-2 node. Therefore
we also get rank(C′) ≤ rank(B′) + 1 = rank(C).
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(c) A (so is A′) is red with rank 2h + 1, andC is black with rank 2h + 2. rank(B′) ≤
rank(B) ≤ 2h + 1. Therefore rank(C′) ≤ rank(A′) + 1 = rank(C).

In summary, the submodularity rule holds for RB trees. RB trees are strongly
joinable. �

1 joinRightWB(Tl ,k,Tr ) {
2 (l,k ′, c)=expose(Tl);
3 if (balance(|Tl |, |Tr |) then return node(Tl ,k,Tr )); else {
4 T ′ = joinRightWB(c,k,Tr );
5 (l1,k1, r1) = expose(T ′);
6 if like(|l |, |T ′ |) then return node(l,k ′,T ′);
7 else if (like(|l |, |l1 |)) and (like(|l | + |l1 |, r1)) then return rotateLeft(node(l,k ′,T ′));
8 else return rotateLeft(node(l,k ′,rotateRight(T ′))); }}

9 joinWB(Tl ,k,Tr ) {
10 if heavy(Tl ,Tr ) then return joinRightWB(Tl ,k,Tr );
11 else if heavy(Tr ,Tl) then return joinLeftWB(Tl ,k,Tr );
12 else return node(Tl ,k,Tr ); }

Figure 3.5: The join algorithm on weight-balanced trees – joinLeftWB is symmetric to
joinRightWB.

3.2.3 Weight Balanced Trees

For WB trees rank(T ) = log2(w(T )) − 1. We store the weight of each subtree at every
node. The algorithm for joining two weight-balanced trees is similar to that of AVL trees
and RB trees. The pseudocode is shown in Figure 3.5. The like function in the code returns
true if the two input tree sizes are balanced based on the factor of α , and false otherwise. If
Tl andTr have like weights the algorithm returns a new node(Tl , e,Tr ). Suppose |Tr | ≤ |Tl |,
the algorithm follows the right branch of Tl until it reaches a node c with like weight to
Tr . It then creates a new node(c, r ,Tr ) replacing c . The new node will have weight greater
than c and therefore could imbalance the weight of c’s ancestors. This can be �xed with a
single or double rotation (as shown in Figure 3.6) at each node assuming α is within the
bounds given in Chapter 2.

Lemma 3.2.6. For two α weight-balanced trees Tl and Tr and α ≤ 1 − 1√
2
≈ 0.29, the

weight-balanced join algorithm works correctly, runs with O(|log(w(Tl )/w(Tr ))|) work,
and returns a tree satisfying the α weight-balance invariant and with rank at most 1 +
max(rank(Tl ), rank(Tr )).

The proof is shown in the Appendix.
Notice that this upper bound is the same as the restriction on α to yield a valid

weighted-balanced tree when inserting a single node.Then we can induce that when the
rebalance process reaches the root, the new weight-balanced tree is valid. The proof is
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Figure 3.6: An illustration of single and double rotations possibly needed to rebalance
weight-balanced trees – In the �gure the subtree rooted at u has become heavier due to joining
in Tl and its parent v now violates the balance invariant.

intuitively similar as the proof stated in [82, 217], which proved that when 2
11 ≤ α ≤ 1− 1√

2
,

the rotation will rebalance the tree after one single insertion. In fact, in our join algorithm,
the “inserted” subtree must be along the left or right spine, which actually makes the
analysis easier.

1 joinTreap(Tl ,k,Tr ) {
2 if prior(k,k1) and prior(k,k2) then return node(Tl ,k,Tr ) else {
3 (l1,k1, r1)=expose(Tl);
4 (l2,k2, r2)=expose(Tr );
5 if prior(k1,k2) then return node(l1,k1,joinTreap(r1,k,Tr ));
6 else return node(joinTreap(Tl ,k, l2),k2, r2); }}

Figure 3.7: The join algorithm on treaps – prior(k1,k2) decides if the node k1 has a higher
priority than k2.

Theorem 3.2.7. WB trees are strongly joinable when α ≤ 1 − 1√
2
≈ 0.29.

Proof. The WB invariant and the de�nition of WB’s rank is ensures the empty rule and
balancing rule (cl = log(1−α) 2, cu = logα 2). Theorem 3.2.6 ensures the cost rule and the
monotonicity rule.

For submodularity rule, note that rank(C) = log2(w(A) + w(B)), and rank(C′) =
log2(w(A′) +w(B′)). When either of A and B change their weight by more than log2 x ,
obviously the total weight of C will not increase or decrease by a factor of log2 x . �
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3.2.4 Treaps

For treaps rank(T ) = log2(w(T )) − 1. The treap join algorithm (as in Figure 3.7) �rst
picks the key with the highest priority among k , k(Tl ) and k(Tr ) as the root. If k is the
root then the we can return node(Tl ,k,Tr ). Otherwise, WLOG, assume k(Tl ) has a higher
priority. In this case k(Tl )will be the root of the result, lc(Tl )will be the left tree, and rc(Tl ),
k and Tr will form the right tree. Thus join recursively calls itself on rc(Tl ), k and Tr and
uses result as k(Tl )’s right child. When k(Tr ) has a higher priority the case is symmetric.
The cost of join is therefore the depth of the key k in the resulting tree (each recursive
call pushes it down one level). In treaps the shape of the result tree, and hence the depth
of k , depend only on the keys and priorities and not the history. Speci�cally, if a key has
the t th highest priority among the keys, then its expected depth in a treap is O(log t) (also
w.h.p.). If it is the highest priority, for example, then it remains at the root.

Lemma 3.2.8. For two treaps Tl and Tr , if the priority of k is the t-th highest among all
keys in Tl ∪ {k} ∪Tr , the treap join algorithm works correctly, runs with O(log t + 1) work
in expectation and w.h.p., and returns a tree satisfying the treap invariant with rank at most
1 +max(rank(Tl ), rank(Tr )).

Theorem 3.2.9. Treaps are weakly joinable.

Proof. The empty rule and monotonicity rule hold from the de�nition of rank. The
submodularity rule holds for the same reason as the WB tree.

For the relaxed balancing rule, note that the weight of the tree shrink by a factor
of 1/3 to 2/3 with probability 1/3. This means that going down from a parent to a child,
the rank of a node decrease by a constant between log2 3 and log2 3/2 with probability
1/3. This proves the relaxed balancing rule.

For weak cost rule note that the cost of join is at most the height of the larger input
tree, which is O(rank(T )) w.h.p. �

We also present Lemma 3.2.12, which is useful in the proofs in later section. For a
treap node v we use d(v) to denote the number of generations to take from v to reach a
node u with rank at most rank(v) − 1. The lemma proves that E[d(v)] is a constant.

Lemma 3.2.10. If v is a rank root in a treap, d(v) is less than a constant in expectation.

Proof. Consider a rank(i)-root v that has weight N ∈ [2k, 2k+1). The probability that
d(v) ≥ 2 is equal to the probability that one of its grandchildren has weight at least 2k .
This probability P is:
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P =
1
2k

N∑
i=2k+1

i − 2k

i
(3.1)

≤
1
2k

2k+1∑
i=2k+1

i − 2k

i
(3.2)

≈ 1 − ln 2 (3.3)

We denote 1 − ln 2 as pc . Similarly, the probability that d(v) ≥ 4 should be less than p2c ,
and the probability shrink geometrically as d(v) increase. Thus the expected value of d(v)
is a constant. �

We note that in treaps, each rank cluster is a chain. This is true because if two children
of one node v are both in layer i , the weight of v is more than 2i+1, meaning that v should
be layer i + 1. The above lemma means that the expected size of a rank cluster is also a
constant.

As a summary of this section, we present the following theorem.

Theorem 3.2.11. AVL, RB andWB trees are strongly joinable, and treaps are weakly joinable.

For a treap node v we use d(v) to denote the number of generations to take from v to
reach a node u with rank at most rank(v)− 1. The lemma proves that E[d(v)] is a constant.

Lemma 3.2.12. If v is a rank root in a treap, d(v) is less than a constant in expectation.

Proof. Consider a rank(i)-root v that has weight N ∈ [2k, 2k+1). The probability that
d(v) ≥ 2 is equal to the probability that one of its grandchildren has weight at least 2k .
This probability P is:

P =
1
2k

N∑
i=2k+1

i − 2k

i
(3.4)

≤
1
2k

2k+1∑
i=2k+1

i − 2k

i
(3.5)

≈ 1 − ln 2 (3.6)

We denote 1 − ln 2 as pc . Similarly, the probability that d(v) ≥ 4 should be less than p2c ,
and the probability shrink geometrically as d(v) increase. Thus the expected value of d(v)
is a constant. �
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We note that in treaps, each rank cluster is a chain. This is true because if two children
of one node v are both in layer i , the weight of v is more than 2i+1, meaning that v should
be layer i + 1. The above lemma means that the expected size of a rank cluster is also a
constant.

Function Work Span

insert, delete, update, �nd, �rst, last,
O(logn) O(logn)range, split, join2, previous, next, rank,

select, up_to, down_to
union, intersection, di�erence O

(
m log

( n
m + 1

) )
O(logn logm)

map, reduce, map_reduce, to_array O(n) O(logn)
build, �lter O(n) O(log2 n)

Table 3.1: The core join-based algorithms and their asymptotic costs – The cost is given
under the assumption that all parameter functions take constant time to return. For functions
with two input trees (union, intersection and di�erence), n is the size of the larger input, andm of
the smaller.

3.3 Algorithms Using join

Split

1 split(T ,k) {
2 if T = ∅ then
3 return (∅,false,∅);
4 (L,m,R) = expose(T );
5 if k =m then return (L,true,R);
6 if k < m then {
7 (TL,b,TR ) = split(L,k);
8 return (TL,b,join(TR ,m,R)); }
9 (TL,b,TR ) = split(R,k);

10 return (join(L,m,TL),b,TR ); } }

join2

1 split_last(T ) { // split_�rst is symmetric
2 (L,k,R) = expose(T );
3 if R = ∅ then return(L,k);
4 (T ′,k ′) = split_last(R);
5 return (join(L,k,T ′),k ′); }
6 join2(Tl,Tr ) {
7 if Tl = ∅ then return Tr ;
8 (T ′,k) = split_last(Tl);
9 return join(T ′,k,Tr );

10 }

Figure 3.8: split and join2 algorithms – They are both independent of balancing schemes.

The join function, as a subroutine, has been used and studied by many researchers
and programmers to implement more general set operations. In this section, we describe
algorithms for various functions that use just join. The algorithms are generic across
balancing schemes. The pseudocodes for the algorithms in this section is shown in
Figure 3.10. Beyond join the only access to the trees we make use of is through expose
and rank(·), which only read the root. main set operations, which are union, intersection
and di�erence, are optimal (or known as e�cient) in work. The pseudocode for all the
algorithms introduced in this section is presented in Figure 3.12.
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3.3.1 Two Helper Functions: split and join2

We start with presenting two helper functions split and join2. For a BST T and key k ,
split(T ,k) returns a triple (Tl ,b,Tr ), whereTl (Tr ) is a tree containing all keys inT that are
less (larger) than k , and b is a �ag indicating whether k ∈ T . join2(Tl ,Tr ) returns a binary
tree for which the in-order values is the concatenation of the in-order values of the binary
trees Tl and Tr (the same as join but without the middle key). For BSTs, all keys in Tl have
to be less than keys in Tr .

Although both sequential, these two functions, along with the join function, are essen-
tial for help other algorithms to achieve good parallelism. Intuitively, when processing a
tree in parallel, we recurse on two sub-components of the tree in parallel by spliting the
tree by some key. In many cases, the splitting key is just the root, which means directly
using the two subtrees of natural binary tree structure. After the recursions return, we
combine the result of the left and right part, with or without the middle key, using join or
join2. Because of the balance of the tree, this framework usually gives high parallelism
with shallow span (e.g., poly-logarithmic).
Split. As mentioned above, split(T ,k) splits a treeT by a key k intoTl andTr , along with
a bit b indicating if k ∈ T . Intuitively, the split algorithm �rst searches for k inT , splitting
the tree along the path into three parts: keys to the left of the path, k itself (if it exists),
and keys to the right. Then by applying join, the algorithm merges all the subtrees on
the left side (using keys on the path as intermediate nodes) from bottom to top to form
Tl , and merges the right parts to form Tr . Writing the code in a recursive manner, this
algorithm �rst determine if k falls in the left (right) subtree, or is exactly the root. If it
is the root, then the algorithm directly returns the left and the right subtrees as the two
return trees and true as the bit b. Otherwise, WLOG, suppose k falls in the left subtree.
The algorithm further split the left subtree into TL and TR with the return bit b′. Then
the return bit b = b′, the Tl in the �nal result will be TL, and Tr means to join TR with the
original right subtree by the original root. Figure 3.9 gives an example.
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Figure 3.9: An example of split in a BST with key 42 – We �rst search for 42 in the tree and
split the tree by the searching path, then use join to combine trees on the left and on the right
respectively, bottom-top.
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The cost of the algorithm is proportional to the rank of the tree, as we summarize and
prove in the following theorem.

Theorem 3.3.1. The work of split(T ,k) is O(h(T )) for all strongly joinable trees and treaps.
The two resulting trees Tl and Tr will have rank at most rank(T ) + c0 for some constant c0.

Proof. We only consider the work of joining all subtrees on the left side. The other side is
symmetric. Suppose we have l subtrees on the left side, denoted from bottom to top as
T1,T2, . . .Tl . As stated above, we consecutively join T1 and T2 returning T ′2, then join T ′2
with T3 returning T ′3 and so forth, until all trees are merged. The overall work of split is
the sum of the cost of l − 1 join functions. One observation is that, the pivot of the join of
T ′i−1 andTi , denoted as ei , used to beTi ’s parent. Meanwhile,T ′i−1 is a subset ofTi ’s original
sibling, denoted as Xi . We useT (ei) = node(Xi, ei,Ti) to denote the original subtree rooted
at ei in the input.

We �rst prove by induction that computing T ′i = join(T ′i−1, ei,Ti) gets T ′i with rank no
more than rank(Xi+1).

From the induction hypothesis, we know that rank(T ′i−1) ≤ r (Xi). Considering T ′i =
join(T ′i−1, ei,Ti) and T (ei) = node(Xi, ei,Ti), from the submodularity rule, we can get
rank(T ′i ) ≤ rank(T (ei)). Considering T (ei) is a subtree in Xi+1, we have

rank(T ′i ) ≤ rank(T (ei)) ≤ rank(Xi+1

We next prove the cost. The cost of the i-th join isWi ≤ c |rank(Ti) − rank(T ′i−1)|. Note
that rank(T ′i−1) ≤ rank(Xi) ≤ rank(Ti) + cu − cl . Also, note that T ′i is achieved by joining
Ti and another tree. Therefore, rank(Ti) − rank(T ′i−1) ≤ rank(T ′i ) − rank(T

′
i−1).

This means that eitherWi = c(rank(T ′i ) − rank(T
′
i−1)), orWi is a constant no more than

c2 = c · (cu − cl ). ThereforeWi ≤ c(rank(T ′i ) − rank(T
′
i−1) + 2c2).

h(T )∑
i=1

Wi ≤

h(T )∑
i=1

c(rank(T ′i ) − rank(T
′
i−1) + 2c2)

≤2c · c2 · h(T ) + rank(T ′i )
≤O(h(T )) + rank(T (eh(T ))) ≤ O(h(T ))

For treaps, each join uses the key with the highest priority since the key is always on
a upper level. Hence by Lemma 3.2.8, the complexity of each join is O(1) and the work
of split is at most O(h(T )). Obviously for treaps we have rank(Tl ) and rank(Tr ) at most
rank(T ). �

Join2. As stated above, the join2 function is de�ned similar to join without the middle
entry. The join2 algorithm �rst choose one of the the input trees, and extract its last (if it
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Union
union(T1,T2) {

if T1 = ∅ then return T2;
if T2 = ∅ then return T1;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = union(L1,L2) ||

Tr = union(R1,R2);
return join(Tl,k2,Tr ); }

Intersection
intersect(T1,T2) {

if T1 = ∅ then return ∅;
if T2 = ∅ then return ∅;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = intersect(L1,L2) ||

Tr = intersect(R1,R2);
if b then return join(Tl,k2,Tr );
else return join2(Tl,Tr ); }

Di�erence
difference(T1,T2) {
if T1 = ∅ then ∅;
if T2 = ∅ then T1;
(L2,k2,R2) = expose(T2);
(L1,b,R1) = split(T1,k2);
Tl = difference(L1,L2) ||

Tr = difference(R1,R2);
return join2(Tl,Tr ); }

Figure 3.10: join-based algorithms for set-set operations – They are all independent of
balancing schemes. The syntax S1 | |S2 means that the two statements S1 and S2 can be run in
parallel based on any fork-join parallelism.

is Tl ) or �rst (if it is Tr ) element k . The two cases take the same asymptotical cost. The
extracting process is similar to the split algorithm. The algorithm then uses k as the pivot
to join the two trees. In the code shown in Figure 3.8, the split_last algorithm �rst �nds
the last element k (by following the right spine) in Tl and on the way back to root, joins
the subtrees along the path. We denote the result of dropping k in TL as T ′. Then join
(T ′,k,Tr ) is the result of join2. Unlike join, the work of join2 is proportional to the rank of
both trees since both split and join take at most logarithmic work.

Theorem 3.3.2. The work of T =join2(Tl ,Tr ) is O(r (Tl ) + r (Tr )) for all joinable trees.
rank(T ) ≤ max(rank(Tl ), rank(Tr )) + c′.

Proof. The cost bound holds because split_last and join both take work asymptotically no
more than the larger tree rank. We next prove the range of rank(T ). First of all, splitting
the last from Tl only decreases its rank (Theorem 3.3.1). Therefore T =join (T ′,k,Tr ) has
rank no more than max(rank(Tr ), rank(Tl )) + c′. This proves the inequation. �

3.3.2 Set-set Functions Using join

In this section, we will present the join-based algorithm on set-set functions, including
union, intersection and di�erence. Many other set-set operations, such as symmetric
di�erence, can be implemented by a combination of union, intersection and di�erence with
no extra asymptotical work. We will start with presenting some background of these
algorithms, and then explain in details about the join-based algorithms. Finally, we show
the proof of their cost bound.
Background. The parallel set-set functions are particularly useful when using parallel
machines since they can support parallel bulk updates. As mentioned, although supporting
e�cient algorithms for basic operations on trees, such as insertion and deletion, are rather
straightforward, implementing e�cient bulk operations is more challenging, especially
considering parallelism and di�erent balancing schemes. For example, combining two
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ordered sets of size n andm ≤ n in the format of two arrays would take work O(m + n)
using the standard merging algorithm in the merge sort algorithm. This makes even
inserting an single element into a set of size n to have linear cost. This is because even
most of the chunks of data in the input remain consecutive, the algorithm still need to scan
and copy them to the output array. Another simple implementation is to store both sets
as balanced trees, and insert the elements in the smaller tree into the larger one, costing
O(m logn) work. It overcomes the issue of redundant scanning and copying, because
many subtrees in the larger tree remain untouched. However, this results in O(n logn)
time, for combining two ordered sets of the same size, while it is easy to make it O(n) by
arrays. The problem lies in that the algorithm fails to make use of the ordering in the
smaller tree.

The lower bound for comparison-based algorithms for union, intersection and di�erence
for inputs of size n and m ≤ n, and returning an ordered structure2, is log2

(m+n
n

)
=

Θ
(
m log

( n
m + 1

) )
(
(m+n

n

)
is the number of possible ways n keys can be interleaved with

mkeys). Brown and Tarjan �rst matched these bounds, asymptotically, using a sequential
algorithm based on red-black trees [91]. Although designed for merging, the algorithm
can be adapted for union, intersection and di�erence with the same bounds. The bound
is interesting since it shows that implementing insertion with union, or deletion with
di�erence, is asymptotically e�cient (O(logn) time), as is taking the union of two equal
sized sets (O(n) time). However, the Brown and Tarjan algorithm is complicated, only
works on red-black trees, and completely sequential.

Adams later described very elegant algorithms for union, intersection, and di�erence,
as well as other functions based on join [10, 11]. Adams’ algorithms were proposed in
an international competition for the Standard ML community, which is about implemen-
tations on “set of integers”. Prizes were awarded in two categories: fastest algorithm,
and most elegant yet still e�cient program. Adams won the elegance award, while his
algorithm is almost as fast as the fastest program for very large sets, and was faster
for smaller sets. Because of the elegance of the algorithm, at least three libraries use
Adams’ algorithms for their implementation of ordered sets and tables (Haskell [200]
and MIT/GNU Scheme, and SML). The idea of Adams’ algorithm enlightens our parallel
join-based set-set algorithms and the implementation in the PAM library, for which the
sequential version on weight balanced trees is exactly the same as Adams’ algorithm.

Although only considered weight-balanced trees, Adams’ algorithms actually show
that in principle all balance criteria for search trees can be captured by the single function
join. As long as a valid join algorithm on a certain balancing scheme is provided, the
correctness of the join-based set-set operations can be guaranteed on the corresponding
balancing scheme.

2By “ordered structure” we mean any data structure that can output elements in sorted order without
any further comparisons—e.g., a sorted array, or a binary search tree.
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Surprisingly, however, there have been almost no results on bounding the work (time)
of Adams’ algorithms, in general nor on speci�c tree types. Adams informally argues
that his algorithms take O(n +m) work for weight-balanced tree, but that is a very loose
bound. Blelloch and Reid-Miller later show that similar algorithms for treaps [71], are
optimal for work (i.e. Θ

(
m log

( n
m + 1

) )
), and are also parallel. Their algorithms, however,

are speci�c for treaps. The problem with bounding the work of Adams’ algorithms, is
that just bounding the time of split, join and join2 with logarithmic costs is not su�cient.3
One needs additional properties of the trees. As a result, there is no tight bound even
for Adams’ original algorithms on weight-balanced trees, not to mention other balancing
schemes.

Our work gives the �rst work-optimal bounds for the join-based algorithms for the
four balancing schemes considered by this thesis. We show that with appropriate (and
simple) implementations of join for each balancing scheme, we achieve asymptotically
optimal bounds on work. These bounds hold when either input tree is larger (this was
surprising to us). Furthermore the algorithms have O(logn logm) span, and hence are
highly parallel. To prove the bounds on work we show that our implementations of join
satisfy certain conditions based on a rank we de�ne for each tree type. In particular the
cost of join must be proportional to the di�erence in ranks of two trees, and the rank of the
result of a join must be at most one more than the maximum rank of the two arguments.
Algorithms. union(T1,T2) takes two BSTs and returns a BST that contains the union
of all keys. The algorithm uses a classic divide-and-conquer strategy, which is parallel.
At each level of recursion, T1 is split by k(T2), breaking T1 into three parts: one with all
keys smaller than k(T2) (denoted as L1), one in the middle either of only one key equal
to k(T2) (when k(T2) ∈ T1) or empty (when k(T2) < T1), the third one with all keys larger
than k(T2) (denoted as R1). ger) than k(T1). Then two recursive calls to union are made in
parallel. One unions lc(T2) with L1, returning Tl , and the other one unions rc(T2) with R1,
returning Tr . Finally the algorithm returns join (Tl ,k(T2),Tr ), which is valid since k(T2) is
greater than all keys in Tl are less than all keys in Tr .

The functions intersection (T1,T2) and di�erence (T1,T2) take the intersection and dif-
ference of the keys in their sets, respectively. The algorithms are similar to union in that
they use one tree to split the other. However, the method for joining and the base cases
are di�erent. For intersection, join2 is used instead of join if the root of the �rst is not
found in the second. Accordingly, the base case for the intersection algorithm is to return
an empty set when either set is empty. For di�erence, join2 is used anyway because k(T2)
should be excluded in the result tree. The base cases are also di�erent in the obvious way.

The cost of the algorithms described above can be summarized in the following
theorem.

3Bounding the cost of join, split, and join2 by the logarithm of the smaller tree is probably su�cient, but
implementing a data structure with such bounds is very much more complicated.
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Theorem 3.3.3. For all strongly joinable trees (and treaps), the work and span of the
algorithm (as shown in Figure 3.10) of union, intersection or di�erence on two balanced BSTs
of sizesm and n (n ≥ m) is O

(
m log

( n
m
+ 1

))
(in expectation for treaps) and O(logn logm)

respectively (w.h.p. for treaps).

The work bound for these algorithms is optimal in the comparison-based model. In
particular considering all possible interleavings, the minimum number of comparisons
required to distinguish them is log

(m+n
n

)
= Θ

(
m log

( n
m + 1

) )
[164]. A generic proof of

Theorem 3.3.3 working for all the four balancing schemes will be shown in the next section.
The span of these algorithms can be reduced toO(logm) for weight-balanced trees even on
the binary-forking model [81] by doing a more complicated divide-and-conquer strategy.

3.3.3 The Proof of Theorem 3.3.3

We now prove Theorem 3.3.3, for all the joinable trees and all three set algorithms
(union, intersection, di�erence) from Figure 3.10.

For this purpose we make two observations. The �rst is that all the work for the
algorithms can be accounted for within a constant factor by considering just the work
done by the splits and the joins (or join2s), which we refer to as split work and join work,
respectively. This is because the work done between each split and join is constant. The
second observation is that the split work is identical among the three set algorithms. This
is because the control �ow of the three algorithms is the same on the way down the
recursion when doing splits—the algorithms only di�er in what they do at the base case
and on the way up the recursion when they join.

Given these two observations, we prove the bounds on work by �rst showing that the
join work is asymptotically at most as large as the split work (by showing that this is true
at every node of the recursion for all three algorithms), and then showing that the split
work for union (and hence the others) satis�es our claimed bounds.

We start with some notation, which is summarized in Table 3.2. In the three algorithms
the �rst tree (T1) is split by the keys in the second tree (T2). We therefore call the �rst tree
the decomposed tree and the second the pivot tree, denoted as Td and Tp respectively. The
tree that is returned is denoted as T . Since our proof works for either tree being larger,
we usem = min(|Tp |, |Td |) and n = max(|Tp |, |Td |). We denote the subtree rooted at v ∈ Tp
as Tp(v), and the tree of keys from Td that v splits as Td(v) (i.e., split (v,Td(v)) is called at
some point in the algorithm). For v ∈ Tp , we refer to |Td(v)| as its splitting size.

4The nodes in Td (v) form a subset of Td , but not necessarily a subtree. See details later.
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Notation Description
Tp The pivot tree
Td The decomposed tree
n max(|Tp |, |Td |)
m min(|Tp |, |Td |)

Tp(v),v ∈ Tp The subtree rooted at v in Tp

Td(v),v ∈ Tp The tree from Td that v splits4

si The number of nodes in layer i
vkj The j-th node on layer k in Tp

d(v) The number of nodes attached to a layer
root v in a treap

Table 3.2: Descriptions of notations used in the proof.

Figure 3.11 (a) illustrates the pivot tree with the splitting size annotated on each node.
Since split has logarithmic work, we have,

split work = O©«
∑
v∈Tp

(log |Td(v)| + 1)
ª®¬,

which we analyze in Theorem 3.3.7. We �rst, however, show that the join work is bounded
by the split work. We use the following Lemma.

Lemma3.3.4. ForT =union (Tp,Td) on strongly joinable trees, thenmax(rank(Tp), rank(Td)) ≤
rank(T ) ≤ rank(Tp) + rank(Td).

Proof. We prove it by induction on the tree size. For small trees, this conclusion ob-
viously holds. Note that Td will be split up into two trees Tl and Tr , with rank at
most r = rank(Td) (Theorem 3.3.1). lc(Tp) and rc(Tp) will take union with either Tl
or Tr , i.e., L = union(lc(Tp),Tl ) and R = union(lc(Tp),Tl ). Because of the induction
hypothesis, 0 ≤ rank(L) ≤ rank(lc(Tp)) + rank(Tl ) ≤ rank(lc(Tp)) + r , and similarly
0 ≤ rank(R) ≤ rank(lc(Tp)) + r . From the submodularity rule joining them increase the
rank of Tp by at least 0 and at most rank(Td). �

Theorem 3.3.5. For each function call to union, intersection or di�erence on strongly
joinable trees and treaps Tp(v) and Td(v), the work to do the join (or join2) is asymptotically
no more than the work to do the split.

Proof. For intersection or di�erence, the cost of join (or join2) is O(log(|T |)), where T is
the result tree. Notice that di�erence returns the keys in Td\Tp . Thus for both intersection
and di�erence we have T ⊆ Td . The join work is O(log(|T |)), which is no more than
O(log(|Td |)) (the split work).
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For union, if rank(Tp) ≤ rank(Td), the join will cost O(rank(Td)), which is no more
than the split work.

Consider rank(Tp) > rank(Td) for strongly joinable trees. The rank of lc(Tp) and rc(Tp),
which are used in the recursive calls, are at least rank(Tp) − cu . Using Lemma 3.3.4, the
rank of the two trees returned by the two recursive calls will be at least (rank(Tp) − cu)
and at most (rank(Tp) + rank(Td)), and di�er by at most O(rank(Td)) = O(log |Td |). Thus
the join cost is O(log |Td |), which is asymptotically no more than the split work.

Consider rank(Tp) > rank(Td) for treaps. If rank(Tp) > rank(Td), then |Tp | ≥ |Td |. The
root of Tp has the highest priority among all |Tp | keys, so on expectation it takes at most
the |Tp |+|Td |

|Tp |
≤ 2-th place among all the |Td | + |Tp | keys. From Lemma 3.2.8 we know that

the cost on expectation is E[log t] + 1 ≤ logE[t] + 1 ≤ log 2 + 1, which is a constant. �
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Figure 3.11: An illustration of splitting tree and layers – The tree in (a) is Tp , the dashed
circle are the exterior nodes. The numbers on the nodes are the sizes of the tree fromTd to be split
by this node, i.e., the “splitting size” |Td (v)|. In (b) is an illustration of layers on an AVL tree.

This implies the total join work is asymptotically bounded by the split work.
We now analyze the split work. We do this by layering the pivot tree starting at the

leaves and going to the root and such that nodes in a layer are not ancestors of each other.
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We use the de�nition in Section 3.1. We de�ne layers based on the ranks and denote the
number of rank(i)-root nodes as si . Theorem 3.1.8 shows that si shrinks geometrically for
joinable trees, which helps us prove our bound on the split work. Figure 3.11 (b) shows
an example of the layers of an AVL tree on the two input trees of the join-based set-set
functions.

Lemma 3.3.6. For any ancestor-free set V ⊆ Tp ,
∑
v∈V |Td(v)| ≤ |Td |.

The proof of this Lemma is straightforward.
Not all nodes are rank roots. However Theorem 3.1.7 shows that each rank cluster

attached to a rank root contains only a constant number of nodes, and they are all the
rank root’s descendants.

By applying Theorem 3.1.8 and Theorem 3.1.7 we prove the split work. In the following
proof, we denote vkj as the j-th node in layer k .

Theorem 3.3.7. The split work in union, intersection and di�erence on two joinable trees
of sizem and n is O

(
m log

( n
m + 1

) )
.

Proof. The total work of split is the sum of the log of all the splitting sizes on the pivot
tree O

(∑
v∈Tp log(|Td(v)| + 1)

)
. Denote l as the number of layers in the tree. Also, notice

that in the pivot tree, in each layer there are at most |Td | nodes with |Td(vkj)| > 0. Since
those nodes with splitting sizes of 0 will not cost any work, we can assume si ≤ |Td |.
We calculate the dominant term

∑
v∈Tp log(|Td(v)| + 1) in the complexity by summing the

work across layers. We �rst only consider all rank roots.

l∑
k=0

sk∑
j=1

log
(
|Td(vkj)| + 1

)
≤

l∑
k=0

sk log
(∑

j |Td(vkj)| + 1
sk

)
=

l∑
k=0

sk log
(
|Td |

sk
+ 1

)
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We split it into two cases. If |Td | ≥ |Tp |, |Td |sk
always dominates 1. we have:

l∑
k=0

sk log
(
|Td |

sk
+ 1

)
=

l∑
k=0

sk log
(
n

sk
+ 1

)
(3.7)

≤

l∑
k=0

m

2bk/cc
log

(
n

m/c bk/cc
+ 1

)
(3.8)

≤ c

l/c∑
k=0

m

2k
log

n

m/2k

≤ c

l/c∑
k=0

m

2k
log

n

m
+ 2

l/c∑
k=0

k
m

2k

= O
(
m log

n

m

)
+O(m)

= O
(
m log

( n
m
+ 1

))
(3.9)

If |Td | < |Tp |, |Td |sk
can be less than 1 when k is smaller, thus the sum should be divided

into two parts. Also note that we only sum over the nodes with splitting size larger than
0. Even though there could be more than |Td | nodes in one layer in Tp , only |Td | of them
should count. Thus we assume sk ≤ |Td |, and we have:

l∑
k=0

sk log
(
|Td |

sk
+ 1

)
=

l∑
k=0

sk log
(
m

sk
+ 1

)
(3.10)

≤

2 logc
n
m∑

k=0
|Td | log(1 + 1)

+

l∑
k=c log2

n
m

n

2bk/cc
log

(
m

n/2bk/cc
+ 1

)
(3.11)

≤ O
(
m log

n

m

)
+ c

l
c −log2

m
n∑

k ′=0

m

2k ′
log 2k

′

= O
(
m log

n

m

)
+O(m)

= O
(
m log

( n
m
+ 1

))
(3.12)

From (3.7) to (3.8) and (3.10) to (3.11) we apply Lemma 3.1.8 and the fact that f (x) =
x log(nx + 1) is monotonically increasing when x ≤ n.
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The above cost does not consider the nodes that are not rank roots. Recall that we use
d(v) to denote the rank cluster of a rank root v . Applying Theorem 3.1.7, the expectation
is less than:

l∑
k=0

xk∑
j=1

d(vkj) log((Td(vkj) + 1)

= d(vkj) × 2
l∑

k=0

xk∑
j=1

log((Td(vkj) + 1)

= O
(
m log

( n
m
+ 1

))
This holds in expectation for treaps.
To conclude, the split work on all four balancing schemes of all three functions is

O
(
m log

( n
m + 1

) )
. �

Theorem 3.3.8. The total work of union, intersection or di�erence of all four balancing
schemes on two trees of sizem and n (m ≥ n) is O

(
m log

( n
m + 1

) )
.

This directly follows Theorem 3.3.5 and 3.3.7.

Theorem 3.3.9. The span of union and intersection or di�erence on all four balancing
schemes is O(logn logm). Here n andm are the sizes of the two tree.

Proof. For the span of these algorithms, we denoteD(h1,h2) as the span on union, intersection
or di�erence on two trees of height h1 and h2. According to Theorem 3.3.5, the work (span)
of split and join are both O(log |Td |) = O(h(Td)). We have:

D(h(Tp),h(Td)) ≤ D(h(Tp) − 1,h(Td)) + 2h(Td)

Thus D(h(Tp),h(Td)) ≤ 2h(Tp)h(Td) = O(logn logm). �

Combine Theorem 3.3.8 and 3.3.9 we come to Theorem 3.3.3.

3.3.4 Other Tree algorithms Using join

Insert and Delete. Instead of the classic implementations of insert and delete, which
are speci�c to the balancing scheme, we de�ne versions based purely on join, and hence
independent of the balancing scheme.

We present the pseudocode in Figure 3.12 to insert an entry e into a tree T . The base
case is when t is empty, and the algorithm creates a new node for e . Otherwise, this
algorithm compares k with the key at the root and recursively inserts e into the left or
right subtree. After that, the two subtrees are joined again using the root node. Because of
the correctness of the join algorithm, even if there is imbalance, join will resolve the issue.
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Build

1 build_sorted(S, i, j) {
2 if i = j then return ∅;
3 if i + 1 = j then
4 return singleton(S[i]);
5 m = (i + j)/2;
6 L = build’(S, i,m) ||
7 R = build’(S,m + 1, j);
8 return join(L, S[m],R); }
9 build(S,m) {

10 (S2, m2) = sort_rm_dup(S, m);
11 build_sorted(S2,0,m2);}

Filter

1 filter(T,f ) {
2 if T = ∅ then return ∅;
3 (L,e,R) = expose(T);
4 L′ = filter(L,f ) ||
5 R′ = filter(R,f );
6 if f (e) then return join(L′,e,R′);
7 else join2(L′,R′); }

Map and Reduce

1 map_reduce(T ,д′, f ′, I ′) {
2 if T = ∅ then return I ′;
3 〈L,k,v,R〉 = expose(T);
4 L′ = MapReduce(L,д′, f ′, I ′) ||
5 R′ = MapReduce(R,д′, f ′, I ′);
6 return f ′(L′, f ′(д′(k,v),R′)); }

Range

1 range(T , l, r ) {
2 (T1,T2) = split(T , l);
3 (T3,T4) = split(T2,r);
4 return T3; }

Foreach Index

1 foreach_index(T, ϕ, s) {
2 if (t = ∅) return;
3 (L, e,R) = expose(T );
4 left = size(L);
5 L = foreach_index(L, ϕ, s); ||
6 R = foreach_index(R, ϕ, s+1+left);
7 ϕ(e, left);}

Insertion

1 insert(T , e) {
2 if T = ∅ then return singleton(e);
3 〈L, e ′,R〉 = expose(T);
4 if k(e) = k(e ′) then return T;
5 if k(e) < k(e ′) then return join(insert(L, e), e ′,R);
6 return join(L, e ′, insert(R, e)); } }

Deletion

1 delete(T ,k) {
2 if T = ∅ then return ∅;
3 〈L, e ′,R〉 = expose(T);
4 if k < k(e ′) then return join(delete(L,k), e ′,R);
5 if k(e ′) < k then return join(L, e ′, delete(R,k));
6 return join2(L,R); }

Multi-insertion

1 multi_insert_s(T, A, m) {
2 if (T = ∅) return build(A, m);
3 if (m = 0) return t;
4 〈L, e,R〉 = expose(T);
5 b = binary_search(A, m, k(e));
6 d = (b < m) and (k(A[b]) > k(e));
7 L = multi_insert_s(r->lc, A, b) ||
8 R = multi_insert_s(r->rc, A+b-d, m-b-d);
9 return concat(L, e, R); }

10 multi_insert(t, A, m) {
11 (A2, m2) = sort_rm_dup(A, m);
12 return multi_insert_sorted(t, A2, m2);}

Figure 3.12: Pseudocode of some join-based functions – They are all independent of balanc-
ing schemes. The syntax S1 | |S2 means that the two statements S1 and S2 can be run in parallel
based on any fork-join parallelism.

The delete algorithm is similar to insert, except when the key to be deleted is found at
the root, where delete uses join2 to connect the two subtrees instead. Both the insert and
the delete algorithms run in O(logn) work (and span since sequential).

One might expect that abstracting insertion or deletion using join instead of specializ-
ing for a particular balance criteria has signi�cant overhead. Our experiments show this is
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not the case—and even though we maintain the reference counter for persistence, we are
only 17% slower sequentially than the highly-optimized C++ STL library (see section 11.6).

Theorem 3.3.10. The join-based insertion algorithm cost time at most O(log |T |) on a
joinable tree T . The rank of the output tree is at most cu + rank(T ).

Proof. We prove this by induction. This is obviously true for the base case. Consider
T = node(L, t,R), assume e goes to the left subtree L, and the new left subtree is L′. Then
the output tree is T ′ = join(L′, t,R). Because of the induction hypothesis rank(L′) ≤
rank(L) + cu . Because of the submodularity rule, rank(T ′) ≤ rank(T ) + cu . �

Theorem 3.3.11. For a joinable tree T with weight n = |T1 |, the join-based deletion algo-
rithm cost time O(logn). The rank of the output tree is at most rank(T ).

Proof. We �rst prove this by induction. This is obviously true for the base case. Consider
T = node(L, t,R), assume k falls in the right subtree R, and the new left subtree is R′. Then
the output tree is T ′ = join(L, t,R′). From the induction hypothesis, rank(R′) ≤ rank(R).
Based on the decreasing side of the submodularity rule, rank(T ′) ≤ rank(T ). This
proves that the output tree of delete is at most the rank of the input.

In delete, there is at most one invocation of join2, which takes time no more than logn.
For T ′ = join(L, t,R′), we next prove that the cost. Consider two cases.

1. The key k , k(R). WLOG assume k falls in the right subtree of R (the other case is
symmetric). R′ =join (lc(R),R,Rr ) where Rr =delete (rc(R),k). Then

rank(R′) ≥ rank(lc(R)) ≥ rank(R) − cu ≥ rank(L) − 2cu + cl

Meanwhile rank(R′) ≤ rank(R) as we have proved above. Therefore

rank(R′) ≤ rank(R) ≤ rank(L) + cu − cl

In summary rank(L) and rank(R′) di�ers by a constant. The cost of a single join is a
constant.

2. The key k = k(R). R′ =join2 (lc(R), rc(R)). The cost of this join is at most O(logn),
but this only happens once.

In summary, the total cost of all join is h(T ) +O(logn) = O(logn), and the cost of the
join2 is at most O(logn). This proves the above theorem. �

Build. A balanced binary tree can be created from a sorted array of key-value pairs using a
balanced divide-and-conquer over the input array and combining with join. To construct a
balanced binary tree from an arbitrary array we �rst sort the array by the keys, then remove
the duplicates. All entries with the same key are consecutive after sorting, so the algorithm
�rst applies a parallel sorting and then follows by a parallel packing. The algorithm then
extracts the median in the de-duplicated array, and recursively construct the left/right
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subtree from the left/right part of the array, respectively. Finally, the algorithm uses join to
connect the median and the two subtrees. The work is thenO(Wsort(n)+Wremove(n)+n) and
the span is O(Ssort(n) + Sremove(n) + logn). For work-e�cient sort and remove-duplicates
algorithms with O(logn) span this gives the bounds in Table 3.1.
Bulk Updates. We use multi_insert and multi_delete to commit a batch of write oper-
ations. The function multi_insert(T ,A,m) takes as input a P-Tree root t , and the head
pointer of an array A with its lengthm.

We present the pseudocode of multi_insert in Figure 3.12. This algorithm �rst sorts
A by keys, and then removes duplicates in a similar way as in build. We then use a
divide-and-conquer algorithm multi_insert_s to insert the sorted array into the tree. The
base case is when either the array A orT is empty. Otherwise, the algorithm uses a binary
search to locate t ’s key in the array, getting the corresponding index b in A. d is a bit
denoting if k appears in A. Then the algorithm recursively multi-inserts A’s left part (up
to A[b]) into the left subtree, and A’s right part into the right subtree. The two recursive
calls can run in parallel. The algorithm �nally concatenates the two results by the root
of T . A similar divide-and-conquer algorithm can be used for multi_delete, using join2
instead of join when necessary.

Decoupling sorting from inserting has several bene�ts. First, parallel sorting is well-
studied and there exist highly-optimized sorting algorithms that can be used. This simpli-
�es the problem. Second, after sorting, all entries in A that to be merged with a certain
subtree in T become consecutive. This enables the divide-and-conquer approach which
provides good parallelism, and also gives better locality.

The total work and span of inserting or deletion an array of lengthm into a tree of size
n ≥ m is O

(
m log

( n
m + 1

) )
and O(logm logn), respectively [74]. The analysis is similar to

the union algorithm.
Range. range extracts a subset of tuples in a certain key range from a P-Tree, and output
them in a new P-Tree. The cost of the range function isO(logn). The pure range algorithm
copies nodes on two paths, one to each end of the range, and using them as pivots to join
the subtrees back. When the extracted range is large, this pure range algorithm is much
more e�cient (logarithmic time) than visiting the whole range and copying it.
Filter. The �lter(t,ϕ) function returns a tree with all tuples in T satisfying a predicate ϕ.
This algorithm �lters the two subtrees recursively, in parallel, and then determines if the
root satis�es ϕ. If so, the algorithm uses the root as the pivot to join the two recursive
results. Otherwise it calls join2. The work of �lter isO(n) and the depth isO(log2 n)where
n is the tree size.
Map and Reduce. The function map_reduce(T , fm, 〈fr , I 〉) on a tree t (with data type E
for the tuples) takes three arguments and returns a value of type V ′. fm : E 7→ V ′ is the
a map function that converts each stored tuple to a value of type V ′. 〈fr , I 〉 is a monoid
where fr : V ′ ×V ′ 7→ V ′ is an associative reduce function on V ′, and I ∈ V ′ is the identity

64



of fr . The algorithm will recursively call the function on its two subtrees in parallel, and
reduce the results by fr afterwards.

3.3.5 Extend the Algorithms for Combining Values

For supporting key-value pairs as entries, this thesis further extend some functions to
accept a complementary function σ : V ×V 7→ V as an argument, where V is the value
type in the tree. In the reasonable scenarios when two entries with the same key should
appear simultaneously in the map, their values would be combined by the function σ . For
example, when the same key appears in both maps involved in a union or intersection,
the key will be kept as is, but their values will be combined by σ to be the new value
in the result. Same case happens when an entry is inserted into a map that already has
the same key in it, or when we build a map from a sequence that has multiple entries
with the same key. A common scenario where this is useful for example, is to keep a
count for each key, and have union and intersection sum the counts, insert add the counts,
and build keep the total counts of the same key in the sequence. We will see a use
example of this complementary function in counting queries in 2D range, segment or
rectangle queries in Section 9. Another simple use example is to implement an update
or multi_update operation by calling insert or multi_insert, using the complementary
function as replace : (a,b) 7→ b. This means to usually keep the later value when duplicate
keys appear.

Accordingly, in the algorithms, we will need to update the values when applicable. For
example, in Line 4 in the insert algorithm, when the key to be inserted already exists, we
directly update the value of the root. For union and multi_insert this means to update the
value of the pivot of join, if the corresponding key appears in both input sets, no matter
in the tree or the array. For build and multi_insert, it requires the preprocessing sorting
to also combine values of duplicate keys (instead of just remove duplicates) in the input
array. This is still easy using a parallel packing since the duplicate keys are contiguous
after sorting.

3.4 Discussion of the join-based Algorithms
Abstracting all balancing property into join has been studied in other previous work.

(more information)
Interestingly, combining it with expose, the join-based algorithms even have nothing

speci�c to do with the tree structure. We de�ne expose (S) on an ordered set (or even a
sequence) as to return two subsets of it L and R, and an entry e ∈ S , where [L, e,R] = S .
For trees, expose naturally makes use of the two subtrees and the root. It is also applicable
to arrays or lined lists, where it returns e as a middle entry and breaks the input into its left
and right halves separated by e . We also de�ne a more general join (L, e,R) as combining
two ordered sets and an entry e into an order set L∪ {e} ∪R, where max(L) < e < min(R).
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Then all algorithms in Figures 3.8, 3.10, and 3.12 are still correct for any data structures.
However they are not necessary to be e�cient. For some e�ciency, we would require
both expose and join to take logarithmic time, and L and R returned by expose to be of
similar ranks. Binary trees satisfy these conditions, but arrays may not be su�cient. This
would also leads to a combine function for skip lists, also in parallel.

Previous work has also made attempt to unify multiple balancing schemes, and some
of them also use rank [150, 153]. Haeupler et al. de�ne ranks for several commonly-used
balancing schemes, and de�ne rank-based trees [153]. Our framework is also applicable
to their weak AVL trees (or WAVL trees) since the authors show the correspondence of
WAVL to RB trees [153]. However they only consider height-balanced trees and they did
not discuss bulk operations on trees.
Why We Need a Uni�ed Framework for Multiple Balancing Schemes? Although
join uni�es multiple balancing schemes, it is worth discussing why it is useful and mean-
ingful for algorithm design. These balancing schemes were invented based on di�erent
backgrounds, and thus demonstrate di�erent properties in di�erent applications. For
example, in geometry queries, such as a range tree (see Section 9.3.1), using WB trees can
bound the amortized bound of an insertion by a logarithmic time [195], while AVL or RB
trees need linear time in the worst case. However, when write-e�ciency is preferred, the
AVL trees and treaps provide the better performance because they require less writes to
data (see details in Chapter 14). Also, some balancing schemes has been used in existing
systems and libraries, e.g., the STL uses red-black trees for implementing ordered sets.
Having generic approaches over di�erent balancing schemes makes it easier to adopt the
algorithms to di�erent scenarios, without breaking the original restrictions. Secondly, it
is out of our intellectual curiosity to study the common properties of di�erent balancing
schemes, and to abstract out rules that enables balance e�ciency in algorithms. This en-
hances our understanding to balanced binary tree structures and the essential similarities
and di�erences between balancing schemes.
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Chapter 4

Augmenting Trees

4.1 Augmented Trees
To allow for more functionalities on trees, especially some aggregation operations, we

usually augment the tree. A generalized augmented tree structure is a search tree (possibly
but not necessarily binary) in which each node is augmented with a value recording some
information about its subtree. Although this concept is widely-used in textbooks [117],
the de�nition is often used in a more general way to mean any form of data associated
with the nodes of a tree. This thesis uses augmented trees as binary search trees with
respect to ordered maps and an associative reduce operation. The data stored within each
tree node is an entry e of a key-value pair with key type K and value type V . Tree nodes
are sorted by keys. Each node also keeps track of the augmented value of the sub-tree
rooted at it. These augmented values are partial sums keeping track of some aggregation
of the whole subtree. These partial sums are especially useful in some range sum queries
such that the query does not need to scan all data in the range. When analyzing the
data for certain trends, it is likely useful to quickly query the sum or maximum of value
within a key range. More generally the augmentation can be used for quick interval
queries, k-dimensional range queries, inverted indices (all described later in the thesis),
segment intersection, windowing queries, point location, rectangle intersection, range
overlaps, and many others. More general than just the sum or the maximum value, these
augmented values can be de�ned more generally using an augmenting structure, which is
a map-reduce-like operation.

De�nition 6 (Augmenting Structure). An augmenting structure about an key-value entry
type K ×V is a tuple augK,V = 〈A,д, f ,a∅〉, where the parameters are:

A, The augmented value type
д : K ×V → A, The base function
f : A ×A→ A, The combine function
a∅ : A, Identity for f
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We omit the subscript when the context is clear.

In other words, an augmented tree associates a plain search tree with an augmenting
structure auд for supporting quick “sum” operations over a range of keys, where sum
means with respect to any associative combine function. An augmenting structure consists
of an augmented value type A, a base function д : K × V 7→ A, a combine function
f : A ×A 7→ A and the identity of f , a∅. The augmenting structure de�nes a map-reduce-
like operation on the entries in the tree. In particular, the base function maps an entry
(a key-value pair) to an augmented value. This function decides the augmented value
of a single non-empty tree node. The combine function f reduces all such augmented
values of individual entries, which can be used to compute the augmented value of a
whole subtree. This function is required to be associated. The identity of f , a∅, intuitively
is the augmented value of an empty tree. (A, f ,a∅) is a monoid. The augmented value is
then the “sum” obtained by using the augmenting structure, which is de�ned as:

De�nition 7 (Augmented Value of a Subtree). Given t = {(k1,v1), (k2,v2), . . . , (kn,vn)},
which is a search tree storing key-value pairs {(ki,vi)} ordered by the tree symmetric order,
and an augmenting structure aug = 〈A,д, f ,a∅〉. The augmented value of the tree is de�ned
as

A〈A,д,f ,a∅〉(t) = f (д(k1,v1),д(k2,v2), . . . ,д(kn,vn)) (4.1)

We will omit the subscript when the context is clear. For the binary associative function
f , we de�ne:

f (∅) = a∅ (4.2)
f (a1) = a1 (4.3)

f (a1,a2, . . . ,an) = f (a1, f (a2, . . . ,an)) (4.4)

Therefore, the we formally de�ne augmented tree as follows:

De�nition 8 (Augmented Tree). An augmented tree type T = AT(K, <K ,V , aug) or T =
AT(K, <K ,V ,A,д, f ,a∅) is a binary search tree where each tree node stores a data entry and
an augmented value of its subtree. In particular, the data are key-value pairs ∈ K ×V , with
the tree symmetric order on K de�ned by <K . The augmented values are de�ned by the
augmenting structure aug such that each tree node u stores the augmented value Aaug(Tu).

The augmenting structure is chosen ahead of time, based on the applications. For the
same dataset, di�erent augmentations (i.e., di�erent augmenting functions) can lead to
di�erent functionality.

A (sub)tree in an augmented tree consists of its left subtree, the root, and its right
subtree. The augmented value of this tree, by de�nition, should combine the augmented
value of the three components in order, i.e. the augmented values can be maintained by
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A(u) = f (A(lc(u)),д(k(u),v(u)),A(rc(u))). Considering the associativity of the combine
function f , as well as the ordering of search trees, the augmented value stored in each
node of an augmented tree is unique, regardless of the shape or balanceness of the tree
structure, and is exact the augmented value of the map containing all entries in the tree.
The same argument holds for each subtree.

The augmented trees are especially useful in reporting range queries. As an example
of such a range sum consider a database of sales receipts keeping the value of each sale
ordered by the time of sale. When analyzing the data for certain trends, it is likely useful to
quickly query the sum or maximum of sales during a period of time. Although such sums
can be implemented naively by scanning and summing the values within the key range,
these queries can be answered much more e�ciently using augmented trees [117, 134],
using the augmentation of the sum of sale value in each subtree. The sum of any range on
a tree of size n can be answered in O(logn) time. Similar approach can be used to answer
the maximum value in a period and so on.

4.2 Algorithms on Augmented Trees
As a special search tree structure, all the tree algorithms in Section 3.3 are applicable

also on augmented trees. The only di�erence is that the input and the corresponding
output tree structures should have valid augmented values.

As mentioned, the augmented value of a tree node u depends on the entry in this
node, and the augmented value of its left and right children. Accordingly, we need to
update A(u) when any update overlaps u’s subtree. For example, when u is involved in
rotations, or when u itself is updated. In fact, all such scenarios happen only when we call
node(L,u,R) to connect u with its left and right children. This include when we create a
new node u = node(∅,u, ∅). All such invocations happen only in the join algorithm. As a
result, to make the general tree algorithms to work on augmented trees, the only thing
involved is to let the join algorithm re-compute the augmented values of the a�ected tree
nodes. All the other algorithms are oblivious to the augmentation, and the implementation
(and the code) is una�ected by adding any augmentation. When f and д both only take
constant time, the asymptotic cost of all these tree algorithms also remain.

In this section, we further introduce some algorithms that are speci�c to augmented
trees. The pseudocode of some algorithms in this section is presented in Figure 4.1.
aug_le�, aug_right and aug_range. We de�ne these three functions to extract the aug-
mented value in a tree in a certain range. In particular, aug_left(T ,k) and aug_right(T ,k)
means to return the augmented value of all entries with keys no greater (or no smaller)
than k . aug_range(T ,k1,k2) means to return the augmented value of all entries in key
range from k1 to k2. Figure 4.1 shows the aug_left as an example. The other two functions
are similar. This algorithm is similar to the range algorithm, which �nds the path of the
splitter key, and combine the relevant subtrees and single nodes—for any subtree in the
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Aug-left

1 aug_left(T ,k) {
2 a = a∅;
3 T0 = T;
4 while T0 , ∅ {
5 (L, e,R) = expose(T0);
6 if (k ≥ k(e)) {
7 a = f (a,A(L),д(e));
8 if (k = k(e)) break;
9 T0 = R;

10 } else T0 = L;}
11 return a; }

Aug-�lter

1 aug_filter(T ,h) {
2 (L, e,R) = expose(T );
3 if (not h(A(T ))) return ∅;
4 L′ = aug_filter(L,h) || R′ = aug_filter(R,h);
5 if (h(д(e))) return join(L′, e,R′);
6 else return join2(L′,R′);}

Aug-project

1 aug_project_left(T,g’,f’,k) {
2 a = д′(a∅); T0 = T;
3 while T0 , ∅ {
4 (L, e,R) = expose(T0);
5 if (k ≥ k(e)) {
6 a = f ′(a,д′(A(L)),д′(д(e)));
7 if (k = k(e)) break;
8 T0 = R;
9 } else T0 = L;}

10 return a; }
11
12 aug_project(T ,д′, f ′,k1,k2) {
13 T0 = T; (L, e,R) = expose(T0);
14 while (k2 < k(e) || k1 > k(e)) {
15 if (k2 < k) T0 = L; else T0 = R;
16 if (T0 = ∅) break;
17 (L, e,R) = expose(T0); }
18 if (T0 = ∅) return д′(a∅);
19 l = aug_project_right(L,g’,f’,k_1);
20 r = aug_project_left(R,g’,f’,k_2);
21 return f ′(l,д′(д(e)), r ); } }

Figure 4.1: Pseudocode of some algorithms on augmented tree – The syntax S1 | |S2 means
that the two statements S1 and S2 can be run in parallel based on any fork-join parallelism.

range, we add its augmented value, and for a single node, we add the value of applying
д on its entry. All such partial augmented values are combined by f . Because of the
augmented values stored in each tree node, this only requiresO(logn) times of application
of f and д for a tree of size n.
aug_�lter. The aug_�lter function aims at using augmentation to accelerate some
special �lter operation. The motivation of using augmentation for a �lter function is
slightly di�erent from reporting range sums. The idea is to use the augmented value as an
indicator if the whole subtree should be kept or dropped. The augFilter(T ,h) function is
equivalent to �lter(T ,h′), where h′ : K ×V 7→ Bool satis�es h(д(k,v)) ⇔ h′(k,v). It is only
applicable if h(a) ∨ h(b) ⇔ h(f (a,b)) for any a and b (∨ is the logical or). In this case the
�lter function can make use of the augmented values such that when the augmented value
of a whole subtree does not satisfy h, the whole subtree can be discarded. For example,
assume the values in the map are boolean values, f is a logical-or, д(k,v) = v , and we
want to �lter the map using function h′(k,v) = v . In this case we can �lter out a whole
sub-map once we see it has false as a partial sum. Hence we can set h(a) = a and directly
use aug_�lter (T ,h). In our example of sales receipts over time with augmentation to be
the maximum sale, this function can be used to �lter out all sales above a given amount
very much more e�ciently than scanning a whole range of sales. The function is used
in interval trees (Chapter 8). In fact, when the output size is k , the cost of aug_�lter is
O(k log(n/k + 1)).
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The aug_�lter as introduced above aims at �ltering out a whole subtree by taking
advantage of the augmented values. Similarly, we can try to �lter in a whole subtree by a
di�erent input predicator h2. The augFilter2(T ,h2) function is equivalent to �lter(T ,h′),
where h′ : K × V 7→ Bool satis�es h(д(k,v)) ⇔ h′(k,v). It is only applicable if h2(a) ∧
h2(b) ⇔ h2(f (a,b)) for any a and b (∧ is the logical and). These two versions of aug_�lter
can also be combined.
Theorem4.2.1. The aug_�lter algorithm as shown in Figure 4.1 costs workO(k log(n/k+1))
on the four joinable trees in this thesis, where k is the output tree size, if the input predicator
function h costs constant time.

We will prove this theorem in Section 4.3.
aug_project. The augProject(T ,д′, f ′,k1,k2) function is equivalent toд′(augRange(T ,k1,k2)).
It requires, however, that (B, f ′,д′(a∅)) is a monoid and that f ′(д′(a),д′(b)) = д′(f (a,b)).
This function is useful when the augmented values are themselves maps or other large
data structures. It allows projecting the augmented values down onto another type by
д′ (e.g. project augmented values with complicated structures to values like their sizes)
then summing them up by f ′, and is much more e�cient when applicable. This is to
avoid invoking the combining function f on trees when f is expensive. We can compute
д′(aug_range(T ,k1,k2)) by just using д, д′ and f ′. Similarly we extract all the relevant
subtrees and single tree nodes in the range of k1 to k2 in the tree. For each subtree, we
apply д′ on its augmented value; for each single node, we apply д′(д(·)) on its entry. Then
all these results will be reduced by f ′. For example in range trees where each augmented
value is itself an augmented map, it greatly improves performance for queries.

4.3 Proof of Theorem 4.2.1
To prove Theorem 4.2.1, we �rst present a useful lemma.

Lemma 4.3.1. Suppose a tree T of size n satis�es that for any subtree Tx ∈ T , the height
of Tx is O(log |Tx |). Let S be the set of all the ancestors of m ≤ n elements in T , then
|S | ∈ O(m log

( n
m + 1

)
).

Proof of Lemma 4.3.1. First of all, we �nd all the searching paths to all the m elements,
and mark all related nodes on the path as red. All the red nodes form a tree structure,
which is a connected component ofT . We then adjust the red nodes, such that the number
of red nodes does not decrease. We de�ne a red node with two red children as a joint
node, and a red node with one red children as a linking node.

1. First, as shown in Figure 4.2 (a), any of the red nodes are internal nodes in T , we
arbitrarily extend it to some external node in the tree.

2. Second, as shown in Figure 4.2 (b), if there is any linking node v with some joint
nodes as its descendent, then we move the �rst joint node of its descendants up to
replace the non-red child of v .
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(a). Case 1: 

extend to external nodes

(b). Case 2: 

move joint nodes up

(c). Final shape of 

all red nodes:

all joint nodes are 

at the top (diamond 

ones), and all 

linking nodes 

(round ones) form 

several chains at 

bottom

Figure 4.2: An illustration about adjusting red nodes in the proof of Lemma 4.3.1 – (a)
Extend all inner joint nodes to some external node. (b) Move all joint nodes to upper levels as far
as possible. (c) The �nal shape after adjusting the red nodes. All joint nodes are at the top, and all
linking nodes form chains at bottom.

We repeat the two steps until there is no such situations. These adjustments only make
the total number of red nodes larger. Finally we will have all joint nodes on the top
levels of the tree, forming a connected component. All the linking nodes form several
(at most m) chains at the bottom levels. The total number of joint nodes is O(m) because
the number of chains is at most m. For all the linking nodes, note that the length of each
chain corresponds to a subtrees in T , and all such subtrees are ancestor-free. We assume
the size of the i-th subtree is ni , then we have

∑m
i=1 ni = n. The total length of all chains is:

m∑
i=1

log(ni + 1) ≤ m log
(∑m

i=1 ni + 1
m

)
≤ m log

( n
m
+ 1

)
�

A more general version of Theorem 4.3.1 is proved in [81].
Now we can prove Theorem 4.2.1.

Proof of Theorem 4.2.1. There are two types of nodes visited by the algorithm in Figure 4.1:
those that are visited but skipped in Line 3 (noted as skipped nodes) and those that are
visited because at least one of its descender satis�es h (noted as passing nodes). Suppose
h costs constant time, the cost is proportional to the total number of skipped nodes and
passing nodes. The parent of a skipping node must be a passing node, so we charge the
cost (only a constant) of visiting a skipping node to its parent, which does not a�ect the
asymptotical cost. There are in total k nodes satisfying h. According to Theorem 4.3.1,
the number of all their ancestors, which are all the passing nodes, is O(m log

( n
m + 1

)
). �
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4.4 Augmented Maps
The augmented tree de�ned in Section 4.1 represents a special type of ordered maps

(key-value store), which associates the map an augmented value. This thesis further
propose an abstract data type augmented maps to represent this ordered map, which
quickly return the (partial) augmented value of the map or a sub-map. Similar as the
de�nition of augmented trees, we formally de�ne the augmented maps as follows.

De�nition 9 (Augmented Map). An augmentedmap typeAM(K, <K ,V , aug = 〈A,д, f ,a∅〉)
is an ordered map associated with an augmenting structure aug = 〈A,д, f ,a∅〉, hence pa-
rameterized on the following seven parameters:

K , Key type
<K : K × K → Bool, Total ordering on the keys
V , Value type

A, Augmented value type
д : K ×V → A, The base function
f : A ×A→ A, The combine function
a∅ : A, Identity for f

The �rst three parameters correspond to a standard ordered map, and the last four
are for the augmentation. f must be associative ((A, f ,a∅) is a monoid). These functions
are chosen ahead of time, based on the applications. For the same dataset, di�erent
augmentations (i.e., di�erent augmenting functions) can lead to di�erent functionality.

Then the formal de�nition of the augmented value of a map is given as follows:

De�nition 10 (Augmented Value). Givenm = {(k1,v1), (k2,v2), . . . , (kn,vn)}, which is an
augmented map AM(K, <K ,V , aug = 〈A,д, f ,a∅〉), its augmented value is

A(m) = f (д(k1,v1),д(k2,v2), . . . ,д(kn,vn)) (4.5)

Equivalently, the augmented value of an augmented mapAM(K, <K ,V ,auд = 〈A, f ,д, I 〉)
can be de�ne recursively as:

A(∅) = a∅

A((k1,v1) ::m′) = f (д(k1,v1),A(m
′))

where (k1,v1) :: m′ means separating the input ordered map into its �rst (smallest as
de�ned by <K ) entry (k1,v1) and the rest m′. It is also equivalent to extracting the last
element and the rest since f is associative. The ordering matters since f need not be
commutative.

As an example, the augmented map type for summing sales in ranges of time periods
can be de�ned as:

AM(Z, <Z,R,R, (k,v) → v,+R, 0) (4.6)
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It stores in each entry the time stamp (∈ Z) as keys, the sale amount (∈ R) at that time as
values, ordered by <Z. The augmented value keeps track of the sum of its values (sales).

Usually, the augmenting structure is selected based on the application and desired
functionality. In various applications, the key, value or augmented value type can be
much more complicated types. For example, in the 2D range query (see Chapter 9.3),
the augmented values are themselves augmented maps, making the formalization of the
problem a nested augmented map.
Data Structures for Augmented Maps. Augmented maps are independent of represen-
tation. They can be implemented, for example, using sorted arrays, and for applications
that do not have dynamic updates this would be a reasonable implementation. However,
an e�cient implementation using sorted arrays would still require storing partial sums
of augmented values in a static tree. In fact, by maintaining such augmented values of
sub-maps (partial sums) in the corresponding underlying data structures, we can answer
these range-sum queries more e�ciently.

As mentioned, one possible and e�cient implementation is to use augmented trees [117,
134] storing partial sums in subtrees. The advantage of using search trees to implement
augmented maps is that it returns range-related augmented value queries quickly, and is
appropriate for the dynamic setting. Later in this chapter, we will show another possible
implementation of augmented maps, the pre�x structures, which is more e�cient and
practical in returning pre�x-related augmented value queries. In the sales receipt example,
both augmented trees and pre�x structures can answer the sale sum of any time period for
a total ofn time units inO(logn) time. For trees, this bound is achieved by using a balanced
binary tree and augmenting each node augmented with the sum of the subtree. This can
be built upon the join-based algorithms, and experiments show that the additional cost
for maintaining the augmentation is reasonably small (typically around 10% for simple
augmenting functions such as summing the values or taking the maximum). For pre�x
structures, this requires that the combine function f (+R in this case) have an applicable
inverse function (accordingly −R).

4.5 Pre�x Structures
In addition to using augmented trees to implement augmented maps, this thesis also

propose pre�x structures as another possible data structure for augmented maps. It is
inspired from the sweepline algorithms for geometric problems, which uses a series
of data structures to organize some information about all pre�xes of the input data
points. Similarly, for an augmented mapm = {e1, . . . , e |m |}, the pre�x structures store the
augmented values of all pre�xes up to each entry ei , i.e., aug_left(m,k(ei)). For example,
if the augmented value is the sum of values, the pre�x structures are pre�x sums. We
denote the pre�x sum at entry i as ti .
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Build Pre�x Structures in Parallel. Constructing the pre�x structures sequentially is
straight-forward as computing each pre�x structure based on the previous one. In other
words:

ti = f (ti−1,д(ei))

In this thesis, we further present a parallel algorithm to build the pre�x structures.
Sequentially, to compute a pre�x structure ti from a previous pre�x structure tj (j < i)

means to repeatedly “add” a sequence of entries 〈ej ..i〉 onto tj using the combine function
f . A useful observation is that, because of the associativity of the combine function f ,
the aforementioned process is equivalent to directly combining the “partial sum”, or the
augmented value, of all entries 〈ej ..i〉 to ti using f . Thus, to build all the pre�x structures
in parallel, our approach is to evenly split the input sequence of points into b blocks,
calculate the partial sum of each block, and re�ne the pre�x structures in each block
using the update function h. For simplicity we assume n is an integral multiple of b and
n = b × r . We de�ne a fold function ρ f ,д : 〈P〉 7→ T that converts a sequence of points into
a pre�x structure, which gives the “partial sums” of the blocks. We also de�ne an update
function h f ,д : A × E 7→ A, which adds an entry directly to an augmented value. It is used
for re�ning the pre�x structures inside each block. We note that both the fold function
and the update function can be directly computed using д and f as:

ρ f ,д(p1, . . .pn) ≡ f (д(p1), . . .д(pn)) (4.7)

h f ,д(a, e) ≡ f (a,д(e)) (4.8)

When context is clear, we omit the subscript and denote them directly as ρ andh. Although
we can always compute ρ and h using the original augmented map parameters д and f ,
in many applications, much simpler and e�cient(sometimes also parallel) algorithms can
be used for ρ f ,д and h f ,д.

As a result, the parallel paradigm to generate the pre�x structures of an augmented
map AM(K, <K ,V ,auд = 〈A, f ,д, I 〉) can be de�ned as follows:

S′ = PX(K; <K; V; A; a∅; h; ρ; f) (4.9)

We do not include д in the formalization since it is never used separately. Our parallel
algorithm to build the pre�x structures is as follows (also see Algorithm 1 and Figure 4.3):

1. Batching. Assume all input entries have been sorted by <K . We evenly split them
into b blocks and then in parallel generate b partial sums t ′i ∈ T using ρ, each
corresponding to one of the b blocks. They are the augmented values (partial sums)
of each block.

2. Sweeping. These partial sums t ′i are combined in turn sequentially by the combine
function f to get the �rst pre�x structure t0, tr , t2r . . . in each block using ti×r =
f (t(i−1)×r , t

′
i ).
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Algorithm 1: The construction of the pre�x structure.
Input: A list p storing n input points in order, the update function h, the fold function ρ,

the combine function fh , the empty pre�x structure t0, and the number of blocks b.
Assume r = n/b is an integer.

Output: A series of pre�x structure ti .
1 [Step 1.] parallel-for i ← 0 to b − 1 do
2 t ′i = ρ(pi×r , . . . ,p(i+1)×r−1)

3 [Step 2.] for i ← 1 to b − 1 do ti×r = fh(t(i−1)×r , t
′
i−1)

4 [Step 3.] parallel-for i ← 0 to b − 1 do
5 s = i × r , e = s + r − 1
6 for j ← s to e do tj = h(tj−1,pj )

7 return {pi 7→ ti }

𝑡2
′

Step1:
Batching

Step2:
Sweeping

𝑡0 = 𝐼 𝑡𝑟 = 𝑡1
′ 𝑡2𝑟 = 𝑓ℎ(𝑡𝑟 , 𝑡2

′ )

Step3:
Refining

𝑡𝑚
′

𝑡𝑖 = ℎ(𝑡𝑖−1, 𝑝𝑖−1)

⋯⋯

⋯⋯

⋯⋯

𝑡1
′

= 𝜌(𝑝1, … , 𝑝𝑟) = 𝜌(𝑝𝑟+1, … , 𝑝2𝑟) = 𝜌(𝑝 𝑏−1 𝑟+1, … , 𝑝𝑛)

Figure 4.3: The construction of the pre�x structures.

3. Re�ning. All other pre�x structures are built based on t0, tr , t2r , . . . (built above in
the second step) in the corresponding blocks. All the b blocks can be processed in
parallel. In each block, the pre�x structure ti is computed sequentially in turn by
applying h on ei and ti−1.

Algorithm 1 is straight-forward, yielding a simple implementation. Our experiments
show that it also has good performance in parallel.

Theoretically, by repeatedly applying this process to each block in the last step, we
can further enable more parallelism. The cost of the algorithm depends on the cost of the
involved functions ρ, h and f . For simple augmentation, such as summing up the values,
this algorithm is equivalent to computing all pre�x sums in parallel. By using b as any
constant, ρ as a parallel summation algorithm, and recursively applying this paradigm in
Step 3, we can achieve the standard parallel pre�x sum algorithm, which cost O(n) work
and O(logn) depth.
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However, for more complicated augmentations, we note that the parallelism is non-
trivial. For example, in the geometric problems as will be presented in Chapter 9, the
formalization of pre�x structures leads to sweepline algorithms. However, the augmenta-
tion are more complicated, as the augmented values in these applications are themselves
maps (trees), and the combine functions are set operations such as a union. The challenge
of constructing these pre�x structures is in the sweeping step where f is applied sequen-
tially for b times, which can be as expensive as adding all entries in turn sequentially. Our
solution is to use a parallel fold function ρ, which, in the applications in this thesis, are
just the parallel join-based set algorithms (union, intersection and di�erence) in Chapter 3.
We will show the cost bound and analysis for the sweepline algorithms in Section 9.2.3.
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Chapter 5

Making Trees Persistent

In this section, we will introduce how to make the join-based algorithms persistent, i.e.,
the algorithms preserve the input tree and create a new version on update. Keeping
history versions of an update algorithm is helpful in many applications. For example, in
database management systems (DBMSs), it is likely useful to access a previous version of
the database for enable rolling backs, or doing analytical queries on an early version. It is
especially useful for modern DBMSs on multi-core systems, where concurrent updates
and queries need to work consistently on the same database. In this case, preserving the
previous version of the DBMS with isolation is essential for the queries to process without
being a�ected or blocked by updates. This technique is called multi-version concurrency
control (MVCC). Given this advantage of multiversioning, almost all modern database
systems, including Oracle, Microsoft SQL [123, 185], PostgresSQL [233], SAP HANA [133,
251], and HyPer [177, 178], support MVCC. Another example is the implementation of
the pre�x structures in this thesis. A common scenario of using pre�x structures is when
the pre�x structures are trees, and each update function is an insertion of the next data
point. To obtain the whole list of pre�x structures, the insertion cannot be in-place, but
instead need to preserve both the input and output tree as two versions.

This thesis makes P-Trees persistent by using path-copying, which means to copying
all a�ected nodes on the update path. A simple example of an insertion using path-copying
is shown in Figure 1.1(b). All nodes on the insertion path are copied to avoid in-place
modi�cation of existing tree nodes. The output is �nally represented by the new root
pointer, and the input is preserved and can be represented still by the old root pointer. In
total O(logn) tree nodes are copied.

As a result of path-copying, multiple versions of trees share physical tree nodes. This
reduces time and space complexity to maintain multiple versions. Such node sharing,
however, requires a carefully designed garbage collector to avoid deleting visible nodes or
retaining unreachable nodes inde�nitely. For P-Trees we implement a reference counting
garbage collector (GC) [114, 163, 171]. Each tree node will maintain a reference counter

79



(RC), which records the number of references (pointers) to it, e.g., child pointers from
parent nodes, handles to a root, etc.

In the following sections, we present the basic methodology of path-copying especially
in join-based algorithms. We then introduce how to garbage collect out-of-date tree nodes
in old versions. Finally, we discuss and compare path-copying-based approach with other
methodologies. In Chapter 11, we will show how to apply persistent P-Trees to an HTAP
database system to support MVCC and SI. In Chapter 12, we will present algorithms for
version maintenance and memory reclamation on top of the functional data structures.

5.1 Purely Functional P-Trees Using Path-copying
Motivation and Related Work. As mentioned, allowing multi-versioning (or persis-
tence) is useful in many applications, but one challenge is to avoid the expensive cost (both
in time and in space) of copying the large fraction (if not all) of data of the old version.
There are various approaches studied in the previous work. One commonly-used one is
to use version chains. which maintain a “history” of versions of each single object as a
timestamped linked list, and have each transaction traverse the version list (also called
version chains) at every object of the database to �nd the right version [61, 181, 226, 237].
This avoids copying the whole database when creating new versions. Read-only transac-
tions are also not blocked by writers, and thus the DBMS does not need locks for read
transactions.

A drawback of version chains, however, is that �nding an entry that is visibile to
a transaction requires following pointers and checking the visibility of each individual
tuple version. This means that transactions may spend a signi�cant amount of e�ort
traversing these lists when there are a large number of history versions, even if the
database itself is small. It also complicates garbage collection since information about a
particular version can be spread throughout the version lists. One can reduce this overhead
by maintaining meta-data about tuples. For example, the HyPer database creates “version
synopses” that identi�es whether all of the tuples within a range/block are currently the
latest version [214]. This meta-data incurs storage overhead, which is problematic for
in-memory systems. Also, although helpful in general, this technique does not provide
any worst-case guarantee of acceleration, and might still require to scan the whole list in
some cases.

To enable persistence on P-Trees, this thesis adopts path-copying. Instead of updating
in place, path-copying always copy the tree node when it is updated, either for an updated
entry or a child pointer. In other words, this makes the P-Trees purely functional [45,
173, 219, 232],1 Such path-copying is the standard approach in functional languages

1This is the style used in all functional languages, including Haskell, OCaml, ML, and F#, and is often
also used in imperative languages for safety or to maintain persistent copies of data.
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6 91

7
4

16

6’

3’

𝑳

𝑹

𝒆

𝑻 = join(𝑳, 𝒆, 𝑹)

Tree nodes

Pointers

subtrees

Orange objects are 
those in the input.
Blue objects are created 
by the algorithms.

node: the tree node type
lc: left child pointer
rc: right child pointer

add_ref / dec_ref increase / decrease the reference counter by 1.
copy(𝑡): create a new node with the entry in 𝑡.
balance and heavier depends on the specific balancing scheme.

node* link(node* 𝐿, node* 𝑒, node* 𝑅){
𝑒->lc = 𝐿, 𝑒->rc = 𝑅, update(𝑒), return 𝑒}

/* left_join is symmetric */
node* right_join(node* 𝐿, node* e, node* R) {

if (balance(𝐿, 𝑅)) return link(𝐿, 𝑒, 𝑅)
node* 𝑡 = copy(𝐿)
add_ref(𝐿->lc); add_ref(𝐿->rc); dec_ref(𝐿)
𝑡->rc = right_concat(𝑡->rc, 𝑒, 𝑅)
//rebalance if needed
return t }

node* join(node* L, node* e, node* R) { 
if (heavier(L, R)) return right_join(L, e, R)
if (heavier(R, L)) return left_join(R, e, L)
return link(L, e, R) }

Figure 5.1: The Functional join Algorithm – The algorithm copies all tree nodes on the join
path.

since the early days of Lisp (1960s), and is also employed in maintaining some previous
multi-version data structures [43, 255] and disk-based database systems [4, 26, 64].
The Functional join. The correctness of these algorithms requires the join function,
as an algorithmic subroutine, to be functional. A functional join keeps both versions
before and after the operation occurs. In the pseudocode shown in Figure 5.1, we abstract
out the common ideas that are independent of balancing schemes to show details about
path-copying. Generally, the algorithm goes along the right spine of TL and copies all the
visited nodes, until it �nds a node in TL that is balanced with TR . Finally, the algorithm
joins them back using all the copied nodes as pivots. When necessary, the algorithm
applies rotations to rebalance the tree, which might also copy a constant number of nodes
per rotation. The rebalancing is the same as introduced in Section 3.2. Path-copying does
not increase the asymptotical cost of the join algorithms. The space overhead, which is
the number of copied tree nodes, is of the same order of the time complexity.

With the functional join, we can implement all other join-based tree algorithms. In
addition to using a functional join algorithm, the functional counterparts of all other
algorithms in Section 3.3 just copy the pivot of join before calling join. We next show one
simple example.
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𝑇2. 𝑟𝑜𝑜𝑡 = insert 050,4 = concat insert 030,4 , 05′ , 080 = concat concat(010,03′1, 040), 05′ , 080

5’5

3 8

1 9

𝑇1

5

3 8

1 9

𝑇1

5’

3’

5

3 8

1 9

𝑇1

4

𝑇2
insert

4

insert

4

5′ =copy( 5 ) node* insert(𝑡, 𝑘, 𝑣 , 𝜎) {
if (t=NULL) return new_node(k, v)
if (k < t->key){
node* l  insert(t->lc, 𝑘, 𝑣 , 𝜎)
add_ref(t->rc)
return concat(l, copy(t), t->rc) } 
if (t->key < k) { /* symmetric */ }
if (t->key = k) {
node* t’  copy(t)
t’->val  𝜎(t->val, v)
add_ref(t->lc), add_ref(t->rc)
return concat(t->lc, t’, t->rc) }

}

3′ =copy( 3 )𝑻𝟐 = 𝑻𝟏.insert(𝟒)

Figure 5.2: The Functional Insertion Using Path-copying – Arrows represent pointers. The
function copy(t) create a new node with the same key and value as in t . At the end, the result
tree T is represented as the root pointer to 5′. We note that the algorithm is not speci�c to any
balancing schemes, but only relies on the join function to deal with rebalance issues.

Other join-based Persistent Algorithms. We use an persistent insertion algorithm as
an example to show how to make join-based algorithms functional using path-copying.
The insert(t, 〈k,v〉,σ ) function is de�ned as in Section 3.3.

We present an illustration along with the pseudocode in Figure 5.2. As the non-
persistent version, this algorithm compares k with the key at the root and recursively
inserts 〈k,v〉 into the left or right subtree. It then copies the current node, and joins the
two subtrees back using this new node as the pivot. Similarly, an imbalance may occur at
this point, but will be resolved by join. Also, because the join algorithm is persistent, the
old tree is never destroyed or updated, but is preserved as is. All the copied nodes will be
on the insertion path. There are two base cases. The �rst one is when t is empty, and the
algorithm creates a new node with the entry 〈k,v〉. The second one is when k = t .key,
indicating that k is already in the tree. The algorithm then copies t to a new node t ′, but
updates the value to σ (t .val,v). Finally, the copied root node 5’ will represent the new
tree T2, and the old root still correctly represents T1. The asymptotical cost of insert is not
increased because of path-copying. The number of copied tree nodes is also O(logn).

Using similar approach, we can make all other join-based algorithms persistent without
a�ecting the asymptotical work and span.

5.2 Garbage Collection
In this section, we show how to e�ciently collect out-of-date tree nodes on P-Tree. In

fact, similar approach is applicable to any functional DAG-based data structures accessible
via a single entry node. Our approach is based on reference counting, where each tree
nodes maintains the number of references to itself. Intuitively, each node’s RC is its
in-degree in the memory DAG.
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We �rst de�ne the desired properties of GC on P-Trees. When garbage collecting a
tree, we want to reclaim all the tree nodes in this tree that is only in this tree, but not to
collect any tree nodes that are shared with other trees. For this purpose, we use a collect(t)
algorithm on a tree node t to collect any tree nodes in t ’s subtree that is not shared with
other trees. For any trees represented by a root pointer, we call them versions, and call
their roots version pointers. We say that a tree node x belongs to a version pointer v if x is
reachable from v . The correctness of a collect algorithm is de�ned in De�nition 11.

De�nition 11. Let x be a tree node, and t be any time during an execution. A collect is
correct if the following conditions hold.

• If for each version v that x belongs to, collect(v) has terminated by time t , then x has
been freed by t .

• If there exists a version v that x belongs to for which collect(v) has not been called by
time t , then x has not been freed by t .

The collect Algorithm. We now present a collect algorithm and show its correctness
and e�ciency. Path-copying causes subsets of the nodes to be shared among versions.
To collect the correct tuples, we use reference counting (RC) [114, 171]. Each object
maintains a count of references to it, and when it reaches 0, it is safe to collect. Since the
memory graph is acyclic (forests). This means that RC allows collecting everything [171].
Accordingly, a x =new_node(l, e, r ) operation creating a node x with entry e increments
the reference counters of its children l and r . A newly-created mode x has counter 0. This
gets incremented if x becomes the child of another node. Later, when a collect is invoked
on a tree node x , it �rst decrements the count of x . Only if the count of x has reached
zero, x gets freed, and all children of x are collected recursively. If x ’s counter is more
than one, the collect algorithm terminates since x will not be freed, and thus the counts of
its descendants will not be decreased then.

Pseudocode of the collect() algorithm is given in Algorithm Figure 5.3. We use x .ref
to read the current reference counter of node x . add_ref (x) and dec_ref (x) means to
increase and decrease the reference counter of node x . We leave this general on purpose.
The simplest way of implementing the counters is via a fetch-and-add object. However,
we note that this could introduce unnecessary contention. To mitigate that e�ect, other
options, like dynamic non-zero indicators [9], can be used. Our implementation simply
uses an atomic fetch-and-add to update RCs.

We will then show that the collect algorithm is correct and fast. In particular, we prove
Theorem 5.2.1.

Theorem 5.2.1. Our collect algorithm (Algorithm 5.3) is correct and takes O(S + 1) time
where S is the number of freed nodes.

First we prove that it satis�es the �rst part of De�nition 11.
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1 node(l,e,r) {
2 Node y = alloc(Node);
3 y.entry=e;
4 y.ref=0;
5 add_ref(l);
6 add_ref(r);}}

1 void collect(var x) {
2 if (x is null) return;
3 int c = dec_ref(x);
4 if (c ≤ 1) {
5 node* l = lc(x); node* r = rc(x);
6 free(x);
7 collect(l); collect(r); }}

Figure 5.3: The new_node and collect algorithms.

Lemma 5.2.2. Let u be a shared tree node. For any shared node w , let Vw be the set of
versions thatw belongs to. If a collect operation has terminated for each version in Vu , then
u has been freed.

Proof. Fix an execution history and a con�guration C . Consider the set G of all shared
nodes w such that for each version v ∈ Vw , a collect(v) operation has terminated. It
su�ces to show that for each node in G, there is a collect operation that frees the tuple
and terminates before C .

Notice that G forms a DAG. Furthermore, for each node w ∈ G, G contains every
shared node that points to w . This is because a node belongs to all of the versions that its
parent belongs to. Therefore we can proceed by structural induction on G.

For the base of the induction, we prove that each of the roots inG that are not pointed
by any other tree nodes has been freed by a completed collect operation. Let u be some
root inG . We just need to show that each increment ofu’s reference count has a completed
collect(u) operation corresponding to it. Since u is not pointed by other nodes, all of its
references are from the outside handles to the tree. Since each version v that u belongs to
has been applied a collect algorithm, the last completed collect(u) operation decrement
the reference count of u to 0 and frees u.

Now we prove the inductive step by �xing some node u in G and assuming that all of
its parents have been freed by some completed collect operation. Similar to the base case,
we show that each increment of u’s reference count has a completed collect(u) operation
corresponding to it. So we just need to show that for each shared node w that point to u,
there is a completed collect(u). By the inductive hypothesis, there is a completed collect
operation that frees w , and we can see from the code that this operation executes a collect
on u. Therefore one of the completed collect(u) operation sets the reference count of u to
0 and frees u. By structural induction, each tuple in G has been freed and this completes
the proof. �

Next we prove that our collect algorithm satis�es the second part of De�nition 11.

Lemma 5.2.3. Let u be a shared node and let Vu be the set of versions that it belongs to. If a
collect operation has not started for some version v ∈ Vu , then u has not been freed.
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Proof. Next we claim that each collect(u) operation corresponds to an unique increment
of u’s reference counter. This can be seen by a close inspection of the code; let c be a
collect(u) call and consider two cases. Case (1): c is not called from inside another collect.
That is, u is the root of a version that is being collected. In that case, c corresponds to
the increment of u .ref that creates this version. Case (2): c is called recursively from a
collect(u′) algorithm. In this case, the c corresponds to the increment of u .ref during the
creation of u′.

Letv ∈ Vu be the version for which no collect(v) call has been invoked. Sinceu belongs
to v , there must be a path from v’s version root r to u in the memory graph. We show
by induction that no node along that graph has been freed, thus implying that u has not
been freed.

Base: Consider v’s root, r . r .ref has been incremented when it is created and the
collect(v) operation corresponding to this increment has not been invoked yet. Therefore
the reference count of r is non-zero, so it has not been freed.

Step: Assume that the ith node, ui in the path from r to u is not freed. We want to
show that the i + 1th node on this path, ui+1 has not been freed either. Consider the
new_nodeoperation that made ui the parent of ui+1 in the memory graph. That operation
incremented ui+1’s reference count by 1 and the collect(v) operation corresponding to
this increment has not been invoked yet because ui ’s RC has not reached 0. Thus, ui+1’s
reference count is greater than 0, and therefore it cannot have been freed. �

Finally, we prove that our collect algorithm is e�cient.

Lemma 5.2.4. A collect operation takes O(S + 1) time where S is the number of nodes that
were freed by the operation.

Proof. Not counting the recursive calls, each collect operation needs a constant time. Each
time a node is freed, a collect operation is called on its two children. Therefore, the total
number of collect operations spawned by a collect operationC is 2S , where S is the number
of nodes that were freed by C . Therefore C has O(S + 1) time complexity in total. �

Together, Lemmas 5.2.2, 5.2.3 and 5.2.4 imply Theorem 5.2.1.
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Part II

Implementation and Applications
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This part presents several user applications of P-Trees. As a fundamental data structure
to maintain ordered data, balanced binary trees themselves are used widely in applications
in various areas. Supporting parallelism further improve trees’ performance and e�ciency.
In particular, the symmetric order of balanced binary trees are e�cient and elegant for
building indexes, supporting fast dynamic updates and lookup. The augmentation on trees
provide convenient interface for range-based queries, both for a simple tree structure, and
also for multi-dimensional geometry queries. Path-copying on trees enable multi-version
concurrency control both correctly and e�ciently.

This part will start with the PAM library, including the interface and some implementa-
tion details. As the main component, this part will then present applications using P-Trees,
include general library interface with range-sums, 1D stabbing queries, 2D range queries,
2D segment queries, 2D rectangle queries, an HTAP database system, and memory recla-
mation for multi-versioned transactional systems. Along with the applications, we present
new algorithms and technologies speci�c to each application, as well as experimental
results.

Experimental Setting
All applications are implemented in C++, based on the PAM library. We use the

scheduler in the PBBS library [2, 72]. In many of the implementations, we use the
aggregation and sorting algorithms in PBBS.

For all the experiments in this part, we use a 72-core Dell R930 with 4 x Intel(R)
Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB L3 cache), and 1Tbyte memory. Each core
is 2-way hyperthreaded giving 144 hyperthreads. Our code was compiled using g++ 5.4.1.
In the semantics, we only use the binary fork-join, and parallel loop. We compile with
-O2 because this gives us more stable results. We use numactl -i all in all experiments
with more than one thread. It evenly spreads the memory pages across the processors in
a round-robin fashion. In all applications, we use weight-balanced trees as the balancing
scheme because it maintains less metadata in tree nodes (the size is always maintained
for all the other balancing schemes), and thus is slightly more space-e�cient than other
data structures.
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Chapter 6

The PAM Library

In this section, we introduce the PAM library, which includes the implementation details
and the user interface.

PAM (Parallel Augmented Maps) is a parallel C++ library implementing the interface
for augmented maps [262]. It is designed for maintaining multiple ordered structures,
including sequences, ordered sets, ordered maps and augmented maps. The library is
available on GitHub [261]. The released code includes both the code for the library and
the code implementing the applications. It is also designed so it is easy to try in many
other scenarios (di�erent sizes, di�erent numbers of cores, etc.).

6.1 ADT Interface
This thesis studies trees that support e�cient algorithms for a variety of functions,

which, step by step, form interfaces for four abstract data types (ADTs): sequences,
ordered sets, ordered maps and augmented maps. Especially, augmented map [262] is
a new abstract data type proposed in this thesis, as we introduced in Section 4.1. In
this section, we formally de�ne the interface of these ADTs. This is also the interface
supported my the PAM library.

All the four data types introduced in this chapter are aggregations of a collection of
entries, denoted as {e1, e2, . . . , en}. We note that typically the braces mean sets, which do
not contain duplicates and do not require an order. Here for simplicity and consistency
with extensions to ordered sets and maps, we use braces for all the four data types. Inside
the braces the elements are by default ordered by the corresponding criteria (i.e., indices
for sequences, and the order on keys for ordered sets, ordered maps and augmented maps).
This thesis also burrows some relations and functions such as ⊂, ∈, ∪, ∩, and | · | from
sets for all the four data types involved.

This thesis will especially present implementations of the four ADTs using balanced
binary trees, and show parallel algorithms supporting functions on them in Chapter 3. In
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the rest of this chapter, we will �rst demonstrate a high-level overview and motivation
of these ADTs, especially for augmented maps. Then in Section 6.1.1–6.1.3, we brie�y
overview the existing ADTs including sequences, ordered sets and ordered maps, and
propose a relatively complete interface for them, respectively. Then we present the
augmented maps in details in Section 6.1.4, including the motivation, the formal de�nition,
and the interface.

6.1.1 The Sequence SQ(K)

For a universe of keys K , a sequence s = SQ(K) is a relation R ⊂ [n] × K , where [n]
denotes the �rst n natural numbers1. The position of an entry in a sequence is its index (or
its subscript), and each entry is uniquely retrieved by the index. A sequence s = SQ(K)
of size n is noted as {s[1], s[2], . . . , s[n]} (s[i] ∈ K ) ordered by their indices. s[i] means to
extract the i-th element in a sequence s . In this case, no ordering is speci�ed on these
entries, and duplicates are allowed. Using a binary tree to maintain such a sequence would
just require to organize all entries using the symmetric order (i.e., the in-order traversal)
of the tree.

Typically, a sequence s = SQ(K) supports functions as listed in Table 6.1. Some of
the notations are de�ned in Chapter 2. In the table n denotes the size of s (i.e., |s |). In
sequences, each key is an entry, and the entry type E is the key type K . The functions on
the sequence interface, along with the descriptions are presented in Table 6.1.

6.1.2 Ordered Sets OS(K, <K )

On top of the sequence interface, if K have a total ordering, which associates K a
comparison function <K : K × K 7→ Bool, then an ordered set implementation can be
formed, which also disallows duplicates. For binary tree structures, this requires using
the symmetric order to maintain the ordering on K , which makes the tree a binary search
tree (BST) from this point.

In ordered sets, the entry type E of a set is still the same as the key type. The index
of an entry e in an ordered set st is one plus the number of entries in st that is smaller
than (de�ned by <K ) e . The indexes start with 1. Therefore, we denote an ordered set
st = OS(K) of size n as {st[1], st[2], . . . , st[n]} (st[i] ∈ K) ordered by <K . st[i] means
to extract the i-th element in an ordered set st . Beyond the sequence functions, many
functions related to the ranking of the entries become useful, such as next, previous, upto,
downto, etc. Also, many aggregate functions for sets (e.g., union, intersection, di�erence,
etc.) are useful for the interface. Also, all these functions will need to maintain the
ordering on the elements.

1A sequence can certainly be of in�nite length, where the domain is the natural number set N.

92



Function Description
empty : ∅, or {}
domain(s) : {k(e) : e ∈ s}
size(s) : |s |
singleton(e) : {e}

seq_from_array(l)
Argument: array l = [e1, e2, . . . , en], ei ∈ E

: sequence s , where s[i] = ei
to_array(s) : array [s[1], s[2], . . . , s[n]] ordered by indices
select(s, i) : s[i]

�rst(s) : s[1] if s , ∅ else �
last(s) : s[n] if m , ∅ else �
ind_range(s, i, j) : {s[i], . . . , s[j]}
(noted as s[i ..j]) :
ind_upto(s, i) : {s[1..i]}
ind_downto(s, i) : {s[i ..n]}
delete_at(s, i) : {s[1..i − 1], s[i + 1..n]}
insert_at(s, i, e) : {s[1..i − 1], e, s[i ..n]}
join2(s1, s2) : {s1[1..|s1 |], s2[1..|s2 |]}
split_at(s, i) : 〈{s[1..i − 1], s[i], s[i + 1..|s |]}〉

�lter (s,ψ )
Argumentψ : E → Bool

: {e ∈ s | ψ (e)}
map_reduce Argument д′ : E → B, f ′ : B × B 7→ B,b∅ ∈ B is the identity of f
(s, f ′,д′,b∅) : f (b∅,д

′(s[1]),д′(s[2]), . . . ,д′(s[n])),

Table 6.1: The core functions on sequences – Throughout the table i, j ∈ N, and e, ei ∈ E,
m,m1,m2 are ordered maps. s is a sequence. B is a type. | · | denotes the cardinality of a set. �
represents an empty element.

6.1.3 The Ordered Map OM(K, <K,V )

On top of the ordered set interface, if each key is also assigned a value of type V , then
an interface for the ordered map can be built, with entries being key-value pairs. The
general map structure, also known as key-value store, dictionary, table, or associative
array, means to maintain a mapping from keys to values. Accordingly, the �nd function on
map m and key k (usually referred to as m(k)) returns the value of k in m. As an abstract
data type, the map is very important in practice as is indicated by many large-scale data
analysis systems such as F1 [250], Flurry [25], RocksDB [239], Oracle NoSQL [221], and
LevelDB [191]. Ordered maps means to additionally maintain the ordering on keys, such
that range queries and index retrievals are made e�cient. To implement an ordered map
using binary trees, we only need to store the values as additional information on top of
the implementation of ordered sets.

All functions on sequences and sets, as shown in Table 6.1 and 6.2, can be extended
for accepting key-value pairs as entries for ordered maps. Based on ordered sets, ordered
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Function Description

from_array(l)
Argument l = [e1, . . . , en] is an array, ei ∈ E

: {e | e ∈ l} ordered by <K on K

�nd(st,k) : k ∈ st

delete(st,k) : {e ∈ st | k(e) , k}
insert(st, e) : delete(st,k(e)) ∪ {e}
next(st,k) : �rst({e ∈ st | k(e) > k})

previous(st,k) : last({e ∈ st | k(e) < k})

upto(st,k) : {e : e ∈ st | k(e) ≤ k}

downto(st,k) : {e : e ∈ st | k(e) ≥ k}

position(st,k) : 1 + |{e ∈ st | k(e) < k}|

select(st, i) : st[i]

split(st,k) : 〈{e ∈ st | k(e) < k}, �nd(m,k), {e ∈m | k < k(e)}〉

range(st,k1,k2) : {e ∈ st | k1 ≤ k(e) ≤ k2}

intersection(st1, st2) : {e ∈ st1 | k(e) ∈ domain(st2)}
di�erence(st1, st2) : {e ∈ st1 | k(e) < domain(st2)}
union(st1, st2) : di�erence(st1, st2) ∪ di�erence (st2, st1)

∪ intersection (st1, st2)

Table 6.2: The core functions on ordered sets – Throughout the table k,k1,k2,k
′ ∈ K and

e, ei ∈ E, st, st1, st2 are ordered sets. s is a sequence. B is a type. | · | denotes the cardinality of a set.
� represents an empty element.

maps introduce the value in the entry, so many of the set functions (e.g., union, intersection,
insert and from_array) can be assigned a function σ to combine values on maps. We call
this function the complementary function. For an ordered map type OM(K, <K ,V ), these
functions are de�ned in Table 6.3. In the reasonable scenarios when two entries with the
same key should appear simultaneously in the map, their values would be combined by
the function σ . For example, when the same key appears in both maps involved in a union
or intersection, the key will be kept as is, but their values will be combined by σ to be the
new value of the key in the output map. Same case happens when an entry is inserted
into a map that already has the same key in it, or when we build a map from a sequence
that has multiple entries with the same key. A common scenario where this is useful, for
example, is to keep a count for each key, and have union and intersection sum the counts,
insert add the counts, and from_array keep the total counts of the same key in the array.
This also applies to when we only need to keep the maximum value of each key among
all appearances.

6.1.4 The Augmented Map AM(K, <K,V ,auд = 〈A, f ,д, I 〉)

To equip maps with more functionalities, this thesis proposes the augmented map
AM(K, <K ,V ,auд = 〈A, f ,д, I 〉) [262], as de�ned in De�nition 9 in Section 4.4. It is an
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Function : Description
�nd(m,k)
(noted asm(k)) : v(e) if ∃e ∈m,k(e) = k else �

from_array(l,σ )
Argument l = [e1, . . . , en], ei ∈ E is an array

: {(k ′,vk ′) | ∀k ′ ∈ domain(l),vk ′ = σ (vi1,vi2, . . .vin′ ) :
∀vi j , (k

′,vi j ) ∈ s, i1 < i2 < · · · < in′}, ordered by <K on K

insert Argument σ : V ×V → V
(m, e,σ ) : delete(m,k(e)) ∪ {(k(e),σ (v(e),v(Find(m,k(e))))}
intersection Argument σ : V ×V → V
(m1,m2,σ ) : {(k,σ (v(m1(k)),v(m2(k))))| k ∈ domain(m1) ∩ domain(m2)}

union Argument σ : V ×V → V
(m1,m2,σ ) : di�erence(m1,m2) ∪ di�erence (m2,m1) ∪ intersection (m1,m2,σ )

Table 6.3: The core functions on ordered maps – Throughout the table k,k ′ ∈ K , v,vi ∈ V and
e, ei ∈ E,m,m1,m2 are ordered maps. l is a list.

ordered map OM(K, <K ,V ) associated with an augmenting structure. An augmented
map type supports an interface with standard functions on ordered maps as well as a
collection of functions that make use of f and д. All functions in Tables 6.1 to 6.3 should
be supported by augmented map interface.

Function Description Condition
aug_val(m) : A(m) = map_reduce(m,д, f ,a∅) -
aug_le�(m,k) : aug_val(upto(m,k)) -
aug_right(m,k) : aug_val(downto(m,k)) -
aug_range(m,k1,k2) : aug_val(range(m,k1,k2)) -

aug_�lter(m,ψ )
Argumentψ : A 7→ Bool ∀a,b ∈ A,

: Filter(m,ψ ′), where ψ (a) ∨ψ (b) ⇔ ψ (f (a,b))
ψ ′ : E 7→ Bool,ψ ′(e) ⇔ ψ (д(e))

aug_project Argument д′ : A 7→ B, f ′ : B × B 7→ B (B, f ′,д′(a∅)) is a monoid.
(m,д′, f ′,k1,k2) : д′(aug_range(m,k1,k2)) f ′(д′(a),д′(b)) = д′(f (a,b))

Table 6.4: The core functions on augmented (ordered) maps. In the table we assume k,k1,k2 ∈ K ,
and e ∈ K ×V ,m is an augmented map.

Table 6.4 presents functions speci�c to augmented maps along with their descriptions
and their applicable conditions. All of them can be de�ned and computed using the
plain ordered map functions. However, they can be much more e�cient by maintaining
the augmented values of sub-maps (partial sums) in the underlying data structure, as in
the augmented trees and the pre�x structures, as we have shown in Chapter 4. These
functions also bene�t from using the augmenting functions f and д as operands for plain
ordered map functions.
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The function aug_val(m) returnsA(m), which is equivalent to map_reduce(m,д, f ,a∅)
but can run in constant instead of linear work. This is because the augmented value of the
whole map is stored in the tree root, and can be maintained during updates. The function
aug_range(m,k1,k2) is equivalent to aug_val(range(m,k1,k2)). Similarly,aug_left(m,k)
and aug_right(m,k) are equivalent to aug_val(upto(m,k)), respectively. These functions
can be implemented using augmented trees with the algorithms in Section 4.2. The
aug_left algorithm can be implemented using pre�x structures by a simple binary search.
If an inverse function of f is provided, aug_right and aug_range can also be implemented
in O(logn +Wf −1) time, whereWf −1 denotes the cost of an application of f ’s inversion
function.

Some functions in Table 6.4 are used to accelerate common queries on augmented maps,
but are only applicable when their function arguments meet certain requirements. They
also can be computed using the plain map functions, but can be much more e�cient when
applicable because their input operands satisfy some conditions related to the augmenting
functions д and f . The AugFilter(m,ψ ) function and the aug_project (m,д′, f ′,k1,k2) are
the same as de�ned in Section 4.2 on augmented trees. Using pre�x structures, however,
will not accelerate these functions with worst-case guarantee.

6.2 Implementation Details
Parallelism. The core aspect of the PAM library is its use of fork-join parallelism with a
dynamic scheduler. The library support both a dynamic scheduler in the PBBS library [72]
based on OpenMP, and the Cilk plus scheduler. We also use the parallel aggregation and
sorting algorithms from the PBBS library. The parallelism of PAM mainly comes from the
divide-and-conquer scheme over the tree structure. As we will show in Section 11.6, PAM
achieve almost linear scalability.

To control the granularity of the parallel tasks, the P-Tree only executes two recursive
calls in parallel when the current tree size is larger than some threshold. Otherwise the
tree processes the operations sequentially. This is to avoid the overhead of forking and
joining small tasks. This granularity level is adjustable and is decided by the workload of
the base case dealing with a single tree node. Intuitively, if the base cases are light-loaded,
we make it more coarse-grained. For example, by default we stop generating parallel
tasks when the tree size is under 100. Otherwise, when the work within a single node
is su�cient (e.g., they deal with inner trees), we can set the threshold as 1 such that
parallelism can be introduced even to the bottom level of the tree.
Memory Management and GC. The P-Tree’s memory manager maintains separate
pools of nodes for each thread, along with a shared lock-free stack-based pool. The tree
maintains blocks of 64k nodes in the shared pool. Each thread retrieves a block from the
shared pool when they run out of nodes in their local pool, and then returns a block when
they accumulate 2×64k free tree nodes.
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We implement a reference counting garbage collector (GC) [163] as introduced in
Section 5.2. The system uses an atomic fetch-and-add to update RCs since multiple threads
can potentially update an RC concurrently. We use the standard reuse optimization where
if a node has a reference count of one (only the current call has a pointer to it), then it is
reused rather than being copied [163]. This allows in-place updates when possible.
Durability. All applications introduced in this thesis focus on in-memory systems.
However, because P-Trees are functional, each single version can be operated and viewed
in isolation. In particular, the root pointers provide snapshots of any history versions
of the tree. To make a system using P-Trees durable, one can output such snapshots to
disk to preserve the current state. This approach can also be combined with log-based
approaches to leverage the storage size and re-construction e�ciency.

6.3 User Interface and Artifact Testing
To use the library and de�ne an augmented map using PAM, users need to include the

header �le pam.h, and specify the parameters including type names and (static) functions
in an entry structure entry_type.

• typename K: the key type (K ),
• function comp: K × K 7→ bool: the comparison function on K (<K )
• typename V: the value type (V ),
• typename A: the augmented value type (A),
• function base: K ×V 7→ A: the base function (д)
• function combine: A ×A 7→ A: the combine function (f )
• function identity: ∅ 7→ A: the identity of f (I )

This is an entry for an augmented maps. Then an augmented map is de�ned with C++
template as aug_map<entry_type>. For sequences, ordered sets, ordered maps, fewer
arguments are required. In particular, a sequence pam_seq<entry_type> only needs the
key type K de�ned in the entry. An ordered set (pam_set<entry_type>) only needs the
key type K with the comp function. An ordered map (pam_map<entry>) only requires K,
comp and V.

Here is an example of de�ning an augmented map m that has integer keys and values
and is augmented with value sums:

struct entry {
using key_t = int;
using val_t = int;
using aug_t = int;
static bool comp(key_t a, key_t b) {return a < b;}
static aug_t I() { return 0;}
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static aug_t base(key_t k, val_t v) {return v;}
static aug_t combine(aug_t a, aug_t b) {return a+b;}};

aug_map <entry > m;

Another quick example can be found in Chapter 8, which shows how to implement
an interval tree using the PAM interface.

The library also provides an implementation of pre�x structures in common/ directory.
In particular, one can construct pre�x structures using:

A* sweep(E* data , size_t n, A Init , F f, G g, H h, size_t num_blocks =0)

The arguments are speci�ed as follows.
• array head pointer data: the head pointer to an array storing all the input entries,
• integer n: the length of A,
• augmented value type Init: the identity of the augmented value regarding com-

bine function f ,
• function f: the combine function,
• function g: the fold function,
• function h: the update function,
• integer num_blocks: the number of blocks used by the parallel construction algo-

rithm Algorithm 1. When this value is set to 0, the algorithm automatically sets it
as the number of physical threads available in the machine.

This function will return an array of augmented values, which are the pre�x structures
in order.
Library meta information.

• Algorithm: Join-based balanced binary tree algorithms, the pre�x structures, and
example applications of them, including range sum, interval trees, 2D range/seg-
ment/rectangle queries, inverted index searching, an HTAP database system for
TPC-H queries and TPC-C-like transactions.

• Program: C++ code supporting both the Cilk Plus extensions and OpenMP for
parallelism.

• Compilation: g++ 5.4.0 (or later versions).
• Run-time environment: Linux. The scripts that we provide in the repository use
numactl for better performance. All tests can also run directly without numactl.

• Hardware: Any modern (2010+) x86-based multicore machines. Relies on 128-bit
CMPXCHG (requires -mcx16 compiler �ag) but does not need hardware transac-
tional memory (TSX).
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• Experiment work�ow: See instructions in the GitHub repository.
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Chapter 7

General Operations and Range Sum
Queries

Our �rst application is a simple ordered map storing 64-bit integers as keys and values,
and an augmentation of keeping the sum of all values (or the maximum value) in each
subtree. The tree can be represented as given in Equation (4.6).

7.1 Experiments
We test the performance of multiple functions on this structure. We also compare

PAM with some sequential and parallel libraries. None of the other implementations
support augmentation. We use 64-bit integer keys and values. The results on running
time are summarized in Table 7.1. Our times include the cost of any necessary garbage
collection (GC). We also present space usage in Table 9.5.

We test versions both with and without augmentation. For general map functions
like union or insert, maintaining the augmented value in each node costs overhead, but
it seems to be minimal in running time (within 10%). This is likely because the time
is dominated by the number of cache misses, which is hardly a�ected by maintaining
the augmented value. The overhead of space in maintaining the augmented value is
20% in each tree node (extra 8 bytes for the augmented value). For the functions related
to the range sum, the augmentation is necessary for theoretical e�ciency, and greatly
improves the performance. For example, the aug_range function using a plain (non-
augmented) tree structure would require scanning all entries in the range, so the running
time is proportional to the number of related entries. It costs 0.44s to process 104 parallel
aug_range queries. With augmentation, aug_range has performance that is close to a
simple �nd function, which is only about 3s for 108 queries. Another example to show
the advantage of augmentation is the aug_�lter function. Here we use Max instead of
taking the sum as the combine function, and set the �lter function as selecting all entries
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n m T1 T144 Spd.
PAM (with augmentation)
Union 108 108 12.517 0.2369 52.8
Union 108 105 0.257 0.0046 55.9
Find 108 108 113.941 1.1923 95.6
Insert 108 − 205.970 − −

Build 108 − 16.089 0.3232 49.8
Build 1010 − 1844.38 28.24 65.3
Filter 108 − 4.578 0.0804 56.9
Multi-Insert 108 108 23.797 0.4528 52.6
Multi-Insert 108 105 0.407 0.0071 57.3
Range 108 108 44.995 0.8033 56.0
AugLeft 108 108 106.096 1.2133 87.4
AugRange 108 108 193.229 2.1966 88.0
AugRange 1010 108 271.09 3.04 89.2
AugFilter 108 106 0.807 0.0163 49.7
AugFilter 108 105 0.185 0.0030 61.2
Non-augmented PAM (general map functions)
Union 108 108 11.734 0.1967 59.7
Insert 108 − 186.649 − −

build 108 − 15.782 0.3008 52.5
Range 108 108 42.756 0.7603 56.2
Non-augmented PAM (augmented functions)
AugRange 108 104 21.642 0.4368 49.5
AugFilter 108 106 2.695 0.0484 55.7
AugFilter 108 105 2.598 0.0497 52.3
STL
Union Tree 108 108 166.055 − −

Union Tree 108 105 82.514 − −

Union Array 108 108 1.033 − −

Union Array 108 105 0.459 − −

Insert 108 − 158.251 − −

MCSTL
Multi-Insert 108 108 51.71 7.972 6.48
Multi-Insert 108 105 0.20 0.027 7.36

Table 7.1: Timings in seconds for various functions in PAM, the C++ Standard Template
Library (STL) and the library Multi-core STL (MCSTL) [252] – Here “T144” means on all 72
cores with hyperthreads (i.e., 144 threads), and “T1” means the same algorithm running on one
thread. “Spd.” means the speedup (i.e., T1/T144). For insertion we test the total time of n insertions
in turn starting from an empty tree. All other libraries except PAM are not augmented.

with values that are larger than some threshold θ . In this case whenever the algorithm
is processing some tree node with augmented value smaller than θ , the whole subtree
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Overhead for aug. Saving from node-sharing
Func. Type node aug. over- #nodes in Actual Saving

size size head theory #nodes ratio

Union m = 108 48B 8B 20% 390M 386M 1.2%
m = 105 48B 8B 20% 200M 102M 49.0%

Table 7.2: Space used by the union function – We use B for byte, M for million. The overhead
for augmentation is computed by aug_size/(node_size-aug_size). The saving ratio from persistence
is computed by 1 - #actual/#in_theory.
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Figure 7.1: The running time of union and build using PAM on di�erent input sizes –
Results collected on a machine with 72 cores with hyperthreading.

can be �ltered out. We set the parameterm as the output size, which can be adjusted by
choosing appropriate θ . Such an algorithm has theoretical work of O(m log(n/m + 1)),
and is signi�cantly more e�cient than a plain implementation (linear work) whenm � n.
We give two examples of tests on m = 105 and 106. The change of output size does not
a�ect the running time of the non-augmented version, which is about 2.6s sequentially
and 0.05s in parallel. When making use of the augmentation, we get a 3× improvement
whenm = 106 and about 14× improvement whenm = 105.

For sequential performance we compare to the C++ Standard Template Library
(STL) [212], which supports set_union on sets based on red-black trees and sorted
vectors (arrays). We denote the two versions as Union-Tree and Union-Array. In Union-
Tree results are inserted into a new tree, so it is also persistent. When the two sets have
the same size, the array implementation is faster because of its �at structure and better
cache performance. If one map is much smaller, PAM performs better than Union-Array
because of better theoretical bound (O(m log(n/m + 1)) vs. O(n +m)). It outperforms
Union-Tree because it supports persistence more e�ciently, i.e., sharing nodes instead
of making a copy of all output entries. Also, our join-based insert achieves performance
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close to (about 17% slower) the well-optimized STL tree insertion even though PAM needs
to maintain the reference counts. We also compare to Intel TBB [166, 231] concurrent
hash map, which is a parallel implementation on unordered maps. On inserting n = 108
entries into a pre-allocated table of appropriate size, it takes 0.883s compared to our 0.323s
(using all 144 threads).

In parallel, the speedup on the aggregate functions such as union and build is above
50. The functions that are “embarrassingly parallel” (such as �nd) have up to 90-fold
speedup. The range functions range and aug_range both take less than 0.1 µs per query
in parallel. Generally, the speedup is correlated to the ratio of reads to writes. With all (or
mostly) reads to the tree structure, the speedup is often more than 72 (number of cores)
with hyperthreads (e.g., �nd, aug_left and aug_range). With mostly writes (e.g., building a
new tree as output) it is 40-50 (e.g., �lter , range, union and aug_�lter). The build function
is relatively special because the parallelism from the parallel sorting is also signi�cant.
We also give the performance of the multi_insert function in the Multicore STL (MCSTL)
[252] for reference. On our server MCSTL does not scale to 144 threads, and we show the
best time it has (on 8-16 threads). On the functions we test, PAM outperforms MCSTL
both sequentially and in parallel.

PAM is scalable to very large data, and still achieve very good speedup. On our
machine, PAM can process up to 1010 elements (highlighted in Table 7.1). We give the
running time on building a tree of 1010 entries and running aug_range on it. It takes more
than half an hour to build the tree sequentially, but only needs 28 seconds in parallel,
achieving a 65-fold speedup. For aug_range the speedup is about 90.

Also, using path-copying to implement persistence improves space-e�ciency. For the
persistent union on two maps of size 108 and 105, we save about 49% of tree nodes because
most nodes in the larger tree are re-used in the output tree. When the two trees are of the
same size and the keys of both trees are extracted from the similar distribution, there is
little savings.

We present the parallel running times of union and build on di�erent input sizes in
Figure 7.1. For union we set one tree of size 108 and vary the other tree size. When the
tree size is small, the parallel running time does not shrink proportional to size (especially
for build), but is still reasonably small. This seems to be caused by insu�cient parallelism
on small sizes. When the input size is larger than 106, the algorithms scales very well.
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Chapter 8

Interval Trees

This chapter gives an example of how to use our interface for interval trees [118, 119,
129, 134, 180, 199]. This data structure maintains a set of intervals on the real line, each
de�ned by a left and right endpoint. Various queries can be answered, such as a stabbing
query which given a point reports whether it is in an interval.

8.1 Approach
There are various versions of interval trees. Here we discuss the version as described

in [118]. In this version each interval is stored in a tree node, sorted by the left endpoint
(key). A point x is covered by in an interval in the tree if the maximum right endpoint
for all intervals with keys less than x is greater than x (i.e. an interval starts to the left
and �nishes to the right of x ). By storing at each tree node the maximum right endpoint
among all intervals in its subtree, the stabbing query can be answered in O(logn) time.
An example is shown in Figure 8.2.

In our framework this can easily be implemented by using the left endpoints as keys,
the right endpoints as values, and using max as the combining function. The de�nition is:

I = AM(R, <R,R,R, (k,v) 7→ v,maxR,−∞)
Figure 8.1 shows the C++ code of the interval tree structure using PAM. The entry

with augmentation is de�ned in entry starting from line 3, containing the key type key_t,
value type val_t, comparison function comp, augmented value type (aug_t), the base
function д (base), the combine function f (combine), and the identity of f (identity).
An augmented map (line 12) is then declared as the interval tree structure with entry. The
constructor on line 14 builds an interval tree from an array of n intervals by directly calling
the augmented-map constructor in PAM (O(n logn) work). The function stab(p) returns
if p is inside any interval using amap::aug_left(m,p). As de�ned in Chapter 4, this
function returns the augmented sum, which is the max on values, of all entries with keys
less thanp. As mentioned we need only to compare it withp. The function report_all(p)
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returns all intervals containing p, which are those with keys less than p but values larger
than p. We �rst get the sub-map in m with keys less then p (amap::upTo(m,p)), and
�lter all with values larger than p. Note that h(a) = (a > p) and the combine function
f (a,b) = max(a,b) satisfy h(a) ∨ h(b) ⇔ h(f (a,b)). This means that to get all nodes with
values > p, if the maximum value of a subtree is less than p, the whole subtree can be
discarded. Thus we can apply amap::aug_filter (O(k log(n/k + 1)) work for k results),
which is more e�cient than a plain �lter.

1 struct interval_map {
2 using interval = pair <point , point >;
3 struct entry {
4 using key_t = point;
5 using val_t = point;
6 using aug_t = point;
7 static bool comp(key_t a, key_t b) { return a < b;}
8 static aug_t identity () { return 0;}
9 static aug_t base(key_t k, val_t v) { return v;}
10 static aug_t combine(aug_t a, aug_t b) {return (a > b) ? a : b;}
11 };
12 using amap = aug_map <entry >;
13 amap m;

14 interval_map(interval* A, size_t n) {
15 m = amap(A,A+n); }

16 bool stab(point p) {
17 return (amap:: aug_left(m,p) > p);}

18 amap report_all(point p) {
19 amap t = amap::up_to(m,p);
20 auto h = [] (P a) -> bool {return a>p;}
21 return amap:: aug_filter(t,h);}

22 amap insert(interval i) {
23 amap:: insert(m,i,[]( point a, point b) {return max(a,b);});
24 };

Figure 8.1: The de�nition of interval maps using PAM in C++.

We note that beyond being very concise the interface gives a large amount of func-
tionality, including the ability to take unions and intersections of interval maps, taking
ranges, or applying a �lter. For example, �ltering out all intervals less than a given length
L can be implemented as:

void remove_small(int L) {
auto f = [&] (interval I) {
return (I.second - I.first >= L);};
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Figure 8.2: An example of an interval tree.

m.filter(f); }

It also runs in parallel.
In Section 8.1.1 we report on the performance of the implementation. It is by far the

fastest implementation of interval trees we know of. On one core it can build an interval
tree on 1 billion intervals in about 180 seconds, and on 72 cores it can build it in about
3.5 seconds. The python implementation [154], by comparison, takes about 200 seconds
to build a tree on just 10 million intervals. Although unfair to compare performance of
C++ to python (python is optimized for ease of programming and not performance), the
code for interval trees based on our library is much simpler than the python code—30
lines in Figure 8.1 vs. over 2000 lines of python. This does not include our code for for the
PAM library itself (about 4000 lines of code), but the point is that our code can be shared
among many applications while the Python library is speci�c for the interval query. Also
our code has much more functionality, including many more functions, and support for
parallelism.

8.1.1 Experiments

We test our interval tree (same code as in Figure 8.1) using the PAM library. For queries
we test 109 stabbing queries. We give the results of our interval tree on 108 intervals in
Table 8.1 and the speedup �gure in Figure 8.3.

We compare the sequential performance of our interval tree with a Python interval tree
implementation [154]. The Python implementation is sequential, and is very ine�cient.
We ran the Python interval tree only up to a tree size of 107 because it already took about
200s to build the tree when the size is 107, and can hardly accept larger trees as input.
The sequential running time of our code and the Python interval tree is reported in Table
8.1. In building the tree, our code is about dozens of times more e�cient than the Python
implementation, and in performing queries, is orders of magnitude faster. Our code can
answer millions of queries in one second, while the Python interval tree can only do 418
per second when n is as small as 104, and this processing rate deceases dramatically when
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n
Build Queries

Python PAM Python PAM
Melts/sec Melts/sec queries/sec queries/sec

104 0.102 8.264 417.981 13.333×106
105 0.059 17.147 26.105 28.169×106
106 0.064 16.437 2.520 24.038×106
107 0.049 13.063 0.209 22.845×106
108 - 12.247 - 21.067×106

Table 8.1: The processing rate of the Python interval tree and PAM interval tree on n
points – The “Build” column shows the millions of input entries processed per second (calculated as
n/(build-time×106)). In “Queries” we show the number of queries processed per second (calculated
as query-number/query-time).
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Figure 8.3: The performance of the interval tree using PAM – Figure (a) shows the sequential
running time of PAM interval tree on construction (left y-axis) and performing one query (right
y-axis) respectively. Figure (b) shows the speedup on various numbers of processors with 108
points in the tree.

n gets larger. The sequential running time of our implementation is also given in Figure
8.3(a).

Sequentially, even on 108 intervals the tree construction only takes 14 seconds, and
each query takes around 0.58 µs. We did not �nd any comparable open-source interval-
tree library in C++ to compare with. The only available library is a Python interval
tree implementation [154], which is sequential, and is very ine�cient (about 1000 times
slower sequentially). Although unfair to compare performance of C++ to python (python
is optimized for ease of programming and not performance), our interval tree is much
simpler than the python code—30 lines in Figure 8.1 vs. over 2000 lines of python. This
does not include our code in PAM (about 4000 lines of code), but the point is that our
library can be shared among many applications while the Python library is speci�c for
the interval query. Also our code supports parallelism. We ran the Python interval tree
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only up to a tree size of 107 because it already took about 200s to build the tree when the
size is 107, and can hardly accept larger trees as input. Our code can answer millions of
queries in one second, while the Python interval tree can only do 418 per second when
n is as small as 104, and this processing rate deceases dramatically when n gets larger.
Even considering the language, our implementation should be much e�cient than Python
library.

In parallel, on 108 intervals, our code can build an interval tree in about 0.23 second,
achieving a 63-fold speedup. We also give the speedup of our PAM interval tree in Figure
8.3 (b). Both construction and queries scale up to 144 threads (72 cores with hyperthreads).
The building process gets almost-linear speedup when less than 72 threads are involved
and improves slightly after that. For queries, all queries run independently in parallel, and
the speedup is almost perfectly-linear. The speedup of query is over 90 on all 144 threads.
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Chapter 9

2D Range-based Geometry Problems

9.1 Introduction
Range, segment and rectangle queries are fundamental problems in computational

geometry, with extensive applications in many domains. In this thesis, we focus on 2D
Euclidean space. The range query problem is to maintain a set of points, and to answer
queries regarding the points contained in a query rectangle. The segment query problem
is to maintain a set of non-intersecting segments, and to answer questions regarding
all segments intersected with a query vertical line. The rectangle stabbing query (also
referred to as the enclosure stabbing query) problem is to maintain a set of rectangles, and
to answer questions regarding rectangles containing a query point. For all problems, we
discuss queries of both listing all queried elements (the list-all query), and returning the
count of queried elements (the counting query). Some other queries, can be implemented
by variants (e.g., the weighted sum of all queried elements) or combinations (e.g. rectangle-
rectangle intersection queries) of the queries in this thesis. E�cient solutions to these
problems are mostly based on variants of range trees [57], segment trees [52], sweepline
algorithms [249], or combinations of them.

In addition to the large body of work on sequential algorithms and data structures [56,
58, 101, 106, 130, 131], there have also been many theoretical results on parallel algo-
rithms and structures for such queries [17, 32, 35, 141]. Some of our algorithms are also
motivated by previous theory work on e�cient parallel algorithms [17, 32]. However,
e�cient implementations of these structures can be complicated. We know of few parallel
implementations of these theoretically e�cient query structures, primarily due to delicate
design of algorithmic details required by the structures. The parallel implementations we
know of [100, 161, 172, 205] do not have useful theoretical bounds. Our goal is to develop
theoretically e�cient algorithms which can be implemented with ease and also run fast
in practice, especially in parallel.
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This thesis solves these problems using the augmented map framework. We use
augmented maps to help develop e�cient and concise implementations. To do this, there
are two major steps: 1) modeling problems using augmented maps, and 2) implement
augmented maps using e�cient data structures. Indeed, as shown in Section 9.3, 9.4 and
9.5, we model the range, segment and rectangle query problems all as two-level map
structures: an outer level map augmented with an inner map structure. We show that
the augment map abstraction is extendable to a wide range of problems, and develop �ve
structures on top of the augmented map interface corresponding to di�erent problems
and queries.

As for implementing augmented maps, we employ two data structures: P-Trees with
augmentation, and pre�x structures. Especially, we specify the function parameters of the
pre�x structures for the interested geometry problems. We then discuss their parallel
implementations and analyze cost bounds. Interestingly, the algorithms based on the
pre�x structures resemble the standard sweepline algorithms. Therefore, our algorithm
also parallelizes a family of sweepline algorithms that are e�cient both in theory and
practice. As a result, both augmented trees and pre�x structures provide e�cient parallel
implementations for augmented maps, and each has its own merits in di�erent settings.

By combining the �ve two-level map structures with the two underlying data structures
as the outer map (the inner maps are always implemented by augmented trees), we develop
a total of ten di�erent data structures for range, segment and rectangle queries. Among
the ten data structures, �ve of them are multi-level trees including RangeTree (for range
query), SegTree (for segment query), RecTree (for rectangle query), and another two for
fast counting queries SegTree* (segment counting) and RecTree* (rectangle counting). The
other �ve are the corresponding sweepline algorithms.

All the data structures in this chapter are e�cient in theory. We summarize the
theoretical costs in Table 1.3. The construction bounds are all optimal in work (lower
bounded by sorting), and the query time is almost-linear in the output size. We did not
use fractional cascading [103], so some of our query bounds are not optimal. However,
we note that they are sub-optimal by at most a logn factor.

All the data structures in this chapter are also fast in practice. We implement all of them
making use of a parallel augmented map library PAM [262], which supports augmented
maps using augmented trees. We compare our implementations to C++ libraries CGAL [98]
and Boost [5]. We achieve a 33-to-68-fold self-speedup in construction on 72 cores (144
hyperthreads), and 60-to-126-fold speedup in queries. Our sequential construction is more
than 2x faster than CGAL, and is comparable to Boost. Our query time outperforms both
CGAL and Boost by 1.6-1400x. We also provide a thorough comparison among the new
algorithms in this chapter, leading to many interesting �ndings.

Beyond being fast, our implementation is also concise and simple. Using the augmented
map abstraction greatly simpli�es engineering and reduces the coding e�ort, which is
indicated by the required lines of code—on top of PAM, each application only requires
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about 100 lines of C++ code even for the parallel version. For the same functionality,
both CGAL and Boost use hundreds of lines of code for each sequential implementation.
We note that PAM implements general-purpose augmented maps, and does not directly
provide anything special for computational geometry.
Notation. In two dimensions, letX , Y and D = X ×Y be the types of x- and y-coordinates
and the type of points, where X and Y are two sets with total ordering de�ned by <X and
<Y respectively. For a point p ∈ D in two dimensions, we use x(p) ∈ X and y(p) ∈ Y to
extract its x- and y-coordinates, and use a pair (x(p),y(p)) to denote p. For simplicity, we
assume all input coordinates are unique. Duplicates can be resolved by slight variations
of algorithms in this chapter.

9.2 Parallel Sweepline Algorithms Using Pre�x Struc-
tures

9.2.1 Sweepline Algorithms

A sweepline algorithm (or plane sweep algorithm) is an algorithmic paradigm that
uses a conceptual sweep line to process elements in order [249]. It uses a virtual line
sweeping across the plane, which stops at some points (e.g., the endpoints of segments)
to make updates. We refer to the points as the event points pi ∈ P . They are processed in a
total order de�ned by ≺: P × P 7→ Bool. Here we assume the events are known ahead of
time. As the algorithm processes the points, a data structure T is maintained and updated
at each event point to track the status at that point. Sarnak and Tarjan [242] �rst noticed
that by being persistent, one can keep the intermediate structures ti ∈ T at all event points
for later queries. In this chapter, we adopt the same methodology, but parallelize it.

Typically in sweepline algorithms, on encountering an event point pi we compute ti
from the previous structure ti−1 and the new pointpi using an update functionh : T×P 7→ T ,
i.e., ti = h(ti−1,pi). The initial structure is t0. A sweepline algorithm can therefore be
de�ned as the �ve tuple:

S = SW ( P ; ≺: P × P 7→ Bool; T ; t0 ∈ T ; h : P ×T 7→ T )

It de�nes a function that takes a set of points pi ∈ P and returns a mapping from each
point to a data structure ti ∈ T .

9.2.2 Using Pre�x Structures for Sweepline Algorithms

In many non-trivial instantiation of the sweepline algorithms, especially the applica-
tions discussed in this chapter, the update function is associative. In this case, the data
structures of the sweepline algorithm is equivalent to maintaining the pre�x structures
of an augmented map. In particular, we store the sequence of event points in order in a
map m, and at each point pi we use the augmented value of the pre�x in m up to pi as
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the pre�x structure. This is equivalent to using a combination of function f and д as the
update function. That is to say, an augmented map m = AM(K, ≺,V ,A, f ,д,a∅) can be
implemented by a sweepline paradigm S as:

S = SW(K ×V ;≺;A; t0 ≡ I ;h(t,p) ≡ f (t,д(p))) (9.1)

In such a sweepline algorithm, we accordingly also call ti the pre�x structure at the
event point i .

We present a parallel algorithm to build the pre�x structures, assuming the update
function h can be applied “associatively” to the pre�x structures. We assume h(t,p) ≡
fh(t,дh(p)) for some associative function fh : T ×T 7→ T and дh : P 7→ T . Similarly as in
an augmented map, we call fh and дh the base and combine function of the corresponding
update function, respectively. Because of the associativity of hp , to repeatedly update
a sequence of points 〈pi〉 onto a “pre�x sum” t using h is equivalent to combining the
“partial sum” of all points 〈pi〉 to t using the combine function fh .

Meanwhile, S trivially �ts the parallel sweepline paradigm as de�ned in Equation 4.9
as follows:

S′ = PS(K ×V ; ≺; A; t0 ≡ a∅; h(t,p) ≡ f (t,д(p)); ρ f ,д; f ) (9.2)

where ρ f ,д(p1, . . .pn) ≡ f (д(p1), . . .д(pn)). This means we can apply Algorithm 1 to
construct such an augmented map in parallel.

The pre�x structures are especially useful for queries related to aug_left, as is the case
for many queries in the three applications in this chapter. When using the pre�x structures
to represent the outer map in range, segment and rectangle queries, the algorithms are
equivalent to sweepline algorithms, and they all accord with the assumption on the
function cost in Theorem 9.2.1.

9.2.3 Constructing Cost Bounds
As mentioned in Section 4.5, for reasonably complicated augmentations, especially the

sweepline algorithms that will be discussed in this chapter, trivially applying Algorithm 1
is not su�cient for guaranteeing good parallelism. This is because applying the combine
function b times in the sweeping step can be as expensive as the original sequential
sweepline algorithm, which is the reason that similar attempts previously did not achieve
useful depth bounds [107, 205] for parallel sweepline algorithms. We observed that in
many instantiations of this framework (especially those in this chapter), a parallel combine
function can be applied, which e�ectively guarantees the work-e�ciency and parallelism
of this algorithm. We formalize the typical setting as follows. In this chapter, we carefully
study the properties of the combine function f and its instantiations of the geometry
queries. Such properties guarantee the work-e�ciency, parallelism and the ease of coding
e�orts, and will be explained in the next several paragraphs. We formalize the typical
setting as follows.
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The update The fold The combine
function (h(t,p)) function (ρ(s)) function (f (t, t ′))

Work log |t | |s | log |s | |t ′ | log( |t |
|t ′ | + 1)

Depth log |t | log |s | log |t | log |t ′ |
Output |t | |s | |t ′ | + |t |

Table 9.1: A typical setting of the function costs in a sweepline paradigm – Bounds are in
Big-O notation.

In a common setting of sweepline algorithms, each pre�x structure keeps an ordered
set tracking some elements related to a subset of the processed event points, having size
O(i) at point i . The function h updates one element to the set at a time, which costs
O(logn) on a pre�x structure of size n. The corresponding combine function fh is some
set functions (e.g., a Union for a sequence of insertions). Using trees to maintain the
sets, previous work shows [74] that the set function can be done in O(n2 log(n1/n2 + 1))
work and O(logn1 logn2) depth for two set of size n1 and n2 ≤ n1. This algorithm is
implemented in the PAM library (as shown in Table 6.3). Creating the partial sum of a
block of r points costs O(r log r ) work and O(log r ) depth, building a pre�x structure of
size at most r . We summarize the setting in Table 9.1, and the corresponding bounds of
the sweepline algorithm in Theorem 9.2.1.

Theorem 9.2.1. A sweepline paradigm S as in Equation 9.2 can be built in parallel using
its corresponding parallel paradigm S′ (Equation 4.9). If the bounds as shown in Table 9.1
hold, then Algorithm 1 can construct all pre�x structures in work O(n logn) and depth
O(
√
n log1.5 n), where n is the number of event points.

Proof. The cost of the algorithm is analyzed as follows:
1. Batching. This step builds b pre�x structures, each of size at most n/b, so it takes

work O(b · nb log
n
b ) = O(n log

n
b ) and depth O(log n

b ).
2. Sweeping. This step invokes b times of the combine function fh sequentially,

but the combine function works in parallel. The size of t ′i is no more than O(r ).
Considering the given work and depth bounds of the combine function, the total
work of this step is bounded by: O

(∑b
i=1 r log(

ir
r + 1)

)
= O(n logb). The depth is:

O
(∑b

i=1 log r log ir
)
= O(b log n

b logn).
3. Re�ning. This step computes all the other pre�x structures using h. The total work

is: O
(∑n

i=1 log i
)
= O(n logn). We process each block in parallel, so the depth is

O(nb logn).

In total, it costs workO(n logn) and depthO
( (
b log n

b +
n
b

)
logn

)
. Whenb = Θ(

√
n/logn),

the depth is O(
√
n log1.5 n). �
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This parallel algorithm is also easy to implement. Our code is available online at
https://github.com/cmuparlay/PAM/blob/master/common/sweep.h. Theoretically,
by repeatedly applying this process to each block in the last step, we can further reduce
the depth to O(n−ϵ ) for any constant ϵ > 0. We state and prove the following corollary.

Corollary 9.2.2. A sweepline paradigm S as in Equation 9.2 can be parallelized using its
corresponding parallel paradigm S′ (Equation 4.9). If the bounds as shown in Table 9.1 hold,
then we can construct all pre�x structures in workO(1ϵn logn) and depth Õ(n

ϵ ) for arbitrary
small ϵ > 0.

Proof. To reduce the depth of the parallel sweepline paradigm, we adopt the same al-
gorithm as introduced in Theorem 9.2.1, but in the last re�ning step, repeatedly apply
the same algorithm on each block. If we repeat for a c of rounds, for the i-th round, the
work would be the same as splitting the total list into ki blocks. Hence the work is still
O(n logn) every round. After c rounds the total work is O(cn logn).

For depth, notice that the �rst step costs logarithmic depth, and the second step, after
c iterations, in total, requires depth Õ(cb) depth. The �nal re�ning step, as the size of each
block is getting smaller and smaller, the cost of each block is at most O( n

bi
logn) in the

i-th iteration. In total, the depth is Õ
(
cb + n

bc
)
, which, when b = c

c
c+1n

1
c+1 , is Õ(n1/(c+1)).

Let ϵ = 1/(c + 1), which can be arbitrary small by adjusting the value of c , we can get the
bound in Corollary 9.2.2. �

Specially, when c = logn, the depth will be reduced to polylogarithmic, and the total
work is accordingly O(n log2 n). This is equivalent to applying a recursive algorithm
(similar to the divide-and-conquer algorithm of the pre�x-sum problem). Although the
depth can be poly-logarithmic, it is not work-e�cient any more. If we set c to some given
constant, the work and depth of this algorithm are O(n logn) and O(nϵ ) respectively.

9.3 2D Range Query
Given a set of n points in the 2D plane, a range query asks some information of points

within the intersection of a horizontal range (xL, xR) and vertical range (yL,yR).
The 2D range query can be answered using a two-level map structure RangeMap, each

level corresponding to one dimension of the coordinates. The structure can answer both
counting queries and list-all queries. The de�nition (the outer map RM with inner map RI )
and an illustration are shown in Table 9.2 and Figure 9.1 (a). In particular, the key of the
outer map is the coordinate of each point and the value is the count. The augmented value
of such an outer map, which is the inner map, contains the same set of points, but are
sorted by y-coordinates. Therefore, the base function of the outer map is just a singleton
on the point and the combine function is Union. The augmented value of the inner map
counts the number of points in this (sub-)map. Then the construction of a sequence s of
points can be done with the augmented map interface as: rM = RM .Build(s).
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To answer queries, we use two nested range searches (xL, xR) on the outer map and
(yL,yR) on the corresponding inner map. The counting query can be represented using
the augmented map interface as:

RangeQuery(rM, xL, xR,yL,yR) =
RI .aug_range(RM .aug_range(rM, xL, xR),yL,yR) (9.3)

The list-all query can be answered similarly using RI .range instead of RI .aug_range.
In this thesis, we use augmented trees for inner maps. We discuss two implementations

of the outer map: the augmented tree, which yields a range-tree-like data structure, and
the pre�x structures, which yields a sweepline algorithm. We further discuss e�cient
updates on RangeTree using the augmented map interface.

9.3.1 2D Range Tree

If the outer map is supported using the augmented tree structure, the RangeMap be-
comes a range tree (RangeTree). In this case we do not explicitly buildRM .aug_range(rM, xL, xR)
in queries. Instead, as the standard range tree query algorithm, we search the x-range on
the outer tree, and conduct the y-range queries on the related inner trees. This operation
is supported by the function aug_project in the augmented map interface and the PAM
library as follows.

RangeQuery(rM, xL, xR,yL,yR) =
let д′(rI ) = aug_range(rI ,yL,yR) (9.4)
in aug_project(д′,+W , rM, xL, xR) (9.5)

The augProject on RO is the top-level searching of x-coordinates in the outer tree,
and д′ projects the inner trees to the weight sum of the corresponding y-range. f ′

(i.e., +W ) combines the weight of all results of д′ to give the sum of weights in the
rectangle. When f ′ is an addition, д′ returns the range sum, and f is a union, the condition
f ′(д′(a),д′(b)) = д′(a) + д′(b) = д′(a ∪ b) = д′(f (a,b)) holds, so aug_project is applicable.
Combining the two steps together, the query time is O(log2 n). We can also answer range
queries that report all point inside a rectangle in time O(k + log2 n), where k is the output
size.

Such a tree structure can be constructed within work O(n logn) and depth O(log3 n)
(theoretically the depth can be easily reduced to O(log2 n), but in the experiments we use
the O(log3 n) version to make fewer copies of data). It answers the counting query in
O(log2 n) time, and report all queried points in O(k + log2 n) time for output size k .
Fast Updates on Range Trees Using Augmented Map Interface. The tree-based
augmented map interface supports insertions and deletions (implementing the appropriate
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rotations). This can be used to insert and delete on the augmented tree interface. However,
by default this requires updating the augmented values from the leaf to the root, for a total
of O(n) work. Generally, if augmented trees are used to support augmented maps, the
insertion function will re-compute the augmented values of all the nodes on the insertion
path, because inserting an entry in the middle of a map could completely change the
augmented value. In the range tree, the cost is O(n) per update because the combine
function (Union) has about linear cost. To avoid this we implemented a version of “lazy”
insertion/deletion that applies when the combine function is commutative. Instead of
recomputing the augmented values it simply adds itself to (or removes itself from) the
augmented values along the path using f and д. This is similar to the standard range tree
update algorithm [195].

The amortized cost per update is O(log2 n) if the tree is weight-balanced. Here we
take the insertion as an example, but similar methodology can be applied to any mix
of insertion and deletion sequences (to make deletions work, one may need to de�ne
the inverse function f −1 of the combine function). Intuitively, for any subtree of sizem,
imbalance occur at least every Θ(m) updates, each cost O(m) to rebalance. Hence the
amortized cost of rotations per level is O(1), and thus the for a single update, it is O(logn)
(sum across all levels). Directly inserting the entry into all inner trees on the insertion
path causes O(logn) insertions to inner trees, each cost O(logn). In all the amortized cost
is O(log2 n) per update.

Similar idea of updating multi-level trees in (amortized) poly-logarithmic time can
be applied to SegTree*, RecTree and RecTree*. For SegTree, the combine function is not
communicative, and thus update may be more involved than simply using the interface of
lazy-insert function.

9.3.2 The Sweepline Algorithm

We now present a parallel sweepline algorithm RangeSwp for 2D range queries using
our parallel sweepline paradigm, which can answer counting queries e�ciently. We use
the pre�x structures to represent the outer map. Then each pre�x structure is an inner
map tracking all points up to the current point sorted by y-coordinates. The combine
function of the outer map is Union, so the update function h can be an insertion and the
fold function ρ builds an inner map from a list of points. The de�nition of this sweepline
paradigm RS is shown in Table 9.2.

Since the inner maps are implemented by augmented trees, the theoretical bound of the
functions (insert, build, and union) are consistent with the assumptions in Theorem 9.2.1.
Thus the theoretical cost of RangeSwp follows from Theorem 9.2.1. This data structure
takes O(n logn) space because of persistence. We note that previous work [127] showed
a more space-e�cient version (linear space), but the goal in this chapter is to show a
generic paradigm that can easily implement many di�erent problems without much extra
e�ort. naively such a data structure would cost O(n2) space as the pre�x structure sizes
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are 1 through n. However if persistence is supported by path copying, at most one new
tree node is created in unit work. Thus the extra space it requires is asymptotically no
more than its work, which is O(n logn). Note that in [127] a more space-e�cient version
(linear space) is shown, but our point here is to show that our paradigm is generic and
simple for many di�erent problems without much extra cost.
AnsweringQueries. ComputingARange(rM, xL, xR) explicitly in Equation 9.3 on RangeSwp
can be costly. We note that it can be computed by taking a Di�erence on the pre�x struc-
ture tR at xR and the pre�x structure tL at xL (each can be found by a binary search). If
only the count is required, a more e�cient query can be applied. We can compute the
number of points in the range (yL,yR) in tL and tR respectively, using ARange, and the
di�erence of them is the answer. Two binary searches cost O(logn), and the range search
on y-coordinates costs O(logn). Thus the total cost of a single query is O(logn).
Extension to Report All Points. This sweepline algorithm can be ine�cient in list-all
queries. Here we propose a variant for list-all queries. It is similar to RangeSwp, but
instead of the count, the augmented value is the maximum x-coordinate among all points
in the map. To answer queries we �rst narrow the range to the points in the inner map
tR by just searching xR . In this case, tR is an augmented tree structure. Then all queried
points are those in tR with x-coordinates larger than xL and y-coordinate in [yL,yR]. We
still conduct a standard range query in [yL,yR] on tR , but adapt an optimization that if
the augmented value of a subtree node is less than xL, the whole subtree is discarded.
Otherwise, at least part of the points in the tree would be relevant and we recursively
deal with its two subtrees.

The cost of this algorithm is similar to the aug_�lter algorithm, which isO(k log(n/k +
1)) on output k elements. In total, the cost of one query isO(logn+k log(nk +1)) for output
size k . Comparing with RangeTree, which costs O(k + log2 n) per query, this algorithm is
asymptotically more e�cient when k < logn.

9.4 2D Segment Query
Given a set of non-intersecting 2D segments, and a vertical segment Sq , a segment

query asks for some information about the segments that cross Sq . We de�ne a segment
as its two endpoints (li, ri) where li, ri ∈ D, x(li) ≤ x(ri), and say it starts from x(li) and
ends at x(ri).

In this chapter, we introduce a two-level map structure SegMap addressing this problem
(shown in Table 9.2 and Figure 9.1 (b)). The keys of the outer map are the x-coordinates
of all endpoints of the input segments, and the values are the corresponding segments.
Each (sub-)outer map corresponds to an interval on the x-axis (from the leftmost to the
rightmost key in the sub-map), noted as the x-range of this map. The augmented value
of an outer map is a pair of inner maps: L(·) (the left open set) which stores all input
segments starting outside of its x-range and ending inside (i.e., only the right endpoint

119



Range Query:
Inner Map:

RI =AM( K : D; ≺: <Y ; V : Z; A: Z; д: (k,v) 7→ 1; f : +Z; I : 0 )
Outer Maps:
- RangeMap RM =AM( K : D; ≺: <X ; V : Z; A: RI ; д: RI .singleton; f : RI .union; I : ∅ )
- RangeSwp RS = PS ( P : D; ≺: <X ;T : RI ; t0: ∅ h: RI .insert ρ: RI .build; f : RI .union)

Segment Query:
Inner Map:

SI =AM( K : D × D; ≺: <Y ; V : ∅; A: Z; д: (k,v) 7→ 1; f : +Z; I : 0 )
Outer Maps:
- SegMap SM =AM( K : X ; ≺: <X ; V : D × D; A: SI × SI ; д: дseg f : fseg I : (∅, ∅) )

дseg(k, (pl ,pr )):
{
(∅, SI .singleton(pl ,pr ),when k = x(pl )

(SI .singleton(pl ,pr ), ∅),when k = x(pr )
, fseg: See Equation 9.6;

- SegSwp SS = PS ( P : D × D; ≺: <X ;T : SI ; t0: ∅; h: hseg; ρ: ρseg; f : fseg )

hseg(t,p) =
{
SI .insert(t,p),when p is a left endpoint
SI .delete(t,p),when p is a right endpoint

,

ρseg(〈pi 〉) = 〈L,R〉

{
L ∈ SI : segments with right endpoint in 〈pi 〉
R ∈ SI : segments with left endpoint in 〈pi 〉

Rectangle Query:
Inner Map:

GI =AM( K : Y ; ≺: <Y ; V : D × D; A: Y ; д: дi ; f : maxY ; I : −∞ )
Outer Maps:
- RecMap GM =AM( K : X ; ≺: <X ; V : D × D; A: GI ×GI ; д: дrec f : frec I : (∅, ∅) )

дrec and frec are de�ned similarly as дseg and fseg
- RecSwp GS = PS ( P : D × D; ≺: <X ;T : GI ; t0: ∅; h: hrec; ρ: ρrec; f : fseg )

дi (k, (pl ,pr )) = y(pr ),дrec, frec, hrec and ρrec are de�ned similarly as дseg, fseg, hseg and ρseg

Table 9.2: De�nitions of all structures in Chapter 9 for 2D geometric queries - Although
this table seems complicated, we note that it fully de�nes all data structures in this chapter using
augmented maps. X and Y are types of x- and y-coordinates. D = X × Y is the type of a point.

is in its x-range), and symmetrically R(·) (the right open set) with all segments starting
inside but ending outside. We call them the open sets of the corresponding interval. The
open sets of an interval u can be computed by combining the open sets of its sub-intervals.
In particular, suppose u is composed of two contiguous intervals ul and ur , then u’s open
sets can be computed by a function fseg as:

fseg(〈L(ul ),R(ul )〉, 〈L(ur ),R(ur )〉) =

〈L(ul ) ∪ (L(ur )\R(ul )),R(ur ) ∪ (R(ul )\L(ur ))〉 (9.6)

Intuitively, taking the right open set as an example, it stores all segments starting in ur
and going beyond, or those stretching out from ul but not ending in ur . This function is
associative. We use fseg as the combine function of the outer map.
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Figure 9.1: An illustration of all data structures based on augmentedmaps for geometric
quereis - The input data are shown in the middle rectangle. We show the tree structures on the
top, and the sweepline algorithm on the bottom. All the inner trees (the augmented values or the
pre�x structures) are shown as sets (or a pair of sets) with elements listed in sorted order.

The base function дseg of the outer map (see Table 9.2) computes the augmented value
of a single entry. For an entry (xk, (pl ,pr )), the interval it represents is the solid point at xk .
WLOG we assume xk = x(pl ) such that the key is the left endpoint. Then the only element
in its open sets is the segment itself in its right open set. If xk > xv it is symmetric.

We organize all segments in an inner map sorted by their y-coordinates and augmented
by the count, such that in queries, the range search on y-coordinates can be done in the
corresponding inner maps. We note that all segments in a certain inner tree must cross one
common x-coordinate. For example, in the left open set of an interval i , all segments must
cross the left border of i . Thus we can use the y-coordinates at this point to determine the
ordering of all segments. Note that input segments are non-intersecting, so this ordering
of two segments is consistent at any x-coordinate. The de�nition of such an inner map is
in Table 9.2 (the inner map SI ). The construction of the two-level map SegMap (SM ) from
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a list of segments B = {(pl ,pr )} can be done as follows:

sM =SM .build(B′), where
B′ = {(x(pl ), (pl ,pr )), (x(pr ), (pl ,pr )) : (pl ,pr ) ∈ B}

Assume the query segment is (ps,pe), where x(ps) = x(pe) = xq and y(ps) < y(pe).
The query will �rst �nd all segments that cross xq , and then conduct a range query on
(y(ps),y(pe)) on the y-coordinate among those segments. To �nd all segments that cross
xq , note that they are the segments starting before xq but ending after xq , which are exactly
those in the right open set of the interval (−∞, xq). This can be computed by the function
ALeft. The counting query can be done using the augmented map interface as:

SegQuery(sM,ps,pe) = SI .aug_range
(ROpen(SM .aug_left(sM, x(pt ))),y(ps),y(pe))

where ROpen(·) extracts the right open set from an open set pair. The list-all query can be
answered similarly using SI .Range instead of SI .ARange.

We use augmented trees for inner maps. We discuss two implementations of the outer
map: the augmented tree (which yields a segment-tree-like structure SegTree) and the
pre�x structures (which yields a sweepline algorithm SegSwp). We also present another
two-level augmented map (Segment* Map) structure that can answer counting queries on
axis-parallel segments.

9.4.1 The Segment Tree

If the outer map is implemented by an augmented tree, the SegMap becomes very
similar to a segment tree (noted as SegTree). Previous work has studied a similar data
structure [17, 32, 101]. We note that their version can deal with more types of queries and
problems, but we know of no implementation work of a similar data structure. Our goal
is to show how to apply the simple augmented map framework to model the segment
query problem, and show an e�cient and concise parallel implementation of it.

In segment trees, each subtree represents an open interval, and the union of all intervals
in the same level span the whole interval (see Figure 9.1 (b) as an example). The intervals
are separated by the endpoints of the input segments, and the two children partition the
interval of the parent. Our version is slightly di�erent from the classic segment trees in
that we also use internal nodes to represent a point on the axis. For example, a tree node u
denoting an interval (l, r ) have its left child representing (l,k(u)), right child for (k(u), r ),
and the single node u itself, is the solid point at it key k(u). For each tree node, the SegTree
tracks the open sets of its subtree’s interval, which is exactly the augmented value of the
sub-map rooted at u. The augmented value (the open sets) of a node can be generated by
combining the open sets of its two children (and the entry in itself) using Equation 9.6.
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Answering Queries more e�ciently. Calling the ALeft function on the outer tree
of SegTree is costly, as it would require O(logn) function calls of Union and Di�erence
on the way. Here we present a more e�cient query algorithm making use of the tree
structure, which is a variant of the algorithm in [32, 101]. Besides the open sets, in each
node we store two helper sets (called the di�erence sets): the segments starting in its left
half and going beyond the whole interval (R(ul )\L(ur ) as in Equation 9.6), and vice versa
(L(ur )\R(ul )). We note that the calculation of the di�erence sets is not associative, but
depends on the tree structure. These di�erence sets are the side-e�ect of computing the
open sets. Hence in implementations we just keep them with no extra work. Suppose xq
is unique to all the input endpoints. The query algorithm �rst searches xq outer tree. Let
u be the current visited tree node. Then xq falls in either the left or the right side of k(u).
WLOG, assume xq goes right. Then all segments starting in the left half and going beyond
the range of u should be reported because they must cover xq . All such segments are in
R(lc(u))\L(rc(u)), which is in u’s di�erence sets. The range search on y-coordinates will
be done on this di�erence sets tree structure. After that, the algorithm goes down to u’s
right child to continue the search recursively. The cost of returning all related segments
is O(k + log2 n) for output size k , and the cost of returning the count is O(log2 n).

9.4.2 The Sweepline Algorithm

If pre�x structures are used to represent the outer map, the algorithm becomes a
sweepline algorithm SegSwp (shown as SS in Table 9.2). We store at each endpoint p the
augmented value of the pre�x of all points up to p. Because the corresponding interval
is a pre�x, the left open set is always empty. For simplicity we only keep the right open
set as the pre�x structure, which is all “alive” segments up to the current event point (a
segment (pl ,pr ) is alive at some point x ∈ X i� x(pl ) ≤ x ≤ x(pr )).

Sequentially, this is a standard sweepline algorithm for segment queries—as the line
sweeping through the plane, each left endpoint should trigger an insertion of its corre-
sponding segment into the pre�x structure while the right endpoints cause deletions. We
note that this is also what happens when a single point is plugged in as ur in Equation 9.6.
We use our parallel sweepline paradigm to parallelize this process. In the batching step, we
compute the augmented value of each block, which is the open sets of the corresponding
interval. The left open set of an interval are segments with their right endpoints inside
the interval, noted as L, and the right open set is those with left endpoints inside, noted
as R. In the sweeping step, the pre�x structure is updated by the combine function fseg,
but only on the right open set, which is equivalent to �rst taking a Union with R and then
a Di�erence with L. Finally, in the re�ning step, each left endpoint triggers an insertion
and each right endpoint causes a deletion. This algorithm �ts the sweepline abstraction
in Theorem 9.2.1, so the corresponding bound holds.
Answering Queries. The ALeft function on the pre�x structure is just a binary search
of xq in the sorted list of x-coordinates. In that pre�x structure all segments are sorted by
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y-coordinates, and we search the query range of y-coordinates on that. In all, a query for
reporting all intersecting segments costs O(logn + k) (k is the output size), and a query
on counting related segments costs O(logn).

9.4.3 Data Structures for Segment Counting Queries
In this section, we present a simple two-level augmented map SegMap* structure to

answer segment count queries (see the Segment Count Query in Table 9.2 and Figure
9.1 (d)). This map structure can only deal with axis-parallel input segments. For each
input segment (pl ,pr ), we suppose x(pl ) = x(pr ), and y(pl ) < y(pr ). We organize the
x-coordinates in the outer map, and deal with y-coordinates in the inner trees. We �rst
look at the inner map. For a set of 1D segments, a standard solution to count the segments
across some query point xq is to organize all end points in sorted order, and assign signed
�ags to them as values: left endpoints with 1, and right endpoints with −1. Then the
pre�x sum of the values up to xq is the number of alive segments. To e�ciently query
the pre�x sum we can organize all endpoints as keys in an augmented map, with values
being the signed �ags, and augmented values adding values. We call this map the count
map of the segments.

To extend it to 2D scenario, we use a similar outer map as range query problem.
On this level, the x-coordinates are keys, the segments are values, and the augmented
value is the count map on y-coordinates of all segments in the outer map. The combine
function is union on the count maps. However, di�erent from range maps, here each tree
node represents two endpoints of that segment, with signed �ags 1 (left) and −1 (right)
respectively, leading to a di�erent base function (д∗seg).

We maintain the inner maps using augmented trees. By using augmented trees and
pre�x structures as outer maps, we can de�ne a two-level tree structure and a sweepline
algorithm for this problem respectively. Each counting query on the count map of size m
can be done in timeO(logm). In all, the rectangle counting query cost timeO(log2 n) using
the two-level tree structure SegTree*, and O(logn) time using the sweepline algorithm
SegSwp*.

We present corresponding de�nition and illustration on both the multi-level tree
structure and the sweepline algorithm in Table 9.2 and Figure 9.1 (d).

9.5 2D Rectangle Query
Given a set of rectangles in two dimensions, a rectangle query asks for all rectangles

containing a query point pq = (xq,yq). Each rectangle C = (pl ,pr ), where pl ,pr ∈ D, is
represented as its left-top and right-bottom vertices. We say the interval [x(pl ), x(pr )] and
[y(pl ),y(pr )] are the x-interval and y-interval of C , respectively.

The rectangle query can be answered by a two-level map structure RecMap (GM in
Table 9.2 and Figure 9.1 (c)), which is similar to the SegMap as introduced in Section
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9.4. The outer map organizes all rectangles based on their x-intervals using a similar
structure to the outer map of SegMap. The keys of the outer map are the x-coordinates of
all endpoints of the input rectangles, and the values are the rectangles. The augmented
value of a (sub-)outer map is also the open sets as de�ned in SegMap, which store the
rectangles that partially overlap the x-range of this sub-map. The combine function is
accordingly the same as the segment map.

Each inner map of the RecMap organizes the rectangles based on their y-intervals. All
the y-intervals in an inner tree are organized in an interval tree (the term interval tree
refers to di�erent de�nitions in the literature. We use the de�nition in [118]). The interval
tree is an augmented tree (map) structure storing a set of 1D intervals sorted by the left
endpoints, and augmented by the maximum right endpoint in the map. Previous work
[262] has studied implementing interval trees using the augmented map interface. It can
report all intervals crossing a point in time O(logn + k log(n/k + 1)) for input size n and
output size k .

RecMap answers the enclosure query of point (xq,yq) using a similar algorithm to
SegMap. The query algorithm �rst �nds all rectangles crossing xq by computing the right
open set R in the outer map up to xq using ALeft, which is an interval tree. The algorithm
then selects all rectangles in R crossing yq by applying a list-all query on the interval tree.

Using interval trees as inner maps does not provide an e�cient interface for counting
queries. We use the same inner map as in SegMap* for counting queries.

We use augmented trees for inner maps (the interval trees). We discuss two implemen-
tations of the outer map: the augmented tree (which yields a multi-level tree structure)
and the pre�x structures (which yields a sweepline algorithm).

9.5.1 The Multi-level Tree Structure.

RecMap becomes a two-level tree structure if the outer map is supported by an aug-
mented tree, which is similar to the segment tree, and we use the same trick of storing
the di�erence sets in the tree nodes to accelerate queries. The cost of a list-all query is
O(k log(n/k + 1) + log2 n) for output size k .

9.5.2 The Sweepline Algorithm

If we use pre�x structures to represent the outer map, the algorithm becomes a
sweepline algorithm (GS in Table 9.2). The skeleton of the sweepline algorithm is the
same as SegSwp—the pre�x structure at event point x stores all “live” rectangle at x . The
combine function, fold function and update function are de�ned similar as in SegSwp, but
onto inner maps as interval trees. This algorithm also �ts the sweepline abstraction in
Theorem 9.2.1, so the corresponding bound holds.
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Figure 9.2: The speedup of building various data structures for range, segment and rect-
angle queries– n = 108.

To answer the list-all query of point (xq,yq), the algorithm �rst �nds the pre�x structure
tq at xq , and applies a list-all query on the interval tree tq at point yq . The cost is O(logn +
k log(n/k + 1)) per query for output size k .

9.5.3 Data Structures for Rectangle Counting Queries
In this section, we extend the RecMap structure to RecMap* for supporting fast counting

queries. We use the exactly outer map as RecMap, but use base and combine functions
on the corresponding inner maps. The inner map, however, is the same map as the count
map in SegMap* (S∗I in Table 9.2). Then in queries, the algorithm will �nd all related inner
maps, which are count maps storing all y-intervals of related rectangles. To compute the
count of all the y-intervals crossing the query point yq , the query algorithm simply apply
an ALeft on the count maps.

We maintain the inner maps using augmented trees. Using augmented trees and pre�x
structures as outer maps, we can de�ne a two-level tree structure and a sweepline algo-
rithm for this problem respectively. The rectangle counting query cost timeO(log2 n) using
the two-level tree structure RecTree*, and O(logn) time using the sweepline algorithm
RecSwp*.

We present corresponding de�nition and illustration on both the multi-level tree
structure and the sweepline algorithm in Table 9.2. The outer representation of RecMap*
is of the same format as RecMap as shown in Figure 9.1 (c).

9.6 Experiments
We implement all data structures in this chapter using PAM. We run our experiments

on a 72-core Dell R930 with 4 x Intel(R) Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB L3
cache) with 1TB memory. Each core is 2-way hyperthreaded giving 144 hyperthreads. Our
code was compiled using the g++ 5.4.1 compiler which supports the Cilk Plus extensions.
We compile with -O2.

All implementations of augmented trees used in the our algorithms are supported
by PAM [262]. We implement the abstract parallel sweepline paradigm as described in
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Section 9.2.2. On top of them, each of our data structures only need about 100 lines of
code. Our code is available online at https://github.com/cmuparlay/PAM. More details
about PAM can be found online [261] and in our previous work [262].

For range queries, we test RangeTree and RangeSwp in Section 9.3. The tested RangeTree
implementation is based on the range tree code in the previous paper [262]. For segment
queries, we test SegTree and SegSwp in Section 9.4, as well as the counting versions SegTree*
and SegSwp* in Appendix 9.4.3. For rectangle queries, we test RecTree and RecSwp in
Section 9.5, as well as the counting versions RecTree* and RecSwp* in Appendix 9.5.3. We
use integer coordinates. We test both construction time and query time, and both counting
queries and list-all queries. In some of the problems, the construction of the data structure
for counting and list-all queries can be slightly di�erent, and we always report the version
for counting queries. On list-all queries, since the cost is largely a�ected by the output
size, we test a small and a large query window with average output size of less than 10
and about 106 respectively. We accumulate query time over 103 large-window queries
and over 106 small window queries. For counting queries we accumulate 106 queries. For
parallel queries we process all queries in parallel using a parallel for-loop. The sequential
algorithms tested in this chapter are directly running the parallel algorithms on one core.
We use n for the input size, k the output size, p the number of threads. For the sweepline
algorithms we set b = p, and do not apply the sweepline paradigm recursively to blocks.

We compare our sequential versions with two C++ libraries CGAL [98] and Boost [5].
CGAL provides a range tree [215] structure similar to ours, and the segment tree [215] in
CGAL implements the 2D rectangle query. Boost provides an implementation of R-trees,
which can be used to answer range, segment and rectangle queries. CGAL and Boost
only support list-all queries. We parallelize the queries in Boost using OpenMP. CGAL
uses some shared state in queries so the queries cannot be parallelized trivially. We did
not �nd comparable parallel implementations in C++, so we compare our parallel query
performance with Boost. We also compare the query and construction performance of our
multi-level tree structures and sweepline algorithms with each other, both sequentially
and in parallel.

In the rest of this section we show results for range, segment and rectangle queries and
comparisons across all tested structures. We show that our implementations achieve good
speedup (32-126x on 72 cores with 144 hyperthreads). The overall sequential performance
(construction and query) of our implementations is comparable or outperforms existing
implementations.

9.6.1 2D Range Queries

We test RangeTree and RangeSwp for both counting and list-all queries, sequentially
and in parallel. We test 108 input points generated uniformly randomly. For counting
queries, we generate endpoints of the query rectangle uniformly randomly. For list-all
queries with large and small windows, we control the output size by adjusting the average
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Algorithm Build, s Counting, µs List-all (small), µs List-all (large), ms
Seq. Par. Spd. Seq. Par. Spd. Seq. Par. Spd. Seq. Par. Spd.

RangeSwp 243.89 7.30 33.4 12.74 0.15 86.7 11.44 0.13 85.4 213.27 1.97 108.4
RangeTree 200.59 3.16 63.5 61.01 0.75 81.1 17.07 0.21 80.5 44.72 0.69 65.2

Boost 315.34 - - - - - 25.41 0.51 49.8 1174.40 22.42 52.4
CGAL 525.94 - - - - - 153.54 - - 110.94 - -
SegSwp 254.49 7.20 35.3 6.78 0.09 75.3 6.18 0.08 77.2 255.72 2.65 96.5
SegTree 440.33 6.79 64.8 50.31 0.70 71.9 39.02 0.48 81.7 123.26 1.99 61.9
Boost 179.44 - - - - - 7421.30 113.09 65.6 998.20 23.21 43.0

SegSwp* 233.19 7.16 32.6 7.44 0.11 67.6 - - - - - -
SegTree* 202.01 3.21 63.0 33.58 0.40 83.8 - - - - - -
RecSwp 241.51 6.76 35.7 - - - 8.34 0.10 83.4 575.46 5.91 97.4
RecTree 390.98 6.23 62.8 - - - 43.57 0.58 75.1 382.26 5.35 71.4
Boost 183.65 - - - - - 52.22 0.94 55.6 706.50 11.10 63.6

CGAL[1] 398.44 - - - - - 90.02 - - 4412.67 - -
RecSwp* 585.18 12.37 47.32 6.56 0.05 126.1 - - - - - -
RecTree* 778.28 11.34 68.63 39.75 0.35 113.6 - - - - - -

Table 9.3: The running time of all data structures on geometric applications - “Seq.”, “Par.”
and “Spd.” refer to the sequential, parallel running time and the speedup. [1]: Result of CGAL is
shown as on input size 5 × 106. On 5 × 107, CGAL did not �nish in one hour.

length of the edge length of the query rectangle. We show the running time in Table 9.3.
We show the scalability curve for construction in Figure 9.2 (a).
Sequential Construction. RangeTree and RangeSwp have similar performance and
outperform CGAL (2x faster) and Boost (1.3-1.5x). Among all, RangeTree is the fastest in
construction. We guess the reason of the faster construction of our RangeTree than CGAL
is that their implementation makes copies the data twice (once in merging and once to
create tree nodes) while ours only copies the data once.
Parallel Construction. RangeTree achieves a 63-fold speedup on n = 108 and p = 144.
RangeSwp has relatively worse parallel performance, which is a 33-fold speedup, and
2.3x slower than RangeTree. This is likely because of its worse theoretical depth (Õ(

√
n)

vs. O(log2 n)). As for RangeTree, not only the construction is highly-parallelized, but the
combine function (Union) is also parallel. Figure 9.2(a) shows that both RangeTree and
RangeSwp scale up to 144 threads.
Query Performance. In counting queries, RangeSwp shows the best performance in
both theory and practice. On list-all queries, RangeSwp is much slower than the other
two range trees when the query window is large, but shows better performance for small
windows. These results are consistent with their theoretical bounds. Boost’s R-tree is
1.5-26x slower than our implementations, likely because of lack of worst-case theoretical
guarantee in queries. Our speedup numbers for queries are above 65 because they are
embarrassingly parallel, and speedup numbers of our implementations are slightly higher
than Boost.
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9.6.2 2D Segment Query

We test 5× 107 input segment, using SegSwp, SegTree, SegSwp* and SegTree*. Note that
for these structures on input size n (number of segments), 2n points are needed in the map.
Thus we use input size of n = 5 × 107 for comparison with the maps for range queries.
The x-coordinate of each endpoint is generated uniformly randomly. To guarantee that
the input segments do not intersect, we generate n non-overlapping intervals as the
y-coordinates and assign each of them to a segment uniformly randomly. For SegSwp*
and SegTree*, each segment is directly assigned a y-coordinate uniformly randomly. For
counting queries, we generate endpoints of the query segment uniformly randomly. For
list-all queries with large and small windows, we control the output size by adjusting the
average length of the query segment. We show the running times in Table 9.3. We also
show the parallel speedup for construction in Figure 9.2(b).
Sequential Construction. Boost is 1.4x faster than SegSwp and 2.4x than SegTree. This
is likely due to R-tree’s simpler structure. However, Boost is 4-1200x slower in queries
than our implementations. SegTree is the slowest in construction because it stores four
sets (the open sets and the di�erence sets) in each node, and calls two Di�erence and two
Union functions in each combine function.
Parallel Construction. In parallel construction, SegTree is slightly faster than SegSwp.
Considering that SegTree is 1.7x slower than SegSwp sequentially, the good parallelism
comes from its good scalability (64x speedup). The lack of parallelism of SegSwp is for the
same reason as RangeSwp.
Query Performance. In the counting query and list-all query on small window size,
SegSweep is signi�cantly faster than SegTree as would be expected from its better theoretical
bound. As for list-all on large window size, although SegTree and SegSwp have similar
theoretical cost (output size k dominates the cost), SegTree is faster than SegSwp both
sequentially and in parallel. This might have to do with locality. In the sweepline
algorithms, the tree nodes even in one pre�x structure were created at di�erent times
because of path-copying, and thus are not contiguous in memory, leading to bad cache
performance. Both SegSwp and SegTree have better query performance than Boost’s R-tree
(8.7-1400x faster in parallel). Also, the Boost R-tree does not take advantage of smaller
query windows. Comparing the sequential query performance on large windows with
small windows, on outputting about 106x less points, SegTree and SegSwp are 3000x and
40000x faster respectively, while Boost’s R-tree is only 130x faster. Our implementations
on small windows is not 106x as fast as on large windows because on small windows the
logn or log2 n term dominates the cost. This illustrates that the bad query performance of
R-trees comes from lack of worst-case theoretical guarantee. The query speedup of our
implementations is over 61.
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9.6.3 2D Rectangle Query

We test rectangle queries using RecSwp, RecTree, RecSwp* and RecTree*, on n = 5× 107.
The the query points are generated uniformly randomly. For counting queries, the
endpoints of the input rectangles are generated uniformly randomly. For list-all queries
with large and small windows, we control the output size by adjusting the average length
of the edge length of the input rectangle. The running times are reported in Table 9.3, and
the parallel speedup for construction are in Figure 9.2(c).
Sequential Construction. Sequentially, RecSwp, RecTree and Boost R-tree have per-
formance close to segment queries – Boost is faster in construction than the other two
(1.6-2.1x), but is much slower in queries, and RecTree is slow in construction because of its
more complicated structure. CGAL did not �nish construction on n = 5 × 107 in one hour,
and thus we present the results on n = 5 × 106. In this case, CGAL has a performance
slightly worse than our implementations even though our input size is 10x larger.
Parallel Construction. The parallel performance is similar to the segment queries, in
which RecTree is slightly faster than RecSwp because of good scalability (62x speedup).
Query Performance. In list-all queries on a small window size, RecSwp is signi�cantly
faster than other implementations due to its better theoretical bound. Boost is 1.2-9x
slower than our implementations when query windows are small, and is 1.2-2x slower
when query windows are large, both sequentially and in parallel. The query speedup of
our implementations is over 71.

9.6.4 Discussion on the Data Structures for Counting Queries

We list the performance of the four data structures for fast answering counting queries
in Table 1.3. SegTree* and SegSwp* both have faster construction time than SegTree and
SegSwp probably because they have simpler structure and less functionality (cannot answer
list-all queries). Another reason is that SegTree* and SegSwp* both have smaller outer map
sizes (5 × 107 vs. 108), thus requiring fewer invocations of combine functions on the top
level. RecSwp* and RecTree*, however, is about 2x slower than RecSwp and RecTree. This
is because they have twice as large the inner tree sizes—an inner tree of a RecMap is an
interval tree storing each rectangle once as its y-interval, while an inner tree of a RecMap*
is a count map storing each rectangle twice as the two endpoints of its y-interval.

Overall, the results of these four data structures consists with the other data structures.
In constructions, the sweepline algorithms have better sequential performance, but the
two-level tree structures have better speedup and parallel performance. In counting
queries, the sweepline algorithms are always much faster than the two-level tree structures
because of their better theoretical bound.
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Algorithm m Seq. (s) Par. (s) Spd.
AugInsert 10 406.079 5.366 75.670
LazyInsert 105 12.506 - -

Table 9.4: The performance of insertions on range trees using the lazy-insert function
in PAM - “Seq.”, “Par.” and “Spd.” mean the sequential running time, parallel running time and the
speedup number respectively.

9.6.5 Experimental Results on Dynamic Range Trees

We use the lazy-insert function (assuming a commutativity combine function) in
PAM to support the insertion on range trees and test the performance. We �rst build
an initial tree of size using our construction algorithm, and then conduct a sequence
of insertions on this tree. We compare it with the plain insertion function (denoted as
AugInsert) in PAM which is general for the augmented tree (re-call the combine function
on every node on the insertion path). We show the results in Table 9.4. Because the
combine function takes linear time, each AugInsert function costs about 40s, meaning
that even 5 insertions may cost as expensive as re-build the whole tree. This function
can be parallelized, with speedup at about 75x. The parallelism comes from the parallel
combine function Union. The LazyInsert function is much more e�cient and can �nish
105 insertions in 12s sequentially. Running in parallel does not really help in this case
because the the combine function (Union) is very rarely called, and even when it is called,
it would be on very small tree size. When the size increases to 106, the cost is also greater
than rebuilding the whole tree. This means that in practice, if the insertions come in large
bulks, rebuilding the tree (even sequentially) is often more e�cient than inserting each
point one by one into the tree. When there are only a small number of insertions coming
in streams, LazyInsert is reasonable e�cient.

9.6.6 Experimental Results on Space Consumption

In Table 9.5, we report the space consumption using our data structures of range,
segment and rectangle queries as examples to show the space-e�ciency of our implemen-
tations. We note that for rectangle queries, the outer map structure is similar to segment
queries, and thus can be estimated roughly using the results of segment queries. We store
in each tree node a key, a value, an augmented value, the subtree size, two pointers to its
left and right children and a reference counter for e�cient garbage collection. Each inner
tree is represented using a root pointer.

For all of them we estimate the theoretical number of nodes needed and show them
in the table. The theoretical space cost is O(n logn) for all of them. For SegTree we use
2n logn to estimate the number of inner tree nodes, and for the rest of them we simply
use n logn. This is because in a SegTree, there are 4 inner trees stored in each of the outer
tree node, and in the worst case, a segment can appear in at most two of them (one in the

131



open sets and the other in di�erence sets). We compute the ratio as the actual used inner
tree nodes divided by the theoretical number of inner nodes. All results in Table 9.5 are
from experiments on all 144 threads.

As shown in the table, the two multi-level trees have ratio less than 100%. This saving
is mostly from the path-copying for supporting the persistence. In other words, in the
process of combining the inner trees, some small pieces are preserved, and are shared
among multiple inner trees. This phenomenon should be more signi�cant when the input
distribution is more skewed. In our case, because of our input is selected uniformly at
random, the saving ratio is about 10%-15%. One special case is the SegTree, where the
ratio is only about 50%. This is because even though theoretically in the worst case, each
segment can appear in the augmented values of O(logn) outer tree nodes (one per level),
in most of the cases they cancel out in the combine function. As a result, the inner tree
sizes can be very small especially when the segments are short. As shown in the table, the
actual number of required inner tree nodes is only about a half of the worst case, when
the input endpoints are uniformly distributed.

For the sweepline algorithms, the actual used nodes are often slightly more than
estimated. This is because in the parallel version of our sweepline paradigm, the trees at
the beginning of each block are built separately. In the batching step, O(n logb) new tree
nodes are created because of the b Union functions. In the sweeping step, n logn +O(n)
new nodes are created. Because of the fold-and-sweep parallel sweepline paradigm we are
using, we waste some space in the second step, when constructing the pre�x structures
at the beginning of each block. As a very rough estimation, we waste about n logb (o�
by a small constant) nodes. In our experiment, b = 144, logb ≈ 7.2, logn ≈ 26, which
means that we may have a factor of logn/logb ≈ 27% waste of tree nodes. This roughly
matches our result of RangeSwp. For SegSwp, the nodes are inserted and then deleted at
some point, and thus the size of the pre�x structures can be small for most of the time. In
this case the wasted number of inner tree nodes is much fewer, which is only about 17%.

In all, all of the tested data structures on range and segment tests use less than than
1.5n logn tree nodes. Even the largest of them only cost 130G memory for input size
108, which includes all costs of storing keys and values, as well as pointers and other
information in tree nodes.

9.6.7 Summary

The sweepline algorithms usually perform better in sequential construction, but in parallel
are slower than two-level trees. This has to do with the better scalability of the two-level
trees. With properly de�ned augmentation, the construction of the two-level trees is au-
tomatically done by the augmented map constructor in PAM, which is highly-parallelized
(polylog depth). For the sweepline algorithms, the parallelism comes from the blocking-
and-batching process, with a Õ(

√
n) depth. Another reason is that more threads means

more blocks for sweepline algorithms, introducing more overhead in batching and folding.
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# of Size of # of Size of an Theoretical #
Outer an Outer Inner Inner of Inner Used
Nodes Node Nodes Node Nodes Ratio Space
(×106) (Bytes) (×109) (Bytes) (×109) (%) (G bytes)

RangeTree 99.97 48 2.29 40 2.56 89.5 89.75
RangeSwp - - 3.52 40 2.56 137.5 130.99
SegTree 100.00 80 2.84 40 5.32 53.5 113.56
SegSwp - - 3.01 40 2.56 117.7 112.13

Table 9.5: The space consumption of our data structures on range and segment queries -
The theoretical number of inner nodes are estimates as 2n logn for SegTree, and n logn for the rest
of them. The ratio is computed as the actual used inner nodes / the theoretical number of inner
nodes.

Most of the implementations have close construction time. Sequentially SegTree and Rec-
Tree are much slower than the others, because they store more information in each node
and have more complicated combine functions. The speedup of all sweepline algorithms
are close at about 30-35x, and all two-level trees at about 62-68x.

In general, the sweepline algorithms are better in counting queries and small window
queries but are slower in large window queries. In counting queries and small window
queries (when the output size does not dominate the cost) the sweepline algorithms
perform better because of the better theoretical bound. On large window queries (when
the output size dominates the cost), the two-level tree structures performs better because
of better locality.

Our implementations scale to 144 threads, achieve good speedup and show e�ciency on
large input size. Our implementation show good performance both sequentially and in
parallel on input size as large as 108. On 72 cores with 144 hyperthreads, the construction
speedup is 32-69x, and the query speedup is 65-126x.

Our implementations are always faster on queries than existing implementations with
comparable or faster construction time, even sequentially. Our implementations outperform
CGAL in both construction and queries by at least 2x. Overall, the Boost R-tree is about
1.5x slower to 2.5x faster than our algorithms in construction, but is always slower (1.6-
1400x) in queries both sequentially and in parallel, likely because of lack of worst-case
theoretical guarantee of R-trees.
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Chapter 10

A Tree for Concurrent Reads and
Writes

10.1 Introduction
One potential issue of path-copying-based data structures is that concurrent operations

on the tree does not come into e�ect on the same version. In particular, any concurrent
thread only update its local snapshot. For a DBMS although SI is supported, there is
not guarantee for supporting serializability for concurrent update transactions [97]. A
simple solution is to only allow a single writer to sequentialize all updates (e.g., �at-
combining [155]). This is likely to be adequate if updates are large with signi�cant internal
parallelism, or if the rate of smaller updates is light (in the order of tens of thousands per
second), as might be the case for a data structure or a system dominated by analytical
queries. It is unlikely to be adequate for a data structure or a system with high update
rates of small transactions. The DBMS Hyder [238], which uses multiversioning with path
copying, addresses this by allowing transactions to proceed concurrently and then merging
the copied trees using a “meld” operation. The DBMS, however, must sequentialize these
melding steps so that it creates new versions one at a time. The melding process can also
cause an abort even when the updates are logically independent—for example when the
�rst update does a rotation on an internal tree node that the second visits.

Another approach is to batch updates as part of a group commit operation [121]. The
basic approach is for the data structure or the system to process a set of updates obeying a
linear order. It then detects any logical con�icts based on this order and the operations they
performed (e.g., write-read con�icts). The system next removes any con�icted updates and
then commits the remaining con�ict-free updates as a batch. This approach is taken by a
variety of systems, including Calvin [266], FaunaDB [1], PALM [247], and BATCHER [18].
The advantage of this approach is that the batch update can make use of parallelism [1, 18],
consensus in only needed at the granularity of batches in distributed systems [1, 266], and
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the batched updates can make more e�cient use of the disk in disk-based systems [30].
The challenge of the approach, however, is in detecting con�icts; all of the above systems
perform this step di�erently.

For simple point updates, this thesis proposes to use batching. This means to only
use one global writer to collect all the concurrent updates, coordinate internally, and
commit altogether in parallel. Because of the parallel bulk operations supported by P-Trees
using divide-and-conquer, such bulk operations (e.g., multi_insert) avoids con�ict and
contention, which is likely to be more e�cient than invoking all operations concurrently.
Similar approach has also been shown to be e�cient in practice in previous work [1, 18,
155, 247, 266].

Theoretically, P-Trees with batching yields a concurrent data structure allowing for
lock-free writes, such as insertion, deletion and updates, as well as wait-free read-only
queries, such as searching and range queries.

Experiments show that using the P-Tree with batching is e�cient on workloads of
concurrent updates and searching with di�erent read-write ratios. We use four workloads
in YCSB (Yahoo! Cloud Serving Benchmark). On all tested workloads, with reasonable
latency, P-Trees outperforms state-of-the-art concurrent data structures which even do
not support snapshotting.

10.2 Approach
In our system we use batching and use multi-insert and multi-delete to apply batches

of point updates. As discussed, these primitives have signi�cant internal parallelism. In
this chapter we do not consider how to detect con�icts for arbitrary transactions (previous
work could help here), but study the approach for simple point transactions such as in the
YCSB benchmark (insertions and deletions). In this case, the only con�icts are between
updates on the same key, and keeping the last update on the key is su�cient.

To batch a set of updates, we wait for some amount of time, allowing any updates to
accumulate in a bu�er, and then apply all the updates in the bu�er together as a batch in
parallel. While processing the batch new updates can accumulate in another bu�er.

10.2.1 The Batching Algorithm
For the batching algorithm, we use a simple strategy, where each process is allocated

a bu�er array with a head and a tail index. Each process submits all its updates to the
bu�er by adding them to the tail. Periodically, the writer goes over each array, assembles
all operations between the current head and tail into the batch, and then moves the head
index to the current tail index (plus one). There is no contention between processes
because each reader only operates its own bu�er at the tail, and the single writer only
operate on the head index of all bu�ers. The batching process also works in parallel using
a parallel packing.
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1 int head[P], tail[P], offset[P];
2 void update(operation k, size_t id) {
3 buffer[id]. push_back(k); }

5 void single_writer () {
6 while (true) {
7 while (not enough operations && not a long time) {}
8 int start[P], end[P], offset[P];
9 for (int i = 0; i < P; i++) {

10 start[i] = head[i]; end[i] = tail[i];
11 int block = end[i]-start[i];
12 if (block > max_op_each) {
13 end[i] = start[i]+ max_op_each;
14 block = max_op_each;
15 }
16 offset[i+1] = offset[i]+block;
17 head[i] = end[i]; }
18 int m = offset[P];
19 entry_type* a = new entry_type[m];

21 parallel_for (int i = 0; i < P; i++) {
22 par_for(int j=start[i]; j<end[i]; j++) {
23 int ind = offset[i]+j-start[i];
24 a[ind] = buffer[i][k]; } }
25 d = commit_batch(d, a, m); }
26 }

Figure 10.1: The batching algorithm used in our system.

The updates are then committed to the data structure in a batch in parallel, using
multi_insert. Our approach also allows each batch to be committed atomically, since
committing the new version root makes all new tuples visible atomically. For more
complicated transactions, we need to �rst build the dependency between transactions.

10.2.2 Latency-throughput Tradeo�

In batching there is a tradeo� between throughput and latency, which is controlled by
the batching size. The batching size re�ects the “granularity” of batching. For improving
throughput, larger batching size is more favorable because of two reasons. First, larger
batching sizes hide the amortized overhead of dealing with each operation, including
sorting, combining operations to the same key, etc. Secondly, larger batching sizes allow
us to exploit more parallelism. On the other hand, larger batch sizes cause each operation
to wait longer. There is a long latency for the �rst operation coming to the batch between
when it is invoked and when it comes into e�ect. This is because (1) it has to wait for
more operations until a batch is large enough to be committed, and (2) a larger batch
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requires a longer time to execute. This is harmful to settings that do not tolerate long
latency. Therefore, there is a tradeo� between throughput and latency—to get a certain
throughput, how much latency the system has to tolerate.

In our implementation, we control the latency to be at the same magnitude of network
latency, such that the latency waiting for a batch to �nish does not dominate the cost.
This tradeo� is analyzed in Section 10.3.2.

10.3 Experiments
10.3.1 Workloads
YCSB. We test YCSB workloads Insert-only (constructing the tree with parallel in-
sertions), A (read/update, 50/50), B (read/update, 95/5), and C (read-only) with Zip�an
distributions. The database contains a single table with 50m entries using 64-bit integers
as keys and values. Each workload contains 107 transactions. Our DBMS executes read
transactions concurrently on the last committed snapshot in the database. We bu�er
the write transactions using the batching algorithm in [48, 50] and then commit them
to the last snapshot of the database using multi_insert without blocking readers. We
execute batched updates with the replace combine function (see Section 11.2). If there
are multiple updates on the same key in a batch, then the last write persists. We report
the mean of throughput across �ve trials and the standard deviation.

As described in Section 11.2.1, batching performance is highly a�ected by the batch
granularity. On the one hand, we need to make batches reasonably small and frequent such
that each query get a timely response. On the other hand, larger and less frequent batches,
although causes long latency, usually lead to less overhead and better throughput. As a
result, the appropriate batching size achieves a tradeo� between latency and throughput,
which depends on the platform and the machine. We will show some in-depth study of
the correlation between latency and throughput. Except for the experiments on latency-
throughput tradeo�, which varies the latency, we control the latency to be 50 ms, which
is the same magnitude of network latency, and thus is unlikely to dominate the cost. As a
result, 50 ms is the acceptable limit in many application domains (e.g., internet advertising,
on-line gaming).

10.3.2 Experiments
In this �rst experiment, we compare P-Trees with four other state-of-the-art concurrent

indexes for in-memory DBMSs:
• B+tree. A memory-optimized B+tree using optimistic locking coupling [189].
• Bw-Tree. Microsoft’s latch-free B+tree index from Hekaton [190]. We use the

OpenBw-Tree implementation [268].
• MassTree. A hybrid B+tree that uses tries for nodes from the Silo DBMS [198].
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Insert-only
A. Read/Update

50/50
B. Read/Update

95/5
C. All Read

  100/0

P-Tree 22.4 (1.22) 82.7 (4.20) 115.9 (4.07) 145.3 (1.78)

B+ Tree 24.6 (0.33) 16.7 (1.16) 73.6 (6.25) 85.9 (2.78)

OpenBW 21.0 (1.22) 8.8 (0.50) 38.4 (3.14) 53.9 (2.49)

MassTree 12.0 (1.04) 13.5 (0.52) 76.1 (5.66) 87.0 (5.23)

Chromatic 27.0 (0.48) 19.2 (1.94) 42.4 (1.81) 41.5 (1.69)
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Figure 10.2: YCSBWorkload Performance – Comparison of concurrent data structures for the
YCSB workloads using 144 threads. (10.2(a)) Throughput measurements for each data structure.
Numbers in the parentheses are the standard deviations. P-Trees execute concurrent updates in
batches within 50 ms latency. (10.2(b)) The correlation between latency and throughput on YCSB
workload A. The horizontal lines show the maximum throughput of the other data structures
across di�erent numbers of threads.

• Chromatic Tree. A lock-free Chromatic tree implementation in C++ [92, 96, 218].

The implementation of B+tree, OpenBw-Tree and MassTree are from Wang et al.
[267, 268]. The Chromatic Tree implementation is from Brown et al. [93, 96]. We note
that none of them support SI.

We use three experiments to evaluate P-Tree’s performance on the OLTP benchmark
YCSB. We �rst compare the throughput of all tested data structures on four workloads to
understand the parallel performance of these data structures under di�erent read/write
ratios. We then experiment on the tradeo� between latency and throughput for P-Trees,
using workload A as an example. Finally, we discuss the scalability curve for all tested
data structures on all four workloads.
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Figure 10.3: YCSB Workload Scalability – We always control the latency to be ∼50 ms for
P-Trees. “72h” means 144 threads (with hyperthreading).

Performance. We �rst measure the throughput of all data structures. The numbers
reported on P-Trees are within 50 ms latency. Figure 10.2(a) shows that P-Trees outperform
or is competitive to the other implementations. P-Trees’ standard deviation is within 6%
in all test cases. P-Trees’ throughput improves as the ratio of reads increases. This is
because each read transaction on the P-Tree operates on a snapshot of the tree and is not
blocked by other transactions.

For the Insert-only workload, P-Trees outperform OpenBw and MassTree, but is 10%
slower than B+tree, and 20% slower than Chromatic tree. Chromatic trees’ high update
throughput is at the expense of low read performance (workload C). B+trees’ better
performance is likely to come from shallow height and better cache locality. On the other
three workloads, P-Trees generally demonstrate better performance than the other data
structures. The main overhead in our DBMS is the overhead of batching since our DBMS
has to bu�er all the transactions’ operations. Meanwhile, P-Trees’s good performance
comes from better parallelism and non-contention achieved by batching. We will discuss
more details later.
Latency vs. Throughput To better understand how batching a�ects the performance of
P-Trees, we next measure the system’s performance when varying the acceptable latency,
which is done by adjusting the batch size and waiting time between batches. We control
the 99% of longest time (P99 latency) each transaction waits for a response, and test the
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throughput of P-Trees. We then compare this against the best performance of the other
data structures measured in Figure 10.2(a) for any thread count con�guration. We �rst
load 50m entries into the database and then use 144 threads to execute the YCSB Workload
A transactions.

The results in Figure 10.2(b) show that, to match the best of the other four data
structures, P-Trees only causes ∼10 ms latency. At a 50 ms latency window, P-Trees are
more than 2.2× faster than all the other indexes. However, with more strict restriction in
latency, e.g., when only 5 ms latency is allowed, the P-Tree’s performance is worse than
all the other tested data structures.
Scalability. Lastly, we measure how the indexes perform as we scale up the number of
concurrent threads. We �rst observe that the results in Figure 10.3(a) show that most of
the data structures are able to scale on the insert-only workload. For the mixed workloads,
Figures 10.3(b) to 10.3(d) show that P-Trees achieve good scalability and parallelism, and
is the only index that scales up to 144 threads in all workloads. The other four indexes
su�er from bad performance with more threads in workload A (50/50 reads/updates).
This is expected as more concurrent threads create more contention in the data structure.
P-Trees avoid this contention by allowing reads to access an isolated tree structure. For
write transactions, our implementation batches and executes them in a parallel divide-
and-conquer algorithm. This also avoids contention because no two threads work on the
same tree node at the same time.

141



142



Chapter 11

HTAP Database Management Systems
with Snapshot Isolation

11.1 Introduction
There are two major trends in modern data processing applications that make them

distinct from database applications in previous decades [230]. The �rst is that analytical
applications now require fast interactive response time to users. The second is that they
are noted for their continuously changing data sets. This poses several challenges for
supporting fast and correct queries in DBMSs. Foremost is that queries need to analyze
the latest obtained data as quickly as possible. Data has immense value as soon as it is
created, but that value can diminish over time. Thus, it is imperative that the queries
access the newest data generated, without being blocked or delayed by ongoing updates or
other queries. Secondly, the DBMS must guarantee that each query has a consistent view
of the database. This requires that the DBMS atomically commit transactions e�ciently in
a non-destructive manner (i.e., maintaining existing versions for ongoing queries). Finally,
both updates and queries need to be fast, e.g., exploiting parallelism or employing speci�c
optimizations.

To address concurrent updates, one solution is to use multi-version concurrency
control (MVCC) [62, 211, 269]. Instead of updating tuples in-place, with MVCC each write
transaction creates a new version without a�ecting the old one so that readers accessing
old versions still get correct results. In snapshot isolation (SI) every transaction sees only
versions of tuples (the “snapshot”) that were committed at the time that it started. Many
DBMSs support SI, including both disk-oriented [183, 233] and in-memory [214, 248, 273]
systems. The most common approach to implement SI is to use version chains [60, 237, 273],
which maintains for each tuple a list of all its versions. A drawback of version chains,
however, is that it can make readers slower: �nding a tuple that is visible to a transaction
requires following pointers and checking the visibility of each tuple version. One can
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reduce this overhead by maintaining additional metadata (e.g., HyPer creates version
synopses [214]) about tuples, but those approaches still have overheads.

Modern DBMSs employ several approaches to accelerate read-heavy workloads but
usually at the cost of slower updates. For example, columnstores allow for better locality
and parallelism, such that queries accessing the same attribute within multiple tuples
run faster [85]. However, it makes insertions and deletions more expensive [116], and
also require delicately-designed locking schemes that can inhibit certain updates to a
tuple or version chain [61, 181, 226, 237]. Another way to improve OLAP performance
is to denormalize tables or use materialized views to pre-compute intermediate results
for frequently executed queries. Both of these approaches make updates more expensive
because of the overhead of updating tuples in multiple locations [193] or invalidating the
view.

To achieve high-performance in both updates and queries, we use P-Trees for multi-
versioned, in-memory database storage. P-Trees provide three important bene�ts for
HTAP workloads on multi-core architectures. Foremost is that P-Trees are pure (im-
mutable, functional) data structures (i.e., no operations modify existing data). Instead of
version chains, P-Trees use path-copying, also referred to as copy-on-write (CoW), to
create a new “copy” of the tree upon update. This means that the index itself is the version
history without requiring axillary data structures. Figure 11.1 presents an illustration of
using path-copying in DBMSs for SI. Second, the trees use divide-and-conquer algorithms
that parallelize bulk operations on tables—including �lter, map, multi-insert, multi-delete,
reduce, and range queries. These algorithms are based on using e�cient operations that
split and concatenate trees [74, 262], referred to as join-based algorithms, and an e�cient
work-stealing scheduler for fork-join parallelism [2, 84]. Lastly, P-Trees support the nest-
ing indexes inside of themselves. Such nested indexes improve OLAP query performance
while still allowing for e�cient updates under SI.

Using a pure data structure means that the DBMS must serialize updates to the global
view or combine them together into batches. Some previous CoW-based systems, like
LMDB [4], only allow for a single active writer and thus serialize writes. Others, like
Hyder [63, 64, 238], support “melding” trees, but the melding process is still sequentialized,
and furthermore can cause aborts. These limitations are the major bottleneck in CoW-
based systems. P-Trees exploit parallelism by supporting parallel bulk operations as
mentioned in Chapter 10. For any large transactions, or batched transactions consisting
of multiple insertions and deletions, P-Trees can leverage multiple cores to atomically
commit database modi�cations in parallel.

To evaluate P-Trees, we compare them with state-of-the-art concurrent data structures
and in-memory DBMSs (MemSQL [248] and HyPer [214]). Our results show that on the
OLTP workload YCSB (consisting of searches and updates) P-Trees are competitive with
existing concurrent data structures that do not support multi-versioning. On an OLAP
workload TPC-H, P-Trees are 4-9× faster than MemSQL and HyPer on a 72-core machine.
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Figure 11.1: P-Trees Multi-Versioning Overview – An example of using P-Trees to support a
bank balance DBMS. The original state is v1. A transaction transfers $2 from Carol to Wendy.

On an HTAP benchmark with ongoing updates, P-Trees remain almost as fast on the
queries while supporting update rates comparable to what is supported by MemSQL (and
much faster than HyPer). All the systems, including ours, support durability. Our queries
are coded directly rather than using the SQL code, and we therefore exclude compilation
time for MemSQL and HyPer. We also study what contributes to our performance gain
of P-Trees compared to the other systems on queries, by removing some of the features.
Our results show that much of the improvement is due to better parallel scaling (62×
speedup on average using 72 cores) and the index nesting optimization (2× performance
improvement on average).

Our contributions can be summarized as follows.
1. The combination of path copying and parallel bulk operations in an MVCC database

is new. The bulk parallelism leads to very good speedup and performance on both
queries and batch updates while supporting full serializability.

2. The use of nested indexes based on trees with their application to fast queries. This
leads to signi�cant speedup on many of the TPC-H queries.

3. The C++ implementation of a DBMS based on P-Trees. This includes the implemen-
tation of nested indexes, and support for parallel bulk operations. It also includes
the implementation of all 22 of the TPC-H queries. We have made the code available
on GitHub [8].

4. An experimental evaluation comparing our code to other systems, and analyzing
the e�ectiveness of various features of our system.

5. A new benchmark that adds TPC-C style transactions to TPC-H. This di�ers from
previous CH-benCHmark [113] on adding TPC-H style queries to TPC-C.
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We note that although some of the contributions seem independent (e.g. bulk op-
erations and nested indexes), an important aspect of the work is that P-Trees make it
particularly easy to combine these ideas.

11.2 Approach
In this section, we discuss how parallel bulk algorithms for updates and queries can

be used on database queries. All algorithms in this section are pure using path-copying.
P-Trees can be used to maintain a sorted set of key-value pairs. We allow the key and

value to be of any type, such as integers, strings, or even another tree. As we will discuss
in Section 11.3, supporting nested tree structures is bene�cial for OLAP workloads. In our
implementation, P-Tree is the sole date representation. In our experiments, all dynamic
data can only be accessed through the P-Trees.

11.2.1 Parallel Bulk Update Operations
We use multi_insert and multi_delete to commit a batch of write operations. The

function multi_insert(t,A,m,σ ) takes as input a P-Tree root t , the head pointer of an array
A with its length m, and a combine function σ . The combine function σ : V ×V 7→ V ,
where V is the value type of the tree is used to deal with duplicate keys. The algorithm
is introduced in Section 3.3.4. When inserting a key-value pair 〈k,v〉, if k is already in t ,
then the tree updates its value by combining the value of k in t with v using σ . This is
useful, for example, when the value is the accumulated weight of the key and the combine
function is addition (σ (a,b) = a + b). Another use example is when installing new values
for existing keys (σ (a,b) = b). The technique is introduced in Section 3.3.5.

A DBMS uses these parallel bulk update algorithms to commit a batch of operations to
the database. We will discuss more details in Section 11.4. For concurrent point updates,
we combine our approach with the batching algorithm in 10.2.1.

11.2.2 Parallel Bulk Analytical Operations
To facilitate read-only analytical queries, P-Trees support several analytical primitives,

including range, �lter , foreach_index and map_reduce. The algorithms are introduced
in Section 3.3.4. Some of these algorithms return trees as output. This is useful for
maintaining intermediate results of primitives in the same representation as the input (i.e.,
another index structure) since this allows primitive cascading; this is also known as index
spooling in Microsoft SQL Server [3]. The P-Trees primitives extract such intermediate
views on the current snapshot and output another tree structure. This not only avoids
additional data scans, but is also asymptotically more e�cient than scanning the data
directly. For example, although intuitively extracting a range would take time proportional
to the range size, our method avoids doing so by outputting a tree, and thus avoids touching
output data—only the a�ected path is read and copied, instead of the whole range of
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entries. This is useful, for example, in cascading queries when the output is for further
queries.

11.3 Nested Indexes
To support e�cient analytical queries, the P-Tree can use nested and paired indexes. A

nested index embeds one index inside another such that each value of the top level index
is itself another index. A paired index uses a single index for two tables that share the key,
often a primary key in one and a secondary or foreign in the other. We show an example
in Figure 11.2 on the TPC-H workload, and will explain it in detail later in this section.
Both nested and paired indexes can be considered a “virtual” denormalization of the data.
In particular, a paired index is logically a pre-join on the shared key, and a nested index
roughly corresponds to adding a pointer from the parent to the child and indexing on it
(sometimes referred to as the short-circuit key). However the nesting and pairing does not
materialize the view—there is no copying of the tuples, and therefore it su�ers less from
the standard problems of additional space, consistency, and expensive updates. We will
discuss the space overhead of index nesting in Section 11.4.

Nesting and pairing is straightforward with P-Trees since it supports arbitrary key
and value types. Furthermore, nested and paired tables work well with both its parallel
operations and with path copying. These operations over a nested index, such as map
and reduce, can themselves be nested so there is parallelism both on the outer index and
inner index (we provide an example below). Path copying works with nesting since the
path from an outer tree continues into a path on the inner nested tree (see Section 11.4).

In general, one can apply nesting across multiple levels. For example, for TPC-H we
create up to three levels (e.g., customer-order-lineitem, or part-supplier-lineitem). We also
use nested indexes for indexes on secondary keys—the outer index is on the secondary key
and each inner index contains the tuples with the same secondary key indexed by their
primary key. This di�ers from the more common implementation of secondary indexes
that keeps inner sets of elements with the same secondary keys as lists or arrays [142].
Using a nested index has the advantage of being able to quickly �nd and delete an element
in the inner index based on its primary key.

We are not aware of any DBMS that uses index nesting based on trees. This is possibly
because such nesting is unlikely to be e�cient on disk-based DBMSs due to �ne grained
memory accesses, and because it is complicated to to combine nesting with existing
optimization techniques, such as column stores or version chaining. P-Trees make such
nesting easy to support, and we do use a columnar data model or version chaining.

To illustrate how nesting and pairing works, we consider an example from TPC-H
shown in Figure 11.2. The top level index for the ORDER table is on the non-unique
orderdate key (i.e., the date on which a customer made an order). Within each date,
there is an index of the orders on that date keyed on the primary key orderkey. In the
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Figure 11.2: Nested Tree Structure in Our TPC-H Implementation – The orderdate-order-
lineitem relation in TPC-H. A range query on the top level index would e�ectively �lter out
irrelevant lineitems in the bottom level, making queries more e�cient.

TPC-H schema, each order has a set of items called lineitems, or more precisely, each
lineitem has an orderkey as part of its two-attribute primary key. Since lineitems share
the orderkey with orders, we can pair the indexes. This pairing is shown by the two
orange tuples for “Order Info” and “Lineitem Index”. The order info contains the complete
table entry for each order. This is either (1) the tuple directly stored in the tree node
or (2) a pointer to the tuple elsewhere in memory. In our experiments, we compare the
two methods. Importantly, the example shows a third level of nesting on the lineitems
themselves, indexed based on their primary keys, which consists of both the orderkey
and the linenumber. Each of the inner most indexes is itself represented as a P-Tree, even
though in TPC-H there are at most seven lineitems per order. The example shows both
three-level nesting and pairing.

This nested index can be thought of as a virtual pre-join of the ORDER and LINEITEM
tables on their shared orderkey, and then indexing the result based on orderdate. As
the illustration shows, however, the orders are not copied across multiple lineitem tuples,
and the join is never materialized. We note the same index can be used to answer range
queries by date on just orders, or on the lineitems that belong to a range of orderdates.

To show why the nesting and pairing are useful, we consider TPC-H Q4. We consider
both how existing DBMSs process the query and then how the nested-paired index can
be used to signi�cantly improve performance. The query in SQL is given in Figure 11.3(a).
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1 SELECT o_orderpriority, COUNT(*) AS order_count FROM orders

2 WHERE o_orderdate 〉= date ’[DATE]’

3 AND o_orderdate 〈 date ’[DATE]’+interval ’3’ month

4 AND EXISTS ( SELECT * FROM lineitem

5 WHERE l_orderkey = o_orderkey AND l_commitdate 〈 l_receiptdate )

6 GROUP BY o_orderpriority

7 ORDER BY o_orderpriority;

(a) SQL

1 using Arr = Array〈int, NUM_PRI〉; //NUM_PRI is 5
2 Arr Q4(DB d, const Date date) {

3 orderdate_tree t = d.orderdate_idx.range(date, date.add_month(3));

4 auto date_map_func = [] (orderdate_entry& odate_entry) -〉 Arr {

5 auto order_map_func = [] (order_entry& order_entry) -〉 Arr {

6 auto item_map_func = [] (Lineitem& l) -〉 bool {

7 return l.commit_date〈l.receipt_date;};

8 int pri = order_entry.get_order().orderpriority()-1;

9 Arr a;

10 a[pri]=order_entry.get_item_idx().map_reduce(item_map_func, OR());

11 return a; };

12 return dt.get_order_idx().map_reduce(order_map_func, Add_Array()); };

13 return t.map_reduce(date_map_func, Add_Array()); }

(b) P-Tree Implementation

Figure 11.3: TPC-H Q4 – The de�nition TPC-H Q4 and the pseudocode of using map-reduce
functions on P-Trees for implementing TPC-H Q4. OR in the code means the logical-OR operation
on boolean values.

The query looks up the orders where (1) the orderdate is in a given range and (2) there
exists a lineitem for the order such that commitdate < receiptdate. It then counts
the number of relevant orders for each di�erent orderpriority (i.e., �ve). This query
accesses both the ORDER and LINEITEM tables. But DBMSs often scan the LINEITEM table
�rst, which is problematic because there are 4× tuples as the the total number of orders,
and 28× as many as the number of orders in the orderdate range. We discuss this problem
further in Sections 11.6.2 and 11.6.3 for MemSQL and HyPer.

We now consider how to perform the query using the nested index illustrated in
Figure 11.2. The DBMS can �rst do a range search on a speci�c date range, identifying
the 〈order, lineitem index〉 pairs that fall within the range (i.e., the orders in the shaded
rectangle in Figure 11.2). For TPC-H Q4, this is about 1/28 of all the orders. Then for each
such order it can examine all the lineitems that belong to the order to see if any satisfy
the predicate on order and commit date. If so, then the system increments a counter for
the appropriate order priority, which it can combine with a parallel reduce.
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Our code for Q4 using P-Trees is given in Figure 11.3(b). It extracts the range of order
dates in Line 3. It then has nested parallel calls to date_f (over orderdates), then ord_f
(over all orders for a given date), and �nally item_f (over all lineitems of a given order).
The outer two both use map_reduce and the inner-most just checks if the lineitem satis�es
commit_date < receipt_date. This producs an approximately 10 fold improvement over
MemSQL, HyPer, and our own DBMS without nested indexes (see Section 11.6.2). We also
added the secondary index on orderdate in HyPer, but it did not help since the system
still needed to scan the LINEITEM table.

The general idea of index nesting does not rely on TPC-H or the P-Tree, and thus is of
independent interest and can be extended to other settings.

11.3.1 De�ning Nested Indexes

In our DBMS, we supply a simple way for users to construct nested indexes by building
them up based on three primitives. All the indexes, both the outer and inner ones, are
maintained by P-Trees. To construct a nested index, we de�ne the following functions.

1. primary(Table, primarykey): constructs an index from a table Table based on
the primarykey.

2. secondary(Index, secondarykey): constructs a secondary index from a primary
index Index, based on the secondarykey. If there are multiple tuples sharing the
same secondary key, build inner indexes based on the primary key.

3. pairing(Index1, Index2): for two indexes Index1: X 7→ Y and Index2: X 7→ Z ,
construct an index that maps X to a pair of Y and Z . This is similar to a regular join
operation, but keep the join column as the key of the output index.

These three primitives fully support the index nesting we propose in this chapter. We
have implemented the three functions based on P-Trees and use them in our experiments.

We continue our example of the index from Figure 11.2:

I0 = primary(LINEITEM, lineitemkey)
I1 = primary(ORDER, orderkey)
I2 = secondary(I0, orderkey)

I_ORD = pairing(I1, I2)
I_ODATE = secondary(I_ORD, orderdate)

The �rst two lines build primary indexes on lineitems and orders, the third line then builds
a secondary index for the lineitems based on the orderkey, and the fourth line pairs up
the primary order index I2 with this secondary lineitem index I3. The last line indexes
the paired index based on the secondary key orderdate, and returns a three-level index
I_ORD.

As another example of building a three level index, the following will construct a
customer index on top of the I_ORD index.
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Figure 11.4: Functional Update on a Multi-level P-Trees – The update uses path-copying on
both inner and outer trees.

I3 = primary(CUSTOMER, custkey)
I4 = secondary(I_ORD, custkey)

I_CUST = pairing(I3, I4)
It is a three-level nested index, each level also is a paired index with customer and order
tuples stored in it, respectively. This index is used frequently in our implementation of
TPC-H queries. In queries that require a join on lineitems and a selection of customers (e.g.,
Q3), we can �lter out the irrelevant customers on the top level such that their lineitems
will not be scanned. In TPC-H, there are 40× more lineitems than customers, so the total
accessed data will be much less than all the lineitems. The improvement of using a nested
index in Q3 is more than 300% (see Table 11.3).

11.4 Using Pure P-Trees for SI
In this section, we describe how to use pure P-Trees for SI and MVCC, and how to

achieve serialibility using batching. P-Trees use pure join-based algorithms that never
modify existing tree nodes, but copy necessary parts when updates occur. As a result,
multiple logical versions of indexes share physical tree nodes.
MVCC Example. We use the example in Figure 11.1 to show how pure P-Trees support
MVCC and SI. In P-Trees, a transaction acquires the current version of an index by grabbing
the root and incrementing the root’s reference counter to create a snapshot of the index.
When our system must maintain multiple consistent indexes, it keeps a top-level tuple
storing a pointer to each index. We refer to this as the “world” since it stores all dynamic
information for a database. Acquiring a version grabs a pointer to this tuple. Creating a
new world on updating an index requires copying this tuple and putting in the new root
of the updated index. The tuple (the world) is only a constant number of pointers.
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The DBMS creates local versions of indexes using analytical operations, such as range
and �lter , but it does not need to commit these local versions. Any updates also create new
versions, but the DBMS commits them by writing a pointer to the new world. Figure 11.1
shows an example of a transaction on a single index. The transaction transferring $2 from
Carol to Wendy is implemented by two consecutive updates using path-copying, leading
to a new version v2. Committing the new version v2 involves updating the current root
pointer to v2’s root. Then the two updates in the transaction become visible atomically.
Such atomic updates are applicable to either a series of updates like in this example, or
a batch of updates (e.g., by a pure multi_insert). The old versions are still available and
can be accessible by the old root pointers, so ongoing queries can continue working on
them. Such a strategy also makes rollbacks easy by swinging back the old root pointer.
The DBMS’s GC algorithm can collect old versions.

Using P-Trees for MVCC requires no additional versioning or other internal auxil-
iary �elds in the data structure. The DBMS can maintain versioning information (e.g.,
timestamps and liveness), with the set of root pointers to the versions.
Pure Update on Nested Trees. As described in Section 11.3, P-Tree’s index nesting
accelerates the analytical queries. Using P-Trees to store nested indexes has the bene�t
that updates are inexpensive, as the DBMS can perform the update by path-copying across
both the outer and inner trees. Figure 11.4 shows an illustration of updating a two-level
P-Tree. The update algorithm �rst �nds the a�ected tree node e in the outer tree and then
copies the path along the way. For the other copied nodes in the outer tree other than e ,
the inner trees do not change, and thus we can directly use the pointer to the original
inner trees. For example, node c ′ in T2 has the same inner tree pointer as c in T1. For
e itself, we copy it to e ′ , and the algorithm then inserts 4 to the inner tree t of e (the

orange slashed nodes), giving a new inner tree t ′. The root of t ′ is then assigned to e ′ as
the inner tree. The total cost of such an insertion is O(lognI + lognO ), where nI and nO
are the sizes of the inner and outer trees respectively. As such, SI is still supported, and
all algorithms in Section 11.2 remain applicable on a nested tree, or on multiple nested
trees stored in a world.

11.4.1 Serializable Updates

One concern with SI is in supporting serializability for concurrent update transac-
tions [97]. This is further complicated in path-copying-based (pure) approaches since
each update makes its own copies of paths, which then need to be resolved if they run
concurrently. A simple solution is to only allow a single writer to sequentialize all updates
(e.g., �at-combining [155]). This is likely to be adequate if updates are large with signi�-
cant internal parallelism, or if the rate of smaller updates is light (in the order of tens of
thousands per second), as might be the case for a DBMS dominated by analytical queries.
It is unlikely to be adequate for DBMSs with high update rates of small transactions.
Hyder [238], which uses multiversioning with path copying, addresses this by allowing
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transactions to proceed concurrently and then merging the copied trees using a “meld”
operation. The DBMS, however, must sequentialize these melding steps so that it creates
new versions one at a time. The melding process can also cause an abort even when the
updates are logically independent—for example when the �rst update does a rotation on
an internal tree node that the second visits.

Another approach is to batch updates as part of a group commit operation [121]. The
basic approach is for the DBMS to process a set of updates obeying a linear order. It then
detects any logical con�icts based on this order and the operations they performed (e.g.,
write-read con�icts). The system next removes any con�icted updates and then commits
the remaining con�ict-free updates as a batch. This approach is taken by a variety of
systems, including Calvin [266], FaunaDB [1], PALM [247], and BATCHER [18]. The
advantage of this approach is that the batch update can make use of parallelism [1, 18],
consensus in only needed at the granularity of batches in distributed systems [1, 266], and
the batched updates can make more e�cient use of the disk in disk-based systems [30].
The challenge of the approach, however, is in detecting con�icts; all of the above DBMSs
perform this step di�erently.

In our system we use batching and use multi-insert and multi-delete to apply batches
of point updates. As discussed, these primitives have signi�cant internal parallelism. In
this chapter we do not consider how to detect con�icts for arbitrary transactions (previous
work could help here), but study the approach for simple point transactions such as
in the YCSB benchmark (insertions and deletions). In this case, the only con�icts are
between updates on the same key, and keeping the last update on the key is su�cient.
We note it is also easy to detect con�icts in the TPC-C transactions we evaluate: for the
New-Order transactions described in Section 11.6.1, one can check if two transactions
share a customer or part-supplier. In our experiments, our DBMS simply sequentializes
them because the workload is comprised of mostly analytical queries.

To batch a set of updates, we wait for some amount of time, allowing any updates to
accumulate in a bu�er, and then apply all the updates in the bu�er together as a batch in
parallel. While processing the batch new updates can accumulate in another bu�er. In
this approach there is a tradeo� between throughput and latency—the longer we wait
(higher latency), the better the throughput due to increased parallelism. This tradeo� is
analyzed in Section 10.3.2.

11.5 Space Overhead
Here we discuss the space overheads of our approach.

Space Overhead from Index Nesting. P-Tree’s nesting method is similar to data denor-
malization and materialized views, but avoids copying of data across rows. This both saves
memory and reduces the cost and complexity of updates. However, there is some space
cost of index nesting. In particular, each nested index in which a table row can appear can

153



cause a copy of that row. In our TPC-H implementation, for example, the lineitems are
copied four times in di�erent nested indices because each lineitem is involved in several
hierarchies and secondary indexes. The copy can either involve storing the row directly
in a tree node, or a pointer from the tree node to a shared copy of the row. The second
approach requires less memory since the row is shared among indices only requiring a
pointer within each index. However, it might require extra time in analytical queries due
to a level of indirection, and the additional cache misses this incurs. One can also save
space by using fewer secondary indexes, which also slows down some queries. In our
experiments, we compare these approaches and analyze the tradeo�.
Space Overhead from Path-copying. Using path-copying inherently copies more data
than other MVCC solutions based on version chains since it copies the whole path to the
update rather than just the a�ected tuple itself. However, it needs less metadata within the
data structures (e.g. timestamps on each version within a version list). It also can easily
garbage collect any old versions, which is complicated with version chains. To be more
concrete, to insert or delete a batch ofm tuples into a tree of size n ≥ m, the number of
extra tree nodes created by our multi_insert algorithm is O

(
m

(
log n

m + 1
) )

[74]. This may
seem high, but it is always asymptotically bounded by n (the size of the original index). In
practice it is usually small sincem is much less than n. However, if many versions are kept,
this cost can accumulate over the versions if they are not collected. In section 11.6.4 we
experimentally evaluate this memory overhead as a function of the number of versions.

11.6 Experimental Evaluation
We now provide a comprehensive evaluation of P-Trees under a variety of settings

and workload conditions. For all of these experiments, we use a 72-core Dell R930 with
four Intel Xeon E7-8867v4 (18 cores, 2.4GHz, and 45 MB L3 cache), and 1 TB memory.
Each core is two-way hyperthreaded giving a total of 144 hyperthreads. Our code was
compiled using g++ 5.4.1. We use numactl in the experiments with more than one thread
to spread the memory pages across CPUs in a round-robin fashion.

We �rst compare P-Trees with four concurrent data structures on OLTP workloads.
We then compare our system to two DBMSs HyPer [178] and MemSQL [248] on both an
OLAP and HTAP workloads. Finally we analyze the space overhead of our system from
path-copying and index nesting.

11.6.1 Workloads

We �rst describe the benchmarks we use in our evaluation. For our P-Tree, we
implement the benchmarks in our testbed DBMS. For the SQL-based systems (HyPer and
MemSQL), we use the open-source OLTP-Bench benchmarking framework [124].
TPC-H. We use this OLAP workload to evaluate the performance of our DBMS executing
analytical queries. Of the eight tables in the TPC-H database, we use seven nested
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P-Tree structures (labeled with ) to maintain primary and secondary indexes. The �rst
two indexes de�ned below are used only as inner trees. The exact con�guration of the
database is formalized as follows:

Inner indexes:
Tlineitem =T : 〈orderkey, linenumber〉 7→ lineitem
Tpartsupp =T : 〈partkey, suppkey〉 7→ 〈partsupp,Tlineitem〉

Primary indexes:
Torder =T : orderkey 7→ 〈order,Tlineitem〉 (*)
Tcust =T : custkey 7→ 〈customer,Torder〉 (*)
Tsupp =T : suppkey 7→ 〈supplier,Tpartsupp〉 (*)
Tpart =T : partkey 7→ 〈part,Tpartsupp〉 (*)

Secondary indexes:
Treceiptdate =T : date 7→ Tlineitem (*)
Torderdate =T : date 7→ Torder (*)
Tshipdate =T : date 7→ Tlineitem (*)

T : K 7→ V denotes a tree storing a mapping from K to V . 〈A,B〉 means a pair of
two elements A and B. The value type can also be an index represented by another tree.
We keep four arrays for static data on the SUPPLIER, PART, NATION, and REGION that map
the primary key to the corresponding tuple. We note that none of the nested indexes
created in our DBMS is just for a speci�c query. For example, a total of six di�erent TPC-H
queries take advantage of the three-level customer index Tcust. We optimize the layout for
read-heavy workloads, and thus store all tuples directly in the trees. This may bring up
extra cost in updates. For example, when updating an order, our DBMS modi�es three
indexes.

We report the geometric mean of the running time for each query across �ve trials,
and also report the geometric mean of all 22 queries, as is suggested in the TPC-H o�cial
document [7].
TPC-HC. To provide a more in-depth analysis of hybrid workloads, we created a hy-
brid benchmark called TPC-HC based on TPC-H and TPC-C. Unlike the HyPer’s CH-
benCHmark [112], which integrates TPC-H queries into TPC-C, our benchmark integrates
TPC-C transactions into TPC-H workloads. We do this because our DBMS is optimized for
OLAP queries, and thus we want to provide a more fair comparison with other systems
on TPC-H queries.

This benchmark contains all 22 queries from TPC-H along with the following three
transactions derived from TPC-C with their denoted percentage of the total update
workload:
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1. The New-Order [49%] transaction, which is derived from the TPC-C New-Order
transaction. In this transaction, a new order is committed by a random customer.
It contains a random number of lineitems, each randomly selected from all the
part-suppliers. In particular, a new order is generated as follows:

(a) The O_ORDERDATE is set to the current timestamp. This new order has
a random O_SHIPPRIORITY (1-5), random O_ORDERPRIORITY (1-5). The
O_ORDERSTATUS is set to ‘O’. The order id is the current maximum order id
increased by 1.

(b) A set of x (1 ≤ x ≤ 7) lineitems are in this order. For the i-th lineitem:
• It is uniformly randomly chosen from all part-suppliers.
• The L_QUANTITY is a random integer in [1, 50].
• L_EXTENDEDPRICE = L_QUANTITY × P_RETAILPRICE, where the

P_RETAILPRICE is extract from the PART table where P_PARTKEY =
L_PARTKEY.

• L_LINEITEM = i. L_LINESTATUS = ‘O’. L_INSTRUCTIONS = “NONE”.
L_SHIPMODE = “RAIL”. L_RETURNFLAG = ‘R’.

• L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATA are all set to an in�n-
ity date.

• All the others columns of this lineitem are set to the default value or
empty.

(c) The O_TOTALPRICE computed as: sum (L_EXTENDEDPRICE × (1 + L_TAX)
× (1 - L_DISCOUNT)) for all lineitems of this order.

(d) All the others columns of this order are set to the default value or empty.
It requires the following changes to the database:

(a) The order is added to the ORDER table, and all lineitems are added to the
LINEITEM table.

(b) The available quantity of each corresponding part-supplier decreases by 1.
(c) Enqueue the order id to a queue Q_norder.

2. The Payment [47%] transaction, which is derived from the TPC-C Payment trans-
action. In this transaction, a random customer will pay a certain amount of money,
and thus the customer’s balance increases accordingly. The amount of money is
selected randomly in [1, 5000].

3. The Delivery [4%] transaction, which is derived from the TPC-C Delivery transac-
tion. In this transaction, the lineitems in the earliest y orders in Qnorder are shipped.
Also at this point, the customer will be charged the O_TOTALPRICE of money of
the corresponding order. It requires the following changes to the database:
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Txn Table Operations
New- Tcust,Torder * Add to the following relations: partsupp 7→ lineitem,
Order Torderdate, customer 7→ order, order 7→ lineitem, orderdate 7→ order

Tsupp, Tpart, * Decrease each item’s available quantity
Qorder * Enqueue this order to Qorder

Payment Tcust * Decrease the customer’s balance
Delivery Qorder, Tshipdate * Dequeue some orders from Qorder

Tpart, Tsupp * Update lineitems’ shipdate, customers’ balance,
Tcust, Torder lineitems’ and orders’ status,
Torderdate, * Add to the shipdate 7→ lineitem relation

Table 11.1: Updates on Trees in TPC-HC – The trees that require updates in each transaction
type.

(a) The L_SHIPDATE of the lineitems in these orders are updated to the current
timestamp.

(b) Each customer of the shipped orders have their balance decreased by the value
of O_TOTALPRICE.

(c) The L_LINESTATUS of each lineitem and the O_ORDERSTATUS of the corre-
sponding orders are changed to “F”.

The order and lineitem information are generated based on TPC-H speci�cation. For
our implementation, the required actions of each transaction on our TPC-H con�guration
is shown in Table 11.1. During each trial, the system uses one thread for the update
transactions and another thread to invoke TPC-H queries. We use the same code as in
our TPC-H experiments and run queries in parallel with all available threads. All of the
OLTP transactions and OLAP queries operate on the latest snapshot available to them.
After each OLTP transaction �nishes, the DBMS commits their updates atomically. They
are then immediately visible to the next TPC-H query.

All updates for P-Tree are running sequentially. We allow to run multiple update
transactions at the same time for MemSQL.

Update Query
(in an in�nite loop) (in an in�nite loop)

1 //read the current snapshot
2 DB d0 = *d;

3 Txn t = next_txn();

4 DB dn = update(d0,t);

5 d = &dn;

1 for (int i = 1; i 〈 22; i++) {

2 //read the current snapshot
3 DB d0 = *d;

4 query(d0, i);

5 }

Here d is the global variable pointing to the current version of the database. We run
both queries and updates in in�nite loops until some stop condition is reached.
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MemSQL Hyper P-Tree
Par. (ms) Seq. (s) spd- Par. (ms) Seq. (s) spd- Par. (ms) Seq. (s) spd-

Update 7 3 ratio 7 up 7 3 ratio 7 up 7 3 ratio 7 up
Q1 375 436 16.3% 11.6 31.0 354 345 -2.5% 12.4 35.0 324 331 2.0% 6.6 20.5
Q2 233 295 26.6% 9.1 38.9 255 256 0.4% 9.1 35.7 15 16 9.5% 0.8 51.9
Q3 2377 2494 4.9% 12.2 5.1 441 469 6.3% 14.1 31.9 144 147 1.9% 9.4 65.6
Q4 403 504 25.1% 27.9 69.2 357 386 8.1% 14.6 40.9 36 37 3.6% 3.1 87.9
Q5 1171 1174 0.3% 36.3 31.0 507 543 7.1% 17.7 34.9 68 70 1.7% 5.0 72.4
Q6 230 310 34.8% 7.3 31.7 100 103 3.0% 1.1 11.2 51 52 0.4% 2.7 53.6
Q7 579 904 56.1% 13.2 22.8 381 393 3.1% 12.1 31.8 60 62 3.5% 4.4 72.6
Q8 298 335 12.4% 15.1 50.8 125 137 9.6% 4.8 38.6 94 96 2.7% 5.8 61.9
Q9 1726 1915 11.0% 127.9 74.1 1176 1200 2.0% 47.8 40.7 184 184 0.1% 7.9 42.8
Q10 700 808 15.4% 66.9 95.6 404 385 -4.7% 11.4 28.2 53 55 2.4% 4.2 78.4
Q11 120 124 3.3% 1.9 15.7 67 81 20.9% 1.4 20.7 14 14 2.6% 0.7 53.4
Q12 277 378 36.5% 10.2 36.9 120 121 0.8% 4.6 38.2 105 106 1.0% 10.2 97.2
Q13 4561 4033 -11.6% 279.5 61.3 1559 1645 5.5% 73.4 47.1 406 414 2.0% 34.3 84.4
Q14 250 244 -2.4% 14.7 58.8 79 249 215.2% 7.0 88.5 22 25 13.3% 1.6 71.0
Q15 1131 1795 58.7% 26.4 23.3 204 221 8.3% 3.0 14.7 25 27 7.9% 1.3 49.6
Q16 660 730 10.6% 35.8 54.2 426 436 2.3% 7.2 16.8 70 73 3.6% 5.7 81.1
Q17 258 265 2.7% 8.1 31.3 261 285 9.2% 7.2 27.7 36 37 5.2% 1.2 34.9
Q18 6327 6762 6.9% 43.1 6.8 3135 3484 11.1% 37.7 12.0 425 428 0.8% 29.3 68.9
Q19 180 208 15.6% 10.9 60.4 222 240 8.1% 8.5 38.3 28 30 5.7% 2.2 77.4
Q20 1737 2012 15.8% 95.0 54.7 192 335 74.5% 9.0 47.0 25 26 2.7% 2.3 90.6
Q21 1333 1402 5.2% 363.2 272.5 798 858 7.5% 30.5 38.2 263 276 5.1% 15.5 59.1
Q22 613 640 4.4% 26.5 43.2 181 187 3.3% 6.1 33.9 39 42 8.8% 2.5 65.0

Mean 640.5 734.3 14.6% 24.7 38.5 311.3 352.7 13.3% 9.6 30.8 66.4 68.9 3.9% 4.1 62.2

Table 11.2: TPC-H Measurements (SF 100) – “seq.” means sequential running time in seconds.
“par” means parallel running time in milliseconds. 3 or 7 means with or without updates running
at the same time. Gmean=geometric mean across �ve runs. Running time in the last row shows
the geometric mean of the each column. The mean of ratios are calculated from the mean of the
running time. For parallel runs, we use all 144 threads. We highlight (the grey cells) the highest
throughput numbers among the three implementations.

11.6.2 OLAP Workload Evaluation

For this next group of experiments, we test P-Trees on all 22 queries in TPC-H and
compare it with two in-memory DBMSs:

• MemSQL (v6.7): We load all of the TPC-H tables into the DBMS’s column-store
engine. We then use the memsql-optimize tool to con�gure the DBMS’s runtime
components. Although we ran our experiments on a single node, MemSQL does
not allow one to create a database with a single partition, where a partition is
MemSQL’s granular unit of query parallelism. Thus, we use the memsql-optimize
tool to con�gure the DBMS to create a two partitions per CPU.

• HyPer (v20181.18): We use the commercial version of the HyPer binary shipped
in the Tableau distribution. We use DBMS’s default runtime con�guration that
sets inter-query and intra-query parallelism to use all available cores. For our
restricted run measurements (i.e., sequential time), we limited HyPer’s inter-query
and intra-query parallelism to one core each.
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Figure 11.5: Parallel TPC-H Running Time with SF 100 – The parallel (144 threads, time in
milliseconds) running time of TPC-H queries. We cut of the y-axis at one second. “*” in the �gure
indicates that those numbers exceed the y-axis.

For both MemSQL and HyPer there are many settings and we made a signi�cant e�ort
to run the workload in the best possible way. This included contacting the developers
of both and using the con�gurations suggested by them for the TPC-H workload. The
numbers we report are comparable to those which are self reported for the two database
system [104, 188] on TPC-H and adjusted for processor capabilities.

We note that MemSQL’s column-store engine does not support additional indexes. For
HyPer we ran with and without secondary indexes and took the best time. Our implemen-
tation with P-Tree uses secondary indexes on orderdate, shipdate, and receiptdate.
P-Trees do not use optimizations based on column stores (everything is a row store),
NUMA optimizations, or vectorization.

We note that both HyPer and MemSQL are full-functional DBMS, which have more
functionalities than our DBMS, including the compilation of SQL, durability, etc. To make
a more fair comparison, we exclude the query compilation time for them, and also make
our DBMS durable by writing logs of transactions to disk.

We use TPC-H scale factor (SF) 100 and run all tests �ve times to achieve more stable
results. The results are presented in Table 11.2 in the columns labeled with “7” in updates.
The columns labeled with “seq.” show the sequential running time, and the columns with
“par.” are parallel running time. We use grey cells to note the best throughput number
among the three systems.
Parallel Performance. All three systems achieve stable query performance across runs.
The geometric standard deviation of P-Trees, HyPer, and MemSQL are 1.015, 1.023 and
1.037, respectively. In all 22 queries, P-Trees are faster than both HyPer and MemSQL.
P-Trees are at least 3× faster on most queries compared to both MemSQL and HyPer.
However, in some queries (e.g., Q1, Q6, Q8, Q12 and Q21) that P-Trees cannot take
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much advantage of using nested indexes, P-Trees’ advantage is less signi�cant (only 1-2×
faster). For example, Q1 and Q6 requires to scan several speci�c columns of almost all
lineitems, and thus nested indexes cannot help to pre-�lter. Q8 involves two nestings
(customer-order-lineitem and part-partsupp-lineitem), and thus using hierarchical map-
reduce function on one index still need an extra lookup at the parent-child relation
in the other index. Q12 and Q21 are similar. On the other hand, in these queries an
implementation could bene�t from using columnstore by reducing I/O, as both HyPer and
MemSQL do. In fact, the good performance of P-Trees mainly comes from two aspects:
better parallelism, and the index nesting. We will discuss this in more detail later in this
section.

The geometric mean of all 22 queries using P-Trees is 4.2× faster than HyPer and 9.2×
faster than MemSQL.
Sequential Performance and Scalability. Overall, the P-Tree’s performance is still
better than HyPer and MemSQL, but not as signi�cant as for parallel performance. For
the geometric mean of the sequential running time of all 22 queries, the P-Tree is about
2× faster than HyPer and 5× faster than MemSQL. Similarly, in the queries (e.g., Q6,
Q8, Q12 and Q21) that P-Trees cannot take much advantage of nested indexes, P-Trees’s
performance can be similar or even slower than HyPer, because the advantage of column-
store is more signi�cant than index nesting. However, P-Trees still achieve better parallel
performance in these queries, indicating that our implementation potentially allows for
better scalability.

Using 144 threads, P-Trees achieve a 69× speedup on average, while HyPer and
MemSQL get speedup around 30×. This indicates that the good parallel performance of
P-Trees bene�ts greatly from better scalability.
Parallel Performance Gain Breakdown. To understand the performance gain of our
TPC-H implementation, we look at three optimizations we use: the index nesting, the
secondary indexes, and whether we include the table entries inline in the index (as with
index organized tables [256]), or in a separate record elsewhere in memory with a pointer
to it. We implement 12 representative queries in TPC-H, that use di�erent tables and
indexes in our implementation. We start from plain P-Trees with no optimization, and
add the three optimizations one by one to test the improvement. Results are shown in
Table 11.3. We mark the test cases that P-Trees are better than both HyPer and MemSQL
as grey cells.

For data inline, the performance gain is about 12%. This means that storing pointers
in indexes to save memory overhead caused by index nesting causes about 12% overhead
in queries. Even using plain P-Trees, our implementation outperforms both HyPer and
MemSQL in four out of 12 tested queries.
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P-Tree P-Tree P-Tree P-Tree Hyper MemSQL
Nested no no no yes - -
Sec. Idx no no yes yes yes -
Inline no yes yes yes - -

time time ratio time ratio time ratio time time
Q1 388 317 22.3% 324 -2.1% 324 0.0% 334 375
Q2 59 52 12.9% 52 0.0% 18 190.4% 251 233
Q3 1053 985 6.9% 985 0.0% 192 414.1% 464 2377
Q4 630 517 22.0% 417 24.0% 36 1072.6% 363 403
Q5 613 531 15.5% 444 19.4% 69 544.2% 520 1171
Q6 395 325 21.8% 53 516.8% 53 0.0% 99 230
Q8 1044 984 6.2% 984 0.0% 116 749.5% 125 298
Q11 49 52 -6.1% 52 0.0% 14 269.3% 67 120
Q12 505 472 6.9% 104 355.6% 104 0.0% 120 277
Q13 794 777 2.1% 777 0.0% 403 92.7% 1595 4561
Q14 409 337 21.4% 23 1350.0% 23 0.0% 82 250
Q18 1998 1718 16.3% 1718 0.0% 421 307.9% 3174 6327

Gmean 446 398 12.0% 234 70.2% 82 184.2% 286 585
Table 11.3: Breakdown of the P-Tree’s performance gain on TPC-H – The running time of
using P-Tree with di�erent optimizations enabled, including index nesting (Nested), secondary
index (Sec. Idx) and data inline (Inline). “Ratio” means the improvement compared with the
previous column. Experiments are on SF 100 with 144 threads. We highlight (the grey cells) all
P-Trees’ throughput numbers that outperform both HyPer and MemSQL.

Five out of 12 tested queries achieve signi�cant improvement from secondary indexes.
The improvement ranges from 24% to 1400%. Even without index nesting, The P-Tree is
better than both HyPer and MemSQL in nine out of 12 queries.

Eight out of 12 tested queries take advantage of tree nesting. On average the improve-
ment of using index nesting is up to 10×, with an average of 2×.

In summary, the major gain of P-Trees’ good query performance comes from index
nesting. Some queries such as Q1 require to scan all lineitems, which cannot bene�t
from index nesting. In this case, P-Trees with all optimizations can only achieve similar
performance to a plain P-Tree, as well as HyPer and MemSQL. For the others, the overall
improvement of all optimizations can be up to 20× faster than the plain P-Trees.

11.6.3 HTAPWorkload Evaluation

We test P-Trees on the hybrid benchmark TPC-HC (see Section 11.6.1). We run our
system with durability enabled, and stop queries and transactions after 105 transactions.
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Figure 11.6: Breakdown of the P-Tree’s performance gain on TPC-H – 144 threads, SF 100.
“*” means the bar exceeds the y-axis.

We show the running time on queries in Table 11.2 in the columns labeled with 3, and
report the update throughput in Table 11.4.

We compare our results to HyPer and MemSQL. The throughput numbers of HyPer
are not satisfactory, which are 100× slower than MemSQL and our P-Tree, and are much
slower than they report in their paper [178] (we note that the benchmark is slightly
di�erent, and our workload is 100× larger than that in [178]). In our evaluation, we test
both the Tableau version of HyPer as well as its academic predecessor. The old version
did not support JDBC, so we only report the numbers from the Tableau version. However,
we found that both versions had comparable performance on TPC-H SF 100. Through
correspondence with the original HyPer authors, we understand the Tableau version does
not have certain features enabled. We suspect that this contributes to the degradation of
performance observed.
Update Overhead. As shown in Table 11.2, for P-Trees, adding a sequential update
process only causes about 5% overhead to the TPC-H queries, which is lower than both
HyPer and MemSQL. The slowdown is likely caused by the contention in updating the
reference counters, which will invalidate cache lines. We note that there are a small
number of queries that have higher throughput when running with updates. This is
possible that when running with updates, the query coincidentally gets better cache
locality.
P-Tree Update Throughput. Our DBMS achieves a throughput of 12k update trans-
actions per second on a single thread. For the Payment transactions on P-Trees, the
only updated tree is the index for customers. Thus the throughput is the highest among
the three. Each New-Order transaction updates �ve trees. Therefore it is much slower
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(about 8×) than the Payment transactions. Finally the Delivery transaction is the most
expensive among the three, not only because it needs to update an average of �ve orders,
but it also updates six trees in total. Therefore, it is about 5× slower than the New-Order
transactions.
Update Throughput Comparison with MemSQL. Overall P-Trees have almost exactly
the same performance as MemSQL in updates. On New-Order it is about 3× slower, while
on Payment it is about 3× faster, and about 2× faster on Delivery. The extra cost on
New-Order is due to the extra tables that have to be updated.

11.6.4 Memory Overhead Analysis

In this section, we analyze the memory overhead caused by path-copying and index
nesting in our TPC-H and TPC-HC experiments.
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Figure 11.7: TPC-HC Memory Overhead – The memory overhead of executing 1.5M New-
Order transactions for the TPC-H benchmark (SF=100), which is about 1% of the original data.
The x-axis shows the numbers of kept versions k . We show numbers about two indexes in our
system: the customer-order-lineitem index, and the part-partsupp-lineitem index. The original
size of customer-order-lineitem is about 47G, and the part-partsupp-lineitem index is about 42G.

Index Nesting Memory Overhead. Index nesting can cause extra space when a table
is involved in multiple logical hierarchies or secondary indexes. One can expect space-
performance tradeo� by designing di�erent nestings of indexes. We now analyze the
memory usage in our TPC-H nested index implementation.

In total, to store 100G TPC-H raw data, our implementation uses 265G data, including
the raw data, metadata for indexes (e.g., pointers and subtree sizes for each node), and
duplicates caused by index nesting. This number matches the theoretical estimation of
memory usage in Table 11.5 in the second last column Inline. This gives us the good
performance as we report in Table 11.2. One can save space by storing only pointers in
indexes, avoiding physically copying data. For our TPC-H implementation, this saves
about 55G data, as we show in the last column Indirect in Table 11.5. However using
indirections may cause extra cache misses for queries. This overhead in query time is
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about 12% as we show in Table 11.3. We can also save space by storing fewer indexes.
For example, if we drop the secondary index on receiptdate, we can save about 30G
memory. The only side e�ect is the slowing down of Q12 by 4×.

Both HyPer and MemSQL use about 100G memory on 100G TPC-H raw data. We do
not use any compression as they do. We note that there are also ways to compress P-Trees
[122].
Path-copying Memory Overhead. We next measure the memory overhead for main-
taining multiple snapshots using P-Trees through path-copying. We present our results in
Figure 11.7. We execute 1.5×106 New-Order transactions (1% of the original database size).
For simplicity, we only evaluate two indexes in our system: the customer-order-lineitem
nested index Tcust, and the part-partsupp-lineitem nested index Tpart. We keep k (ranging
from 15 to 1.5M) recent versions, and garbage collect other versions. We present the peak
memory footprint over time in Figure 11.7. The grey dotted line shows the actual memory
size required by the new orders. We do not count the memory to store strings because
they are not stored in the indexes, and we never copy them. The extra used memory
includes the added data itself, metadata to maintain the trees (e.g., pointers in each node)
as well as extra space caused by path-copying.

To add a new order On from customer Cn in Tcust, we �rst build a tree of all lineitems
in On, attach it to a new created order node, and insert this node into the inner tree of
Cn. We use nested copying in Section 11.4. Each lineitem creates exactly one lineitem
node because they are not inserted into existing trees, but a newly-built tree. Therefore
there is no extra copying of lineitem nodes. Orders are stored in small inner trees of the
customers. Therefore the overhead in copying order nodes is also small because each
new order only creates about 3-4 order nodes. The major overhead occurs in copying
customer nodes. Every new order copies a path of customers. However, when k is small,
the out-of-date customer nodes all get collected due to precise garbage collection, leaving
only small memory overhead (less than 0.02G). In fact, the used space is almost exactly
k · hc · sc , where hc ≈ 23 is customer tree height, and sc = 64B is the customer node size.
However, if more versions are kept, the memory overhead is more than 4×.

InTpart, every new lineitem inserted leads to path-copying on all three levels of nesting,
causing more overhead than Tcust. The order data are not added to this index. The total
memory overhead is generally low when old versions are collected in time. Similarly, the
lineitem and partsupp trees are all shallow inner trees. Thus the overhead mainly comes
from a large number of copied part nodes especially when k is large.

In both cases, index nesting helps to reduce memory overhead from path-copying
because the dominate memory usage, which is the lineitems, are kept only in small shallow
trees. In fact, index nesting shifts the copying of inner tree nodes to outer tree nodes. In
our indexes, many of the outer tree nodes have to be updated and copied anyway because
of the New-Order transactions (e.g., the available quantity of a partsupp). Therefore the
total number of copied nodes reduces because of index nesting.
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New-Order Payment Delivery Overall
MemSQL 23,655 25,156 765 10,280
Hyper* 67 214 11 75
P-Tree 7,037 61,332 1,110 8,696

Table 11.4: Update Throughput on TPC-HC – Updates are executed sequentially, while queries
are executed one by one using multi-cores. *: HyPer’s performance is below expectation. More
explanation is given in Section 11.6.3.

Bytes per entry Dup- Size Memory (GB)
String Metadata Data licates (M) Inline Indirect

Lineitem 79 24 40 4 600 187.20 138.02
Order 109 40 32 3 150 45.40 39.81
Customer 207 40 24 1 15 3.79 3.90
Partsupp 199 40 24 2 80 24.36 23.77
Part 148 40 24 1 20 3.95 4.10
Supplier 181 40 24 1 1 0.23 0.24
Total 265G 210G

Table 11.5: Memory usage of our TPC-H implementation – SF=100. This estimation matches
our experimental measurements. “String” is the size of string per entry, “Data” means the size of
other �elds per entry. Strings are not copied in duplicates.

In summary, the space overhead of P-Tree is small when GC is in time or when the
change of the DBMS is not signi�cant, but will become a big bottleneck if more versions
remain in memory. Usually it is unlikely to have the number of living version more than
the number of physical threads. In our case, the overhead of keeping 144 versions is rather
low. If we want to keep all history, we can also write old versions to disk to collect them
in memory.
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Chapter 12

Version Maintenance for Concurrent
Systems

12.1 Introduction
In a concurrent system, concurrent read-only transactions access the latest state of the

system, and concurrent write transactions update the latest state of the system and commit.
Such a system is useful in database management systems (DBMS) [61, 181, 214, 226]
software transactional memories (STM) [229, 237], operating systems [206, 207], etc.

In general, it is usually hard to achieve solutions with tight bounds and good properties
on arbitrary transactions. This can be both due to the overhead of the transactional system,
and due to inherent dependences among the transactions, forcing the system to wait
for another to complete. When most transactions are read-only, however, the prognosis
is signi�cantly better. In particular, read-only transactions (readers) can in principle
proceed with constant delay and without delaying any writing transactions (writers),
since they do not modify any memory, and hence other transactions do not depend on
them. This can be very useful in workloads dominated by readers. Several approaches try
to take advantage of this. Read-copy-update (RCU) [206] allows for an arbitrary number
of readers to proceed with constant delay, and has become a core idiom widely used
in Linux and other operating systems [207]. In RCU, however, readers can arbitrarily
delay (block) a writer, since a writer cannot proceed until all readers have exited their
transaction. This is particularly problematic if some readers take signi�cant time, fault, or
sleep [201]. Indeed RCU in Linux is used in a context in which the readers are short and
cannot be interrupted.

With multi-versioning [61, 181, 214, 226, 229, 237], on the other hand, not only can
readers proceed with constant delay, but in principle, they can avoid delaying any writers—
a writer can update a new version while readers continue working on old versions.
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Therefore a single writer and any number of readers should all be able to proceed without
delay (multiple writers can still delay each other).

Multi-versioning, however, has some signi�cant implementation issues that can make
the “in principle” di�cult to achieve in “theory” or “practice”. One is that memory can
become an issue due to maintaining old versions, possibly leading to unbounded memory
usage. Ideally one would like to reclaim the memory used by a version as soon as the
last transaction using it �nishes. The detection of such out-of-date versions is de�ned
as the version maintenance (VM) problem. Ben-David et al. [50] propose a framework to
VM problems. Detecting when a version is safe to collect, this framework requires an
underlying functional data structure which supports appropriated garbage collection. In
this chapter, we are interested in studying how P-Trees can be used in this framework.
We will also present a simple lock-free algorithm for the VM problem that can support
e�ective multi-version concurrent system.

The property that P-Trees support snapshotting using path-copying and a correct GC
makes P-Trees good candidates for a VM solution. Combining P-Trees with the lock-free
VM solution yields a multi-versioning transactional system that is lock-free, serializable,
guaranteeing no-abort for all readers and one writer, and with safe and precise GC.

At the end of this chapter, we will discuss how P-Trees can be combined with other
VM solutions in previous work, which is studied in [50]. These solutions include hazard
pointers [210], epoch-based GC [111], Read-Copy-Update (RCU) [206, 207], and a wait-free
safe and precise (WFPS) VM solution [50].

12.2 Preliminaries
We consider asynchronous shared memory with P processes. Each process p follows

a deterministic sequential protocol composed of primitive operations (read, write, or
compare-and-swap) to implement an object. We de�ne objects, operations and histories in
the standard way [157]. We consider linearizability as our correctness criterion [156, 158].
An adversarial scheduler determines the order of the invocations and responses in a history.
We refer to some point in a history as a con�guration. We de�ne the time complexity of an
operation to be the number of instructions (both local and shared) that it performs. Note
that this is di�erent from the standard notion of step complexity which only counts access
to shared variables.
Transactions. We consider two types of transactions: read-only and write. Each
transaction has an invocation, a response, and a completion, in that order. A transaction is
considered active between its invocation and response, and live between its invocation and
completion. Intuitively, the transaction is executed between its invocation and response,
and does some extra ‘clean-up’ between its response and its completion. We require that
transactions be strictly serializable, meaning that each transaction appears to take e�ect
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at some point during its active interval. We refer to a write transaction as single-writer if
no other write transaction is live while it is live.
Functional Data Structures. Although in this thesis we only use P-Trees as the
underlying VM data structure, the framework used in this chapter is applicable to general
functional data structures, which can be an arbitrary DAG instead of just trees. We assume
that the memory shared by transactions is based on purely functional (mutation-free)
data structures. We use the PLM as de�ned in Section 2.3. Using PLM instructions, one
can create a DAG in memory, which we refer to as the memory graph.

We de�ne the version root as a pointer to a tuple, such that the data reachable from
this tuple constitutes the state that is visible to a transaction. Then each update on version
v yields a new version by path-copying starting from the version root of v , and the new
copied root provides the view to the new version. In our framework, every transaction t
acquires exactly one version V (t). If t has not yet determined its version at con�guration
C , then VC(t) = null until it does. We use the version roots as the data pointers in the
Version Maintenance problem.
Garbage Collection. We assume all tuples are allocated at their tuple instruction, and
freed by a free instruction in the GC. The allocated space consists of all tuples that are
allocated and not yet freed. For a set of transactions T , let R(T ), or the reachable space for
T in con�guration C , be the set of tuples that are reachable in the memory graph from
their corresponding version roots, plus the current version c , i.e. the tuples reachable
from {V (t)|t ∈ T } ∪ {c}.We say that a tuple u belongs to a version v if u is reachable from
v’s version root. Note that u can belong to multiple versions. We de�ne a precise and a
safe GC, respectively, as follows.

De�nition 12. A garbage collection is precise if the allocated space at any point in the user
history is a subset of the reachable space R(T ) from the set of live transactions T .

De�nition 13. A garbage collection is safe if the allocated space is always a superset of the
reachable space from the active transactions.

Roughly speaking, precise GC means to free any out-of-date tuples in time, and safe
GC means not to free any tuples that are currently used by a transaction.

12.3 The Version Maintenance Problem
The VM problem is de�ned in [50], which is to implement a linearizable object with

three operations: acquire, release and set. The acquire operation returns a handle to the
most recent version, in a way that ensures it cannot be collected. The set operation
updates the current version to a new pointer, returning whether it succeeded or failed.
The release operation indicates that the currently acquired version is no longer needed by
the process, potentially making it available to be collected. It returns a list of versions that
can be collected—i.e., for which no other process has acquired it and not released it. Only
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Read Transaction

1 v = acquire(k);

2 user_code(v);

3 // response
4 versions = release(k);

5 for (v in versions) collect(v);

Write Transaction

1 v = acquire(k);

2 newv = user_code(v);

3 flag = set(newv);

4 // response if successful−−− update visible here
5 versions = release(k);

6 for (v in versions) collect(v);

7 if (!flag) collect(newv) and retry or abort

Figure 12.1: Read and Write transactions with acquire , set, and release – k is the process
ID.

one version can be acquired on any process at any time, i.e. the current version must be
released before a new one is acquired. In the precise VM problem, the release will return a
singleton list precisely when the process is the last to release its version, and an empty
list otherwise. We give a solution to the precise version.

The VM object can be used to implement read-only and writing transactions as shown
in Figure 12.1. The read transaction is e�ectively done after step 2 (response could be
sent to a client), and the rest is a cleanup phase for the purpose of GC. Similarly, writing
transactions are done after step 3, at which point the result is visible to other transactions.
After the release, any garbage can be traced from the released pointers and collected
in work linear in the amount of garbage collected using a standard reference counting
collector.

We refer to the pointer to a version as the data pointer. More formally, if d is a pointer
to data, set(d), if successful, creates a new version with pointer d and sets it as the current
version, i.e.,

De�nition 14. The current version is de�ned as the version set by the most recent successful
set operation.

The operations are intended to be used in a speci�c order: an acquire(k) should be
followed by a release(k), with at most one set(k , d) in between, where d is a pointer to
a new version. If this order is not followed for each k , then the operations may behave
arbitrarily; that is, we do not specify a ‘correct’ behavior for the operations of a Version
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Maintenance object O in an execution once any operations are called out of this order on
O .

We de�ne the liveness of a version v as follows.

De�nition 15. A version v is live at time t if it is the current version at t , or if ∃k , s.t. an
acquire(k) operation A has returned v but no release(k) has completed after A and before t .

We note that a version is live while a transaction using that version is active. The
transaction itself can remain live after its version is dead, while it garbage collects.

The following is the sequential speci�cation of these operations assuming that they
are called in the correct order (acquire-release or acquire-set-release for each id k).

• data* acquire(int k): Returns the current version.
• data** release(int k): Returns a (possibly empty) list of versions that are no

longer live. No version can be returned by two separate release operations.
• bool set(int k, data* d): Sets the version pointed to by d as the current version.

Returns true if successful. May also return false if there has been a successful set
between this set and the most recent acquire(k). If the set returns false, it has
no e�ect on the state of the object.

In the proofs of linearizability of our algorithm (which we show in Section 12.4), we
state linearization points, and then proceed to show that for any given history, if we
sequentialize it based on the stated linearization points, it adheres to the above sequential
speci�cation.

We say that a process pk has acquired version v if acquire(k) returns v , and say pk
has released v when the next release(k) operation returns. If a set operation returns true,
we say that it was successful. Otherwise, we say that the set was unsuccessful or that
the set aborted. Note that conditions for correct aborting for the set are reminiscent of
1-abortability de�ned by Ben-David et al. [47], but we relax the requirements to allow a
successful set to cause other sets to abort even if it was not directly concurrent with
them, but happened sometime since that process’s last acquire.

An implementation of a Version Maintenance object is considered correct if it is
linearizable as long as no two operations with the same input k run concurrently. The
GC is safe to invoke on the versions release returns if for any particular version v , there
is exactly one release operation that returns true. Furthermore, it is considered precise if
the release operation returns exactly the versions that stop being live at the moment the
release operation returns. Note that this means that in a precise implementation of the
Version Maintenance problem, each release operation r returns a list containing at most
one version. This version must be the one that r released, and r must be the last operation
done on v .

It is useful to note the following two facts (proved by [48, 50]), which must hold in
any algorithm that solves the version maintenance problem.
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Observation 12.3.1. v is live immediately before the linearization point of a releasev
operation.

Observation 12.3.2. A version v is live for a contiguous set of con�gurations.

Where convenient, for a version v , we use acquirev , releasev and setv to denote an
acquire operation that acquires v , a release operation that releases v , and a set operation
that sets v as the current version, respectively.

12.3.1 A Lock-free Algorithm

In this section, we describe a simple lock-free algorithm for the VM problem. We
will later show that just combining this simple algorithm with P-Trees gives an e�ective
solution to a multi-versioned concurrent system. The algorithm uses a hash table S to
maintain the status of all live versions. Similarly, a hash table D is used to store the data
pointers associated with the live versions. Each non-empty element of S stores a version
along with the count of that version. Intuitively, the count of each version represents the
number of processes working on that version. We represent a version v as a timestamp
plus an index. The index tells us which element of D and S is reserved for that version. A
is an announcement array mapping each processor id to the version it is working on. We
use hash tables to maintain information on all live versions. Note that at any time, there
can be at most P live versions, so both hash tables have size 2P . We use a global variable
V to represent the current version.
Acquire. The acquire operation reads the most recent version from V , increments the
count of that version, and returns the data pointer associated with it. Incrementing the
counter is implemented by performing a CAS in a loop. Every time the CAS fails, the
operation re-reads the current version and the status of that version. Before returning, an
acquire(k) operation writes the version that it acquired into its persistent local variable
A[k]. This is so that the next call to release(k) knows which version to release. Note that
the version number i that a processor p acquires is not necessarily the current version
(except for the acquire of the writer, which will always return the current version) when
it returns, but is still a valid version whose counter value is greater than 0, so that it will
not be collected by others before p terminates.
Set. The set(k,d) function �rst randomly �nds an empty slot i for the new version in
the hash table S (the hash table is accessed using linear probing). Then it creates a new
version v using index i and the current timestamp plus one. Then it stores v into S[i] with
count 0. Because there can be concurrent writers taking the slot i , a CAS is used to declare
i for this writer. If the CAS fails (which means that other writers takes this slot during the
above two lines), the set operation fails. Otherwise, it writes d into D[i] and sets v as the
current version. Finally, it checks if any other writers have changed V after it acquires
the version. If not, the new version can be committed, otherwise, the set fails. The order
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1 struct Version{ int timestamp; int index; };

2 struct VersionStatus{ Version v; int count; };

3 Version V;

4 VersionStatus S[2*P];

5 Data* D[2*P];

6 Version empty = 〈-1, -1〉;

7 Version A[P]; //Persistent local vars.

9 Data* acquire(int k) {

10 Version v, VersionStatus s;

11 do {

12 v = V;

13 s = S[v.index];

14 } while (!CAS(S[v.index], 〈v,s.count〉, 〈v,s.count+1〉));
15 A[k] = v;

16 return D[v.index]; }

18 bool release(int k) {

19 Version v = A[k]; bool last = false;

20 do {

21 VersionStatus s = S[v.index];

22 if(s.count == 1) last = true;

23 } while (!CAS(S[v.index],s,〈s.v,s.count-1〉));
24 if (v == V || !last) return false;

25 VersionStatus s = S[v.index];

26 if(s.v != 〈v, 0〉) return false;

27 return CAS(S[v.index],s,〈empty,0〉); }

29 void set(int k, Data* d) {

30 int index = random_hash(0, 2*p);

31 while (S[index] != 〈empty, 0〉) index = (index+1)%(2*p);

32 Version v = 〈V.timestamp+1, index〉;

33 bool f = CAS(S[index], 〈empty,0〉, 〈v, 0〉);

34 if (!f) return false;

35 D[index] = d;

36 bool result = CAS(V, A[k], v);

37 if (!result) S[index] = 〈empty,0〉;
38 return result;}

Figure 12.2: A lock-free algorithm for the Version Maintenance Problem.
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matters since whenever the cur_idx is acquired by other threads, the whole version must
be ready, and whenever the �ag is read as true, the data structure should be ready.
Release. Basically, a release(k) operation decrements the counter of the corresponding
version v, and collect the corresponding version if necessary. Intuitively the release
function returns true i�. it does the garbage collection of its corresponding version (will
be proved later). The release(k) operation �rst reads A[k] to check which version it’s
responsible for decrementing. In our algorithm, the last one that releases this version is
always responsible to collect it. Then it tries to decrement the counter with a CAS, just
like an acquire operation, retrying until successful. After the decrement, if v is still the
current version or if the count of v is non-zero then the operation returns false because v
is still live. Otherwise, the count of v is 0 and v is no longer the current version, so the
release(k) operation tries to make v unacquireable by setting S[v .index] to empty with a
CAS. If it succeeds, then v is no longer live and it returns true. Otherwise, either some
other operation has set S[v .index] to empty or some acquire operation has incremented
the count of v . In the �rst case, the release(k) operation returns false because some other
releasev operation has already returned true. It also returns false in the second case because
v is still live.

12.4 The Correctness of the Lock-free Algorithm
In this section, we show that our lock-free algorithm is linearizable. The result can be

summarized as Theorem 12.4.1. We defer the full proof to the supplement material.

Theorem 12.4.1. Algorithm 12.2 is a linearizable solution to the Version Maintenance
problem.

We �rst present the linearization points for each operation in our lock-free algorithm.

De�nition 16. For each operation op, its linearization point is as follows:
• If op is a successful set, then it is linearized at line 33. This is the line that updates V.
If op is an unsuccessful set, it linearizes at its return.

• If op is an acquire, then it is linearized on line 12 of the loop that performs a successful
CAS on line 14.

• If op is a release, then there are two cases: (1) If op completes and returns true, then it
is linearized at its �nal step. (2) Otherwise, it is linearized when it performs a successful
CAS on line 24.

We then prove that these linearization points satisfy the sequential speci�cation
outlined in Section 12.3, which them proves Theorem 12.4.1.

We refer to S[v .index] as the counter ofv . Intuitively, release operations returning false
are linearized when they decrement the counter of the version they are trying to release.
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Also, we linearize acquire operations at when it reads the version it later successfully grabs.
We �rst prove the following two helper lemmas for better understanding the algorithm.

Lemma 12.4.2. When the counter of a version v is more than 0, this version is live.

Proof. The counter of a version v is more than 0 only if line 14 of an acquirev operation
increments the counter and the counter has not yet been decremented by line 23 of the
corresponding releasev operation. Since acquirev operations are linearized before they
increment the counter and releasev operations are linearized either when they decrement
the counter or at some later step, we know that v is live whenever its counter is more
than 0. �

Lemma 12.4.3. For each version v , there is at most one releasev operation that returns true.

Proof. A releasev operation returns true only if the CAS on line 27 changes S[v .index]
from 〈v, 0〉 to 〈empty, 0〉. The lemma holds because S[v .index] will never change back to
〈v, 0〉 after it has been set to 〈empty, 0〉. �

Now we are ready to show that the linearization points satisfy the sequential speci�ca-
tions. Lemma 12.4.4 proves the �rst part of the sequential speci�cations, which says that
acquire() operations return the correct value. Together, Lemmas 12.4.5 and 12.4.6 prove
the second part of the sequential speci�cation, which says that a releasev () operation
returns 1 if and only if v changes from being live to not live.

Lemma 12.4.4. An acquire(k) operation Q returns the pointer written by the last set()
operation linearized before it.

Proof. Note that at any point in an execution, the global variable V stores the version
created by the last set() operation linearized before this point. Furthermore, at any point in
the execution, D[V .index] stores the pointer written by the last set() operation linearized
before this point. This is because D[i] cannot change as long as S[v .index] , 〈empty, 0〉
and S[v .index] cannot be set to 〈empty, 0〉 as long as i = V .index (due to the check on
line 24).

Let v0 be the value of V at Q’s linearization point. It’s easy to see that Q increments
the count of v0 by looking at how acquire operations are linearized. While the count
of v0 is non-zero, S[v0.index] cannot be set to 〈empty, 0〉 because the CAS on line 27 of
releasev0 only succeeds when the count of v0 is zero. Therefore D[v0.index] cannot be
changed as long as the count of v0 is non-zero, so Q returns the data pointer associated
with v0. �

Lemma 12.4.5. If a releasev () operation R returns true, thenv is live before the linearization
point of R and not live after.

Proof. By Observation 12.3.1, v must be live before the linearization point of R.
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We �rst show that any acquirev operation linearized before R must have increased the
counter ofv on Line 14 before the linearization point of R. Note that after the linearization
point of R, S[v .index].v = empty, meaning that the counter of v can only increment
before the linearization point of R. Therefore all acquirev operations must increment the
counter of v before the linearization point of R.

Next, we show that all acquirev operations linearized before R have corresponding
releasev operations that are also linearized before R. We know that S[v .index] = 〈v, 0〉
immediately before the linearization point of R, so each acquirev operations linearized
before R has a corresponding releasev operation that decrements the count forv before the
linearization point of R. By Lemma 12.4.3, all releasev operations other than R return false
and are linearized when they decrement the count forv . Therefore all acquirev operations
linearized before R have corresponding releasev operations that are also linearized before
R.

We can see from the code that v is not the current version at the linearization point of
R because R passed the check in line 24. Combining this fact with the previous fact that
we showed, we have that v is not live after R. �

Lemma 12.4.6. If a releasev () operation R returns false, thenv is live after the linearization
point of R.

Proof. Recall that R is linearized at CAS on line 23 that decrements the count of v . By
Observation 12.3.1, we know that v is live just before this CAS. Therefore to show that v
is live immediately after this CAS, it su�ces to show that v is live at some con�guration
after this CAS (By Observation 12.3.2).

If R returns on line 24, then either v = V , in which case v is live by de�nition, or the
count of v is non-zero immediately after the linearization point of R, in which case v is
live by Lemma 12.4.2.

If R returns on line 26 or line 27, then either some releasev () operation R′ is linearized
before the end of R or the count of v is non-zero at some point after the linearization
point of R. In the later case, we know that v is live after the linearization point of R by
Lemma 12.4.2. In the former case, we know that R′ must be linearized after R because v is
live before the linearization point of R and v is not live after the linearization point of R′
(by Lemma 12.4.5). By Observation 12.3.1, v is live immediately before the linearization
point of R′, so v must have been live after the linearization point of R. �

Together, Lemmas 12.4.4, 12.4.5 and 12.4.6, and De�nition 16 directly imply Theorem
12.4.1.

However note that this algorithm is not wait-free, and does not have time bounds. In
particular, the while loop in acquire can run arbitrary long. This is because of the in�nite
loop in updating counters.
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12.5 Wrapup
Ben-David et al. have shown that given a linearizable VM object, e.g., the lock-free

algorithm in Section 12.3.1, one can achieve a serializable solution to the VM problem. As
a result, plugging in the lock-free algorithm gives a simple and correct solution of the VM
problem.

The correctness of the VM problem means that on the version level, a old version can
be identi�ed as garbage once the last user releases it. To achieve tuple level preciseness,
this requires extra properties of the underlying VM data structure. Actually, as long as the
functional data structure supports a correct (de�ned in Section 5.2) collect algorithm, one
can achieve safe and precise garbage collection for the corresponding VM solution [50].

Intuitively, a linearizable precise VM solution provides an interface for safe and precise
garbage collection over versions, since releasev returns true if and only if it is the last usage
of v . However, the precision and safety on the granularity of tuples relies on a “correct”
collect operation, which, intuitively, should free all nodes that are no longer reachable
as soon as possible. In conclusion, combining the lock-free algorithm with P-Trees can
achieve a concurrent multi-version system that is serializable, lock-free, no-abort for all
readers and one writer, and safe and precise GC.

In [50], the authors show that P-Trees, when combining with other VM solutions, can
achieve even better properties. In particular, based on the results and experiments in [50],
we can conclude:

• Combining P-Trees with a hazard-pointer-based VM object, we can obtain a solution
that maintains 2P versions, and achieves high throughput in queries. The GC will
not be precise.

• Combining P-Trees with an RCU-based VM object, we can obtain a solution that
maintains exactly one version, but with lower throughput for writers. The GC will
be precise, but the writers can be blocked.

• Combining P-Trees with the precise, safe and wait-free (PSWF) algorithm, we can
obtain a solution that maintains at most P versions (on average can be much fewer),
and achieves good performance considering both readers and writers. All readers
can be delay-free (de�ned in [50]), and at least one writer only su�ers from O(P)
delay. All transactions are lock-free. The GC will be precise.
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Chapter 13

Inverted Index Searching

13.1 Ranked Queries on Inverted Indices

13.1.1 General Design

Our last application of augmented maps is building and searching a weighted inverted
index of the kind used by search engines [236, 276] (also called an inverted �le or posting
�le). For a given corpus, the index stores a mapping from words to second-level mappings.
Each second-level mapping, maps each document that the term appears in to a weight,
corresponding to the importance of the word in the document and the importance of the
document itself. Using such a representation, conjunctions and disjunctions on terms
in the index can be found by taking the intersection and union, respectively, of the
corresponding maps. Weights are combined when taking unions and intersections. It is
often useful to only report the k results with highest weight, as a search engine would list
on its �rst page.

This can be represented rather directly in our interface. The inner map, maps document-
ids (D) to weights (W ) and uses maximum as the augmenting function f . The outer map
maps terms (T ) to inner maps, and has no augmentation. This corresponds to the maps:

MI = AM ( D, <D ,W , W , (k,v) → v , maxW , 0 )
MO = OM ( T , <T MI , )

In the implementation, we use the feature of PAM that allows passing a combining
function with union and intersection (see Chapter 3), for combining weights. Note that an
important feature is that the union function can take time that is much less that the size
of the output. Therefore using augmentation can signi�cantly reduce the cost of �nding
the top k relative to naively checking all the output to pick out the k best. The C++ code
for our implementation is under 50 lines.

With such an inverted index, queries for a conjunction of words (and) can be imple-
mented by looking up the posting list for each word, and then taking an intersection of the
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corresponding sets. Similarly, a disjunction (or) is the union of the sets, and di�erence can
be used to exclude documents with a given term (and-not). Because of the importance of
inverted indices in document and web search there has been signi�cant research on devel-
oping e�cient implementations of set operations for this purpose, e.g., [38, 165, 241, 243].
As discussed in previous papers, it can be important for unions and intersections to
take time that is sublinear in the sum of the sizes since the size of the lists can be very
di�erent—e.g. consider the lists for “set” (5.8 billion hits in Google) and “cacomistle” (54
thousand hits in Google). PAM is well suited for such inbalanced queries since the time is
mostly a function of the smaller size.

It is most often useful not just to report a �at set of documents that satisfy the query,
but instead to report a reasonably small subset of the most important documents. Here we
discuss how augmented maps can be used to e�ciently implement such queries. The idea
is to keep a document-word weight with each document-word pair. This weight represents
a combination of the importance of the word in the document and the importance of the
document in the corpus. The importance of the word in a document is often measured
by the term frequency-inverse document frequency (tf-idf) [236], which measures how
frequently a word appears in a document relative to how frequently it appears in the
corpus as a whole. In practice, it is also important to consider where the word appears in
a document, giving words in titles, associated with an anchor, or near the beginning a
heavier weight. The importance of the document can be measured by algorithms such as
PageRank [224]. The importance of the word in the document and document in corpus
can then be combined to give an overall document-word weight. A zero weight is given
to document-word pairs that do not appear in the corpus so the representation can be
kept sparse.

The weights can be maintained in an inverted index by augmenting each posting list
so it is not just a set of documents, but a map from documents to weights, and further
augmenting the maps to keep the maximum weight in the map. When taking unions
or intersections the weights can be added for documents that appear in both sets. The
map returned by a query is therefore a mapping from documents that satisfy the query to
weights corresponding to importance of that document relative to the query. In this way,
returning the document with maximum weight will return the most important document
relative to the query in constant time. The next k most important documents can be found
in k logn time (n is the size of the posting list). For example, a query could be of the form
(“posting” and “�le”) or (“inverted” and “index”) with the objective of returning the most
relevant documents. The number of documents that match the query could be large given
that the words have multiple meanings, but the number relevant documents might be
small.

Figure 13.1 gives the code for implementing such an augmented map in PAM. Words
are stored as character strings (char *), document identi�ers are integers, and weights
are �oats. A posting list is an augmented map using the maximum of the weights (de�ned
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in a_map). The build_reduce function builds a map from a sequence of key-value pairs
(not necessarily sorted) and uses the supplied function to combine the values of equal
keys. In our case the documents with equal words (keys) should be combined by creating
a posting list (post_list) over them, and combining weights of equal words within a
document with add).

The implementation uses at least four important features of PAM. Firstly, when taking
unions and intersections it uses the combining function to specify how the weights of the
common documents that appear in both document sets should be combined. Secondly,
augmenting the map with the maximum weight document in the result of the query
allows it to quickly �nd the most important documents. Thirdly, PAM takes time that is
roughly proportional to the smaller list, making it e�cient when the posting lists have
signi�cantly di�erent sizes. And, fourthly, it makes use of persistence since the input
posting lists (maps) are not destroyed, but instead a new list is created when applying
unions or intersections. Note that supporting persistence by copying both input lists
would be very ine�cient if one is much larger than the other (PAM will only take time
mostly proportional to the smaller).

13.1.2 Concurrent Queries and Updates

Because of the features of P-Trees, we can also support dynamic updates in such
inverted indexes, i.e., new documents are added to the corpus, and some of the old ones
are removed. Simultaneously multiple users are querying on the index. Usually updates
are conducted by the server, and can be easily wrapped in one write transaction. In
addition, adding one document means a large set of term-document relations added to the
database, and we want a whole document is combined into the database atomically, i.e.,
the queries will never read a partially updated document in the database. To guarantee
serilizability, we only use a single global writer. The correctness would be supported by
the functional tree structure. We note that even though we only use one global writer, it
involves adding a set of term-doc pairs, which can also run in parallel.

Updating an inverted index can be supported e�ectively by the PAM interface for
build, and union allowing for complementary functions. Assume the original index ism.
To add a set of documents, we �rst convert it to a list of key-value pairs l = {(ti, (di,wi))}.
For each entry, the key is the term, and the value is a pair of the document along with the
term’s weight in this document. We then build a indexm′ separately for this document
using a reduce function f . The reduce function is similar to allowing for a complementary
function, but operates on a sequence of values instead of combining two values. For a term
that appears in multiple corresponding documents, the reduce function f will organize
them in the inner map (MI ), their values accumulated (+ as the combine function). Finally,
we take a union of m with m′. When a term already exists in the current index, the value
(inner indexes) are combined using a union. It can be written in code as follows.
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n 1 Core 72∗ Cores Speed-
(×109) Time Melts Time Gelts up(secs) /sec (secs) /sec

Build 1.96 1038 1.89 12.6 0.156 82.3
Queries 177 368 480.98 4.74 37.34 77.6

Table 13.1: The running time and rates for building and queering an inverted index –
Here “one core” reports the sequential running time and “72∗ cores” means on all 72 cores with
hyperthreads (i.e., 144 threads). Gelts/sec calculated as n/(time × 109).

f (l = {(di,wi)}) = MI ::build (l,+)
m′ = MO ::build ({(ti, (di,wi))}, f )
m = MO ::union (m,m′,MI ::union)

13.2 Experiments

13.2.1 General Tests
To test the performance of the inverted index data structure described in Section 13.1,

we use the publicly available Wikipedia database [271] (dumped on Oct. 1, 2016) consisting
of 8.13 million documents. We removed all XML markup, treated everything other than
alphanumeric characters as separators, and converted all upper case to lower case to make
searches case-insensitive. This leaves 1.96 billion total words with 5.09 million unique
words. We assigned a random weight to each word in each document (the values of the
weights make no di�erence to the runtime). We measure the performance of building
the index from an array of (word, doc_id, weight) triples, and the performance of
queries that take an intersection (logical-and) followed by selecting the top 10 documents
by weight.

Unfortunately we could not �nd a publicly available C++ version of inverted indices
to compare to that support and/or queries and weights although there exist benchmarks
supporting plain searching on a single word [110]. However the experiments do demon-
strate speedup numbers, which are interesting in this application since it is the only one
which does concurrent updates. In particular each query does its own intersection over
the shared posting lists to create new lists (e.g., multiple users are searching at the same
time). Timings are shown in Table 13.1. Our implementation can build the index for
Wikipedia in 13 seconds, and can answer 100K queries with a total of close to 200 billion
documents across the queries in under 5 seconds. It demonstrates that good speedup can
be achieved for the concurrent updates in the query.

13.2.2 Concurrent Updates and Queries
We test “and”-queries, which means each query takes two terms and return the top-10

ranked documents in which both terms appear. We carefully choose the query terms such
that the output is reasonably valid. The query is done by �rst read the posted-list of both
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terms, and take an intersection on them. Because of persistence the two posted-lists are
just snapshots of the current database, and hence each query will not a�ect any other
queries nor the update by the writer. We will show that simultaneous updates and queries
does not have much overhead comparing to running them separately.

We �rst build a tree with 1.6× 109 word-doc pairs. We use di�erent number of threads
to generate queries, and the rest are used for doing updates. We note that the thread
allocation for running query/update ratio depends on the scheduler. We run both update
and query simultaneously in 30 seconds, and record the throughput for each. We then test
the same number of updates or queries running separately using all available threads (144
of them). Both update and query run in parallel—not only multiple queries run in parallel,
but each single query is also parallel (using parallel intersection algorithm). The update
uses a parallel union algorithm. We report the time for running them separately as Tu
(purely update) and Tq (purely query). Numbers are shown in Table 13.2. As we use more
threads to generate queries, the update ratio gets lower. This is because the sub-tasks in
queries are generated more frequently, hence is more likely to be stolen. In conclusion,
the total time of running them almost add up to 30 seconds, which is the time running
them in parallel together.

In practice, the ratio of queries running on such search engines should be much more
than the updates. In this case, our experiments show that adding a single writer to update
the database does not cause much overhead in running time, and the queries and gradually
get the newly-added documents.

p Tu Tq Tu + Tq Tu+q
10 13.4 17.3 30.7 30
20 8.22 21.6 29.82 30
40 4.18 25.1 29.28 30
80 1.82 27 28.82 30

Table 13.2: The running time (seconds) on the inverted index application – Tu+q denote
the time for conducting updates and queries simultaneously, using p threads generating queries.
We set Tu+q to be 30s. We then record the number of updates and queries �nished running, and
test the same number of updates/queries separately on the initial corpus. When testing separately
we use all 144 threads.

183



1 struct inv_index {

2 using word = char*;
3 using doc_id = int;
4 using weight = �oat;

5 struct a_max {

6 using aug_t = weight;

7 static aug_t identity() {return 0;}

8 static aug_t base(doc_id k,weight v) { return v;}

9 static aug_t combine(aug_t a, aug_t b) { return (b 〉 a) ? b : a;} };

10 using post_elt = pair〈doc_id, weight〉;

11 using post_list = aug_map〈doc_id,weight,a_max〉;

12 using index_elt = pair〈word, post_elt〉;

13 using index = map〈word,post_list,str_less〉;

14 index idx;

15 inv_index(index_elt* start, index_elt* end) {

16 auto plist= [] (post_elt* s, post_elt* e) { return post_list(s,e,add); };

17 idx.build_reduce〈post_elt〉(start,end,plist);}

18 post_list get_list(word w) {

19 maybe〈post_list〉 p = idx.find(w);

20 if (p) return *p;

21 else return post_list(); }

22 post_list And(post_list a, post_list b) { return map_intersect(a,b,add);}

23 post_list Or(post_list a, post_list b) { return map_union(a,b,add);}

24 post_list And_Not(post_list a, post_list b) { return map_diff(a,b);}

25 vector〈post_elt〉 top_k(post_list a, int k) {

26 int l = min〈int〉(k,a.size());
27 vector〈post_elt〉 vec(l);

28 post_list b = a;

29 for (int i=0; i 〈 l; i++) {

30 weight m = a.aug_val();

31 auto f = [m] (weight v) {return v < m;};

32 vec[i] = *b.aug_find(f);

33 b.remove(vec[i].first); }

34 return vec; } };

Figure 13.1: The data structure and construction of an inverted index, and the query operations.
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Chapter 14

Write-E�cient Trees

Emerging non-volatile main memory (NVRAM) technologies, such as Intel’s Optane DC
Persistent Memory, are readily available on the market, and provide byte-addressability,
low idle power, and improved memory-density. Due to these advantages, NVRAMs are
likely to be the dominant main memories in the near future, or at least be a key component
in the memory hierarchy. However, a signi�cant programming challenge arises due to an
underlying asymmetry between reads and writes—reads are much cheaper than writes in
terms of both latency and throughput. Because bits are stored in these technologies as at
rest “states” of the given material that can be quickly read but require physical change to
update, this asymmetry is fundamental. This property requires researchers to rethink the
design of algorithms and software, and optimize the existing ones accordingly to reduce
the writes. Such algorithms are referred to as the write-e�cient algorithms [145].

Blelloch et al. [46, 73, 75] formally de�ned and analyzed several sequential and parallel
computation models with good caching and scheduling guarantees. The models abstract
such asymmetry between reads and writes, and can be used to analyze algorithms on
future memory. The basic model, which is the Asymmetric RAM (ARAM), extends the well-
known external-memory model [16] and parameterizes the asymmetry using ω, which
corresponds to the cost of a write relative to a read to the non-volatile main memory. The
cost of an algorithm on the ARAM, the asymmetric I/O cost, is the number of write
transfers to the main memory multiplied by ω, plus the number of read transfers. This
model captures di�erent system consideration (latency, bandwidth, or energy) by simply
plugging in di�erent values of ω, and also allows algorithms to be analyzed theoretically.
Based on this idea, many interesting algorithms (and lower bounds) are designed and
analyzed by various recent papers [46, 49, 70, 73, 75, 79, 80, 168].

In this thesis, we consider write-e�cient algorithms for join-based balanced binary
search trees, both theoretically and practically. Experimentally, we count the number
of reads and write to main memory while simulating a variety of cache con�gurations.
For I/O-bounded algorithms, we believe that the numbers are reasonable proxies for
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both running time (especially when implemented in parallel) and energy consumption.1
Moreover, conclusions drawn from these numbers can likely give insights into tradeo�s
between reads and writes among di�erent algorithms.

To get these numbers, we use a framework based on a software simulator that can
e�ciently and precisely measure the number of read and write transfers of an algorithm.
We also note that designing write-e�cient algorithms falls in a high dimensional parameter
space since the asymmetries on latency, bandwidth, and energy consumption between
reads and writes are di�erent. Here we abstract this as a single valueω. This value together
with the cache size M and cache-line size B (set to be 64 bytes) form the parameter space
of an algorithm.

14.1 Model and Simulator
To start with, we discuss how to measure the performance of algorithms on asymmetric

memories. We begin with the computational model that estimates the cost of an algorithm.
This model requires the numbers of read and write transfers between the non-volatile
memory and the cache, so later we introduce how the numbers of an algorithm can be
simulated. Unlike the existing symmetric memories, a simple cache policy like LRU does
not work on some asymmetric settings. Thus in Section 14.1.2 we brie�y summarize
the solutions to �x it, and then the cache simulator given in Section 14.1.3 captures this
number with di�erent cache policies.

14.1.1 The Cost Model for Asymmetric Memory
The most commonly-used cost measure of an algorithm is the time complexity based

on the RAM model, which is the overall number of instructions and memory accesses
executed in this algorithm. Nowadays, since the actual latency of an access to the main
memory is at least two orders of magnitudes more expensive than a CPU instruction, the
I/O cost based on the external-memory model [16] is widely used to analyze the cost of an
I/O-bounded algorithm. This model assumes a small-memory (cache) of size M ≥ 1, and a
large-memory of unbounded size. Both memories are organized in blocks (cache-lines)
of B words. The CPU can only access the small-memory (with no cost), and it takes unit
cost to transfer a single block between the small-memory and the large-memory. This
cost measure estimates the running time reasonably well for I/O-bounded algorithms,
especially in multi-core parallelism. An e�cient algorithm in practice should achieve
optimality in both the time complexity and the I/O cost.

To account for more expensive writes on future memories, here we adopt the idea
of an (M,ω)-Asymmetric RAM (ARAM) [75]: similar to the external-memory model,
transferring a block from large-memory to small-memory takes unit cost; on the other

1The energy consumption of main memory is a key concern since it costs 25-50% energy on
data centers and servers [187, 192, 197].
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direction, the cost is either 0 if this block is clean and never modi�ed, or ω � 1 otherwise.
The asymmetric I/O costQ2 of an algorithm is the overall costs for all memory transfers.

14.1.2 Cache Policies

Either the classic external-memory model or the new ARAM assumes that we can
explicitly manipulate the cache in the algorithm. This largely simpli�es the analysis, and
in many cases is provably within a constant factor of a more realistic cache’s performance.
For example, the standard least-recent used (LRU) policy is 2-competitive against the
optimal o�ine cache-replacement sequence.

Interestingly, the competitive ratio does not hold in the asymmetric setting. Consider
a cache with k = M/B cache-lines and a memory access pattern that repeatedly writes to
k − 1 cache-lines and read from other k − 1 cache-lines. An ideal cache policy will keep
all k − 1 cache-lines associated to writes, so the I/O cost of each round is k − 1 for k − 1
read misses. An LRU policy however causes a cache miss for every single memory access,
leading the I/O cost of each round to ω(k − 1) + k − 1. This overhead is proportional to ω,
which can be signi�cant and problematic.

The solution is a�ected by the architecture, depending on whether software explicitly
controls a DRAM bu�er or not [105, 115, 186, 235]. If so, then the cost measures on the
these models are just the costs in practice, but programmers are responsible for managing
what to put on the small-memory and guaranteeing correctness. The other option is to
leave the hardware to control the small-memory. In this case, Blelloch et al. [73] show
that if the small-memory is partitioned into two equal-size pools and each of them is
maintained using LRU policy, the performance is 3-competitive against the optimal o�ine
cache-replacement sequence (e.g. using 3× space and incurring no more than 3× cost).

We consider three di�erent cache policies in this chapter. In this thesis, we only use
the policy maintains the small-memory as one memory pool and uses the LRU policy for
replacement. Other policies and applications can be found in [147].

14.1.3 The Cache Simulator

To capture the number of reads and writes to the main memory, we developed a
software simulator. The cache simulator is composed of an ordered map that keeps tracks
of the time stamp of the last visit to each cache-line in the current cache, and an unordered
map that stores the mapping from each cache-line to the corresponding location in the
ordered map if this cache-line is currently in the cache.

The cache simulator encapsulates a new structure Array that is used in coding
algorithms in this chapter. It is like a regular array that can be dynamically allocated and
freed, and supports two functions: Read and Write to a speci�c location in this array.
The Arrays are responsible for reporting the memory accesses of the algorithm to the

2Throughout the chapter, we abbreviate it as the I/O cost, unless stated otherwise explicitly.
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cache simulator, and the cache simulator will update the state of the cache accordingly.
Therefore, coding using the Arrays is not di�erent from regular programming much.

The memory accesses to loop variables and temporary variables are ignored, as well as
the call stack. This is because the number of such variables is small in all of the algorithms
in this chapter (usually no more than 10). Meanwhile, the call stack of all algorithms
in this chapter has size O(logn). The overall amount of uncaptured space is orders of
magnitudes smaller than the amount of fast memory in our experiments.

The cache consists of one memory pool. The cache simulator maintains two counters
in the memory pool: the number of read transfers, and the number of write transfers.
When testing each algorithm on a speci�c input instance, the cache is emptied at the
beginning and �ushed at the end. A read or write is free if the location is already in the
cache; otherwise the corresponding cache-line is loaded, the counter of read transfer
increments by 1, and the least-recently-used cache-line in this pool is evicted. Also, a
write will mark the dirty-bit of the cache-line to be true. When evicting a dirty cache-line,
the counter of write transfer increments by 1. Notice that memory reads can cause write
transfers, and memory writes can lead to read transfers.

14.2 Write-E�cient Tree Algorithms
We now study the write-e�ciency of binary tree algorithms. In this thesis, we consider

AVL trees, red-black trees, weight-balanced trees, and treaps. Weight-balanced trees are
inherently write-ine�cient since any update requires tree size changes to every involved
tree nodes. We �rst analyze the I/O cost of the other three trees for single updates, and
show experiment results.

14.2.1 I/O cost on BSTs
For simplicity, here we assume that the small-memory size is M = O(1). Locating

the key for a lookup, insertion or deletion requires to load and compare to Θ(logn) tree
nodes on the balanced binary search trees (BSTs), The I/O cost is Θ(logn), which is also
the lower bound of such operations.

For an insertion or deletion, we also need to modify the tree accordingly. In the
asymmetric setting, weight-balanced trees [216] are not a good option since we have to
update the subtree sizes all the way to the root. This update leads to Θ(logn) writes to
the large-memory per update. For the other types of BSTs, we show their I/O costs on
insertions and deletions individually.
Red-black Trees. Red-black trees [41, 151] have the simplest update rules among these
balanced BSTs. With the classic rebalancing rules and careful implementation, it requires
only O(1) amortized time per update (insertion or deletion) after locating the key [265].
Also, red-black trees require no extra cost to update balancing information except for the
tree nodes involved in rotations (unlike the case in AVL trees). As a result, red-black trees
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have an optimal amortized I/O cost Q = Θ(logn) per a lookup and Q = Θ(ω + logn) per
insertion or deletion on the (M,ω)-ARAM.
AVL Trees. An insertion in AVL trees requires at most two rotations (a double rota-
tion) [13]. Unlike the red-black trees however, we need to track and update the balance
factors along the path from the root to the modi�ed tree node. We now bound the number
of updated balance factors to be a constant. If we store the height of the subtree in each
tree node, the di�erence of the two subtree heights can be checked in constant time. Since
the number of subtrees of height d in an AVL tree is no more than n/c bd/2c for a tree with
n nodes and some constant c > 1 (Section 3.3), the number of increments of the counts
for n nodes is

∑
d≥1 d · (n/c

bd/2c) = O(n). On average, an insertion needs O(n)/n = O(1)
writes.

The deletions of AVL trees is more complicated and Θ(logn) rotations can be applied
on every deletion. Amani et al. [24] recently showed that there exists such a sequence of
3n intermixed insertions and deletions on an initially empty AVL tree that takes Θ(n logn)
rotations. This instance indicates that the classic implementation of AVL trees has an I/O
cost Q = Θ(ω logn) per deletion in the worst case.
Treaps. A treap, also called as a randomized search tree [246], is a Cartesian tree in
which each key is given a randomly chosen numeric priority, and the inorder traversal
order of the nodes is the same as the sorted order of the keys. The priority for any non-leaf
node must be greater than or equal to the priority of its children.

When inserting an element into a treap with n − 1 elements or removing an element
from n elements, The updated element only compares to the elements that each has a
higher priority than the other elements between this element and the updated element.
The number of such comparisons is

∑
j∈[n]\{i} 1/|i − j | = O(logn) in expectation3, where i

is the position of the updated element in the total order of n elements [246].
The number of rotations can be computed similarly. For an insertion, a rotation

happens once the inserted element has a higher priority than all elements in the entire
subtree. Again if we assume the inserted element ranked i-th in the total order, the
probability that it rotates up for the j-th ranked tree node is 1/|i − j |2 (i.e., the j-th element
has higher priority than all elements between, and lower than the priority of the inserted
node). The overall expected number of rotations per insertion is

∑
j∈[n]\{i} 1/|i − j |2 = O(1)

in expectation. We can show the constant writes per deletion accordingly.
We note that unlike an AVL tree or a red-black tree, a treap does not require updates to

the balancing criteria, which means that we never need to modify the information in each
tree node after it is inserted. As a result, an insertion, deletion or query on a treap requires
O(logn) reads whp and an insertion or deletion requires O(1) writes in expectation.

3Also with high probability.
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14.2.2 Implementation

We implement theses algorithms using join-based algorithms. We note that, join is
the only function that writes to the memory. More speci�cally, all operations that change
the attributes of a tree node (e.g., linking to new children, height-maintaining for AVL or
red-black trees, color-changing in red-black trees, etc.) are restricted in join. This property
also greatly simpli�es the counting of writes in our simulator and makes the optimizations
to reduce writes easier.

There are several bene�ts of using the join-based framework for our implementation
and experiment. First, as we just explained, di�erent updates have the uniform code
on di�erent types of BSTs (except for the Join), which justi�es the performance by the
di�erent balancing criteria for the BSTs, instead of the di�erent implementations for
di�erent trees. Second, although the joined-based implementation operates on two trees,
one can check that when one tree contains only a singleton element, the algorithm runs
the same as the algorithm of a single insertion on each type of the BSTs. The deletion
can also be implemented by taking the di�erence by the original tree and a tree with a
single element. As a result, the joined-based implementation is strictly more powerful.
Lastly, we can also run interesting experiments on more operations like bulk updates, and
compare the results on di�erent BSTs.

14.3 Experiments
We now show the experimental results on the counts of read/write transfers for

di�erent settings. Due to the page limit, our experiment mainly focuses on the performance
of various binary search trees (AVL trees, red-black trees, and treaps) with di�erent batch
sizes.

In the experiment, we �rst insertm = 106 million integers as keys to a tree T (empty
at the beginning), drawn from a uniform distribution from 32-bit unsigned integers, and
then delete them in a uniformly random order. The insertion and deletion are grouped in
batches of size s , indicating that the insertions are dm/se unions on the main tree T with
trees of size s . The deletions are also batched in dm/se bulks of size s . In our experiment,
we construct a smaller tree for each batch and then call the union or di�erence function
we just mentioned. We note that if all update elements are given in advance, we can also
sort them and put them in a list. Since this is a more speci�c case, our experiment is based
on the tree-tree updates.

The node size in all di�erent types of tress is 16 bytes. Each tree node stores four 4-byte
data blocks to hold the key, the left and right pointers, and the balancing information.
The cache contains 10,000 cache-lines, similar to the setting for unordered sets.

Table 14.1 shows the experimental results on BSTs with di�erent balancing schemes
with various batch sizes. The numbers are read and write transfers per update.
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(a) Insertion / Union
Batch AVL RB-Tree Treap ω = 10 ω = 100
Size RT WT RT WT RT WT AVL RB-T Treap AVL RB-T Treap

1 11.28 2.83 12.00 3.48 16.61 1.79 39.6 46.8 34.5 295 360 196
1k 12.67 2.89 13.29 3.66 17.18 1.89 41.6 49.9 36.1 302 379 206

10k 6.18 2.68 6.40 3.01 7.33 1.85 33.0 36.5 25.8 274 308 192
100k 2.54 1.84 2.54 1.86 2.56 1.66 20.9 21.2 19.2 186 189 169

(b) Deletion / Di�erence
Batch AVL RB-Tree Treap ω = 10 ω = 100
Size RT WT RT WT RT WT AVL RB-T Treap AVL RB-T Treap

1 13.83 2.72 16.17 5.17 17.85 1.98 41.1 67.8 37.7 286 533 216
1k 15.11 2.79 17.65 5.21 18.52 2.08 43.0 69.8 39.3 294 539 227

10k 8.17 2.69 10.43 3.44 9.09 2.06 35.1 44.9 29.7 278 355 215
100k 3.22 1.99 3.54 2.43 3.23 1.78 23.2 27.8 21.1 203 246 182

(c) Average Tree Depth
AVL RB-Tree Treap
19.39 19.62 26.48

Table 14.1: Numbers of read and write transfers and asymmetric I/O costs of di�erent
BSTs with various batch sizes – The numbers are divided by 106 (i.e., per inserted/deleted
elements). The write-read ratioω are selected to be typical projected values 10 (latency, bandwidth)
and 100 (energy).

Batch Size 1. We �rst look at the case corresponding the single insertions and deletions,
and the results are shown in Figure 14.1 and 14.2. Regarding the number of writes,
treaps show the best performance. This is easy to understand since treaps do not modify
any information for rebalancing during insertions/deletions. The structure of treaps is
deterministic once the priorities are decided. The priorities are set before the merging
(deleting), and never changed later. For such reasons, treaps require much fewer writes
per update compared to AVL and red-black trees.

The AVL and red-black trees maintain the balancing information on each tree node
that needs to be updated when the subtree height changes. Then more writes are used due
to these updates. Between these two types of BSTs, red-black trees require more writes,
since there are also some color �ips on the siblings of the updated tree path. Such �ips are
extremely cheap in the classic symmetric setting but will cost much in the asymmetric
setting when writes become expensive.

The fewer writes for treaps come together with the extra cost on more reads. Treaps
are less strictly balanced compared to the other two trees, which saves the writes to
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Figure 14.1: The number of read and write transfers of di�erent BSTs on single inser-
tion/deletion – Data are from the �rst rows in Table 14.1(a) and 14.1(b).
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Figure 14.2: The I/O cost of di�erent BSTs on single insertion/deletion – Data are from the
�rst rows in Table 14.1(a) and 14.1(b).

.

maintaining such balancing, but leads to larger average tree depth (shown in Table 14.1(c),
about 30% deeper than the other trees). The average depths for AVL and red-black trees
are close to optimal, which is 18.96 for a perfectly balanced tree with 106 nodes. Because
of the shallower average depth, the number of reads required in either updates or queries
is much small on these two trees.
Larger Batch Sizes. We now discuss how does the batch size a�ect the numbers of read
and write transfers. The numbers are given in Table 14.1.

When the batch size increases but remains small, the reads and writes almost remain
the same and slightly increase. When the batch size is smaller, the elements in a batch
and the paths to visit them are always loaded into the cache once and always stay there.
Therefore, the di�erent batch sizes less than 100 do not a�ect the performance much.
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The peak I/O cost per update is around batch size 1000, as we show here. In such case,
the overall footprint of a batch update no longer �t into the cache, which may lead to two
loads per tree node (once in the split phase and the other in the join phase).

However, the cost turns down when the batch size grows over 1000. The reason is
that, the number of tree nodes visited during each bulk update is Θ(s log(m/s)) (recall
that s is the bulk size), which is also the time complexity [74] of this process. Namely, we
need to visit O(log(m/s)) tree nodes per inserted node, so we touch fewer nodes as s goes
up. Compared to the single updates, each node on multiple tree paths4 is only looked at
and compared with once in the joined-based bulk updates, and this is from which the
improvement comes. Since the top levels in the trees are visited more frequently, they
usually stay in the cache. As a result, the saved memory accesses for small batch size are
hidden by the function of the cache. However, when the batch size keeps growing and
exceed the cache size, then the saved memory accesses lead to lower reads, as shown in
Table 14.1.

The number of writes also decreases for larger batch sizes in AVL and red-black trees,
because of the previously stated reason. When the elements are inserted or deleted one
by one, the balancing factor of a node on by multiple tree paths can be updated multiple
times. On the other hand, when the tree is updated in a bulk, such information will
be updated by at most once at the join point, which saves the number of writes to the
asymmetric memory. However, since treaps do not need to update such information, we
cannot observe a signi�cant drop-o� on writes for larger batch sizes.
Queries. We have not explicitly tested the I/O costs for queries, since most queries (like
�nding or checking a key, locating the k-th element) have the same memory access pattern
as the insertions. The only di�erence is that they do not modify the tree, so there will be
no writes. These updates may �ush the dirty cache lines, and thus slightly increase the
writes. Our experiment shows that if we have the same number of queries and insertions,
the number of writes increases by no more than 5%, which is insigni�cant. Therefore, we
believe that we can ignore such changes in the most cases.

14.4 Conclusions
In this section, we theoretically analyze the asymmetric I/O costs of di�erent types of

binary search trees. We show that red-black trees, the insertions for AVL trees, and treaps
on expectation have an optimal asymptotic cost (Θ(ω + logn) per update).

We then test the actual performance by conducting experiments based on the join-
based implementation, and show that treaps have the best update cost in most cases. The
advantage comes from a looser balancing constraint, which also leads to a larger tree
depth and query costs. As a result, AVL tree will be a better option if the queries are much
more than the updates.

4Usually on the top part of the tree. For example, every single insertion visits the root node.
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Chapter 15

Related Work

15.1 Join-based Algorithms
Tarjan �rst studied the join and split functions in [265]. Tarjan showed how to ef-

�ciently implement the functions on red-black and splay trees but did not give any
applications for the two functions. Adams [10, 11] applied join and split on weight bal-
anced trees to some bulk functions and showed an elegant way to implement union,
intersection and di�erence. The method was then implemented in some languages and
libraries such as MIT/GNU Scheme in Haskell [200]. Adams’ paper was reported buggy
[159, 257] in parameter choosing and also in that the join (which is called concat3 in his
paper) does not rebalance the tree, but the framework of set functions implementation is
still used and studied today. Adams did not consider parallelism in the algorithm, but the
divide-and-conquer scheme is inherently parallel.

join and split appear in the LEDA library [209] for sorted sequences, and the CGAL
library for ordered maps [270]. None of this work considered parallel algorithms based
on the functions, nor how to build an interface out of just join. Frias and Singler [135] use
join and split on red-black trees for an implementation of the MCSTL, a multi-core version
of the C++ Standard Template Library (STL). Their algorithms are lower level based on
partitioning across processors, and are for bulk insertion and deletion. The functions join,
split and join2 are also studied and used in various previous work for trees to support
multiple applications [51, 108, 246].

15.2 Set-set Algorithms
Merging two ordered sets has been well studied in the sequential setting. Hwang and

Lin [164] describe an algorithm to merge two arrays, which costs optimal work. Their
algorithm works for arrays, and since writing back both array costs O(m + n) work, the
algorithm only returns the cross pointers between two arrays. Brown and Tarjan [91]
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considered input data to be arranged in a BST, which allows the merged result to be
explicitly given by a new BST in time O

(
m log( nm + 1)

)
. Their algorithm works on AVL

and 2-3 trees. None of these algorithms considered parallelism. Katajainen et al. [176]
studied the space-e�ciency on merging two sets in parallel. Their focus is not on reducing
time complexity. Furthermore the above-mentioned works are not based on join and are
much more complicated than our algorithm.

There is also previous work studying parallel set operations on two ordered sets,
but each previous algorithm only works on one type of balance tree. Paul, Vishkin, and
Wagener studied bulk insertion and deletion on 2-3 trees in the PRAM model [228]. Park
and Park showed similar results for red-black trees [227]. These algorithms are not based
on join and are not work e�cient, requiring O(m logn) work. Katajainen [175] claimed
an algorithm with O

(
m log( nm + 1)

)
work and O(logn) span using 2-3 trees, but it appears

to contain some bugs in the analysis [71]. Blelloch and Reid-Miller described a similar
algorithm as Adams’ (as well as ours) on treaps with optimal work (in expectation) and
O(logn) span (with high probability) on a EREW PRAM with scan operations. This implies
O(logn logm) span on a plain EREW PRAM, and O(logn log∗m) span on a plain CRCW
PRAM. The pipelining that is used is quite complicated. Akhremtsev and Sanders [22]
recently describe an algorithm for array-tree union based on (a,b)-trees with optimal
work and O(logn) span on a CRCW PRAM. Our focus in this thesis is in showing that
very simple algorithms are work e�cient and have polylogarithmic span, and less with
optimizing the span.

Many researchers have considered concurrent implementations of balanced search
trees (e.g., [90, 182, 184, 213]). None of these are work e�cient for union since it is
necessary to insert one tree into the other requiring at least Ω(m logn) work.

Researchers have also studied distributed memory implementations of maps and sets,
including a distributed version of STL as part of the HPC++ e�ort [170], and the STAPL
library [264]. The emphasis of this work is on how the maps and sets are partitioned
across the memories.

15.3 Computational Geometry
Many data structures are designed for solving range, segment and rectangle queries,

such as range trees [56], segment trees [58], kd-trees [54], R-trees [44, 240, 245], priority
trees [204], and many others [80, 118, 199, 222, 244, 272]. They are then applied to a
variety of other problems [15, 20, 21, 27, 29, 57, 67, 68, 89, 140, 167, 225].

There have been fundamental sequential data structures for such queries. The classic
range tree [56] has construction timeO(n logn) and query timeO(k + log2 n) for input size
n and output size k . Using fractional cascading [103], the query time can be O(k + logn).
We did not employ it for the simplicity and extensibility in engineering, and we believe the
performance is still e�cient and competitive. The terminology “segment tree” [58, 101]
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refers to di�erent data structures in the literature, but the common insight is to use the tree
structure to partition the interval hierarchically. Our version is similar to some previous
results [17, 32, 101]. Previous solutions for rectangle queries usually use combinations of
range trees, segment trees, interval trees, and priority trees [58, 106, 130, 131]. Some other
prior work focused on developing sequential sweepline algorithms for range queries [28,
31], segment intersecting [102, 208] and rectangle queries [202]. There are also sequential
I/O-e�cient algorithms for computational geometry [27, 29, 107] and sequential libraries
support such queries [5, 98].

In the parallel setting, there exist many theoretical results [14, 17, 33, 34, 35, 139, 141].
Atallah et al. [34] proposed the array-of-trees using persistent binary search trees (BST) to
store all intermediate trees in a sweepline algorithm by storing all versions of a tree node
in a super-node. Our method also uses persistent BSTs, but uses path-copying to maintain
a set of trees independently instead of in one skeleton. Recently, Afshani et al. [14]
implemented the array-of-trees for the 1D total visibility-index problem. Atallah et al. [35]
discussed a cascading divide-and-conquer scheme for solving computational geometry
problems in parallel. Goodrich et al. [141] proposed a framework to parallelize several
sweepline-based algorithms. There has been previous work focusing on parallelizing
segment-tree-like data structures [17, 32], and our segment tree algorithm is inspired by
them. There are also theoretical I/O e�cient algorithms in parallel [21, 253]. We know of
no implementations or experimental evaluations of these theoretically e�cient algorithms
on range, segment and rectangle queries. There are also parallel implementation-based
works such as parallel R-trees [172], parallel sweepline algorithms [205], and algorithms
focusing on distributed systems [275] and GPUs [274]. No theoretical guarantees are
provided in these papers.

15.4 Range Queries
Many researchers have studied concurrent algorithms and implementations of maps

based on balanced search trees focusing on insertion, deletion and search [39, 66, 90,
95, 126, 132, 135, 182, 184, 190, 213]. Motivated by applications in data analysis recently
researchers have considered mixing atomic range scanning with concurrent updates
(insertion and deletion) [40, 94, 234]. None of them, however, has considered sub-linear
time range sums.

There has also been signi�cant work on parallel algorithms and implementations of
bulk operations on ordered maps and sets [22, 71, 74, 125, 132, 135, 165, 227, 228]. Union
and intersection, for example, are available as part of the multicore version of the C++
Standard Template Library [135]. Again none of this work has considered fast range sums.
There has been some work on parallel data structures for speci�c applications of range
sums such as range trees [179].
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There are many theoretical results on e�cient sequential data-structures and algo-
rithms for range-type queries using augmented trees in the context of speci�c applications
such as interval queries, k-dimensional range sums, or segment intersection queries
(see e.g. [199]). Several of these approaches have been implemented as part of sys-
tems [180, 215]. Our work is motivated by this work and our goal is to parallelize many
of these ideas and put them in a framework in which it is much easier to develop e�cient
code. We know of no other general framework as described in Section 4.4.

Various forms of range queries have been considered in the context of relational
databases [99, 137, 144, 152, 161]. Ho et. al. [161] speci�cally consider fast range sums.
However the work is sequential, only applies to static data, and requires that the sum
function has an inverse (e.g. works for addition, but not maximum). More generally, we
do not believe that traditional (�at) relational databases are well suited for our approach
since we use arbitrary data types for augmentation—e.g. our 2d range tree has augmented
maps nested as their augmented values. Recently there has been interest in range queries
in large clusters under systems such as Hadoop [15, 23]. Although these systems can
extract ranges in work proportional to the number of elements in the range (or close to
it), they do not support fast range sums. None of the “nosql” systems based on key-value
stores [25, 191, 221, 239] support fast range sums.

15.5 Database Management Systems
MVCC and Snapshot Isolation. Concurrency control is an important issue for DBMS
design, and has been studied for decades. One classic way is to rely on the Two-Phase
Locking (2PL) [269]. Although 2PL guarantees serializability, it causes readers and writers
to block each other. In fact, any lock-based isolation mechanism has the same issue,
which will be particular ine�cient in a scenario with heavy-loaded read-only transactions.
MVCC [62, 211, 269] is a widely-used technique in various DBMSs for allowing fast and
correct read transactions without blocking (or being blocked by) the writers. MVCC
is implemented in many DBMSs [123, 133, 185, 214, 233, 251]. Some of these existing
systems, like Hekaton [185] and HyPer [214], use timestamp-based version chain for
concurrency control. This may require the read transactions to scan the version chain
and check the visibility of the version at the current timestamp, which can be expensive
when there are a large number of versions. HyPer uses the version synopses to avoid
expensive scan, but this does not have any theoretical guarantee in bounding the reading
time. P-Trees avoid this by using the functional data structure.
Copy-on-write and Functional Data Structures. Copy-on-write (CoW) means to
explicitly copy some resource if and only if it is modi�ed. Indeed path-copying is a
speci�c implementation of CoW. Similar ideas are also used in shadow paging [194] to
guarantee atomicity. Path-copying has been used in maintaining multiversion B-tree or
B+tree structures or their variants [43, 255]. Path copying is the default implementation
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in functional languages, where data cannot be overwritten [220]. It is widely-used in real-
world database systems for version-controlling like LMDB [4], CouchDB [26], Hyder [63]
and InnoDB [136], as well as many other systems [86, 109, 120, 160, 174]. Most of these only
allow a single update at a time, sequentializing the writes. Hyder supports merging of path
copied trees. This means that transactions can update trees concurrently, and then each is
merged into the main trees one at a time. This allows for some pipelining [64] but still
fully sequentializes the commits at the root (only one merge can complete at a time). It also
means that transactions can abort during the merge if they have any con�icts. Importantly
these other systems have focused on point updates (single insertions, deletions, or value
changes). An important aspect of P-Trees is that they support parallel bulk updates on pure
trees. This allows for batching of transactions in certain situations and processing them
in parallel to get much higher throughput, as shown in the YCSB benchmark. Existing
work mostly focusing on single-operation OLTP primitives insertion, deletion and lookup.
Our work di�ers from them in several aspects.

1. To serialize writes, some of them sequentialize all updates [4]. Hyder uses melding
to merge unserialized versions. Although a pipeline scheme is proposed to accelerate
the melding algorithm, the process is still inherently sequential, which is a major
bottleneck of the system. P-Trees support parallel bulk operation using divide-and-
conquer for better exploit parallelism.

2. As mentioned in Section 11.2, P-Trees copy asymptotically less tree nodes than
existing systems when committing a batch of updates.

3. Hyder aborts transactions if there is unresolvable con�ict, while P-Tree uses batching
and never aborts.

4. Some existing solutions uses CoW on B-trees [4, 255], which is generally expensive,
because tree node are usually large. P-Trees are binary, and thus each tree node
stores one single tuple, making copying fast. Especially for maintaining in-memory
DBMSs, one cache line could only hold one or two tree nodes of P-Trees, which
makes our binary tree have competitive performance to B-trees in most of the cases.

5. Existing CoW systems are optimized for OLTP setting, and there is few evaluations
of them on interesting OLAP benchmarks such as TPC-H. P-Trees also outperforms
existing systems optimized for OLAP queries on TPC-H.

6. P-Tree relies on an e�cient batching algorithm. When update transactions are
invoked concurrently, the batching process also costs overhead and long latency,
which is similar to Hyder’s melding [238] and Calvin’s sequencer [266].

Query Optimizations. Our proposed index nesting is related to many previous tech-
niques proposed to support high throughput of OLAP queries. As mentioned, the paired
index enables virtually denormalization [162] of two tables. The main challenging of
physical denormalization is the high memory assumption, and the high cost to update
while maintaining SI. There are attempts aiming at reducing the space required by data

201



denormalization using compression [193]. P-Trees avoid these costs because we never
physically copy data multiple times by making use of the nested trees.

Although our nested indexes usually provide a view of pre-join over tables, our
approach di�ers from materialized views [138] in that we do not physically create a new
table, such that the update is still cheap using path-copying.

Table partitioning means to partition a table in storage to represent the parent-child
relation [19, 37, 128]. Table partitioning was also previously employed to manage TPC-H
workload, especially to manage the belongness between orders and lineitems. Our index
nesting conceptually uses the same idea of putting all lineitems in the same order together,
but di�ers in that we build an index using a tree inside. Also, these previous work on table
partitioning focusing more on partitioning the table for distributed systems. The idea of
representing relations between objects across tables in a graphical or hierarchical way
is similar to the Resource Description Framework (RDF) [36, 87, 223] and path-indexing
[65, 196] in Object-Oriented Databases (OOD). Our index nesting di�ers from them in
that we usually only allow for regular tree or DAG nesting, instead of arbitrary graphic
relations. Also, we propose to use nested pure tree structures to support fast queries and
updates on such indexes.
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Chapter 16

Future Work

Batching Algorithms. In this thesis, we apply P-Trees to obtain a concurrent data
structure allowing for serializability, lock-free updates and wait-free read transactions.
Especially to enable serializability, this thesis uses batching to collect concurrent updates
and commit them in one big transaction. The current batching strategy, however, is simple
and does not have any theoretical guarantee. To achieve reasonable tradeo� between
latency and throughput, the batching algorithm must consider the parameters of the
system. One interesting future direction is to conduct in-depth study of a better batching
algorithm. The problem can be roughly described as given the throughput of the system,
the arriving rate of new operations, the cost function f (x) of committed a batch of x
elements, and the current waiting elements in the pool, deciding the proper time to commit
a batch of y elements to minimize the mean latency of each operation.

The goal can be either a thorough theoretical study or an experimental study of this
problem. Theoretically, we are interested in looking at the preferred algorithms and
conditions to make the system stable, and even to achieve the lowest mean latency. It
is also possible to study this from a pure system perspective, which means to design
batching algorithms to achieve high performance for di�erent platforms.
Inverted Index Searching with Version Maintenance and Compression. In Sec-
tion 13.1, this thesis studies the inverted indexes for document searching. Allowing con-
current update and queries to the database require the index the support multi-versioning.
The current implementation does not consider garbage collection on such a system, but
this is necessary and important in practice. Our inverted index can be combined with the
VM problem as introduced in Chapter 12 or other VM solutions [50]. Recently, Dhulipala
et al. [122] applied join-based framework to C-trees, which enables e�ective compression
on trees. This is useful in developing large-scale in-memory database systems. It is of
interest to apply both the VM problem and the compression on such a inverted index
searching system.
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Augmentation for OLAP DBMS. The work in this thesis builds DBMS for fast OLAP
queries using P-Trees. However, the augmentation in P-Trees is not exploited in the
current implementation. In fact, a lot of aggregation-based OLAP queries, such as some
TPC-H ones, can be enhanced by using proper augmentations. On the other hand, using
augmentation brings up extra overhead in space. It is worth studying the tradeo� and
good strategy to use augmentations for fast OLAP queries.
Parallelize Concurrent Update Transactions in DBMS. The current tested HTAP
workloads for our system is query-dominated, we thus sequentialize all update transactions
to achieve serializability. In workloads that the updates are more frequent, it is helpful to
also parallelize the updates. Although for simple point transactions, batching is e�ective
and e�cient, for large transactions, the dependency and con�ict among them can be
arbitrary and hard to resolve. Also, for certain pre-de�ned transaction types, such as the
TPC-C transactions, the con�ict is likely to be rare, and easier to detect. A interesting
future direction is to study the parallelization of update transactions, both for a general
and for a speci�c workload.
Set Algorithms with Optimal Depth. This thesis present an e�cient algorithm
that merges two ordered sets into another ordered structure, which is work-optimal
(O(m log

( n
m + 1

)
)) for two sets with sizes n and m ≤ n) and has span O(logn logm). In

practice, this algorithm achieves good parallelism, but theoretically, it is of interest to
study if we can reduce the span to O(logn), while still achieve work-optimality. This,
unfortunately, possibly requires to break up the join-based framework. Interestingly, in
the binary-forking model, there is no previous algorithms that achieves both optimal work
and span. Some initial result of studying this problem is presented in the unpublished
work [81].
Experimental Study of Write-e�cient Tree Algorithms. This thesis presents initial
study of write-e�cient tree algorithms motivated by the new NV-RAM hardware. The
work was mostly done on a software simulator since the memory was not available when
the study was conducted. More recently, the new hardware has been manufactured is going
to be available in commodity. As a result, it is of importance to study the performance of
the write-e�cient algorithms and testing their actual wall-clock performance on the real
machine.
More Balancing Schemes. This thesis proposes the join-based algorithmic framework,
as well as a list of rule to make balancing schemes joinable. The current work is shown to
be applicable to four well-known balancing schemes. I am interested in extending the
current framework, and including more balancing schemes in the framework.
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Chapter 17

Conclusion

This thesis studies e�cient tree algorithms, both in theory and in practice, and also applies
them to various applications.

One of the core contribution of this thesis is the join-based algorithmic framework.
By abstracting out join from tree algorithms, one can get simple tree algorithms with
a rich set of functionalities. Especially, join deals with all rebalancing, which makes all
other algorithms as well as all analysis based on ranks that are generic across balancing
schemes. join also captures all properties needed for augmentation and persistence, such
that other algorithms are oblivious to these functionalities. As such, we are able to obtain
both new theoretical results and e�cient new implementations for some applications.
The new theoretical results includes the work-e�cient parallel set-set algorithms and its
proof, the e�cient computational geometry algorithms in the elegant augmented map
framework, and parallel sweepline algorithms with low depth.

The other contribution of this thesis is the augmentation framework both for aug-
mented trees and augmented maps. This provides elegant formalization to several
seemingly-unrelated applications. This especially allows for concise implementation
for all of them.

Also, based on the thesis work, I implemented P-Trees in the PAM library. The library
enables the useful properties including parallelism, concurrency, persistence and precise
GC. The library is open source. By applying the library, one can obtain simple and e�cient
implementations of many applications, include but not limited to those mentioned in this
thesis.

Finally, this thesis presents novel and e�cient implementation to a list of real-world
applications. Most of these implementations are based on the P-Trees in PAM with very
concise upper-level code. Based on the general-purpose library PAM, our implementations
outperform several existing implementations that are speci�c to the applications. This
demonstrate the advantage and practicality of P-Trees.
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Appendix A

Proofs and Analysis

A.1 Proof for Lemma 3.2.6
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(2). Double Rotation
……

v

2 4 51

(0): The rebalance process is currently at , 

which means the tree rooted at and all of 

its subtrees are balanced.

(1): The result of the single rotation.

(2): The result of the double rotation.

(0)

Figure A.1: An illustration of two kinds of outcomes of rotation after joining twoweight
balanced trees – After we append the smaller tree to the larger one and rebalance from that point
upwards, we reach the case in (0), where u has been balanced, and the smaller tree has been part
of it. Now we are balancing v , and two options are shown in (1) and (2). At least one of the two
rotation will rebalance v .
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Proof. Recall that in a weight balanced tree, for a certain node, neither of its children is β
times larger than the other one, where β = 1

α − 1. When α ≤ 1 − 1√
2
, we have β ≥ 1 +

√
2.

WLOG, we prove the case when |Tl | < |Tr |, where Tl is inserted along the left branch
of Tr . Then we rebalance the tree from the point of key k and go upwards. As shown in
Figure A.1 (0), suppose the rebalance has been processed to u (then we can use reduction).
Thus the subtree rooted at u is balanced, and Tl is part of it. We name the four trees from
left to right A,B,C and D, and the number of nodes in them a,b, c and d . From the balance
condition we know that A is balanced with B +C , and B is balanced to C , i.e.:

1
β
(b + c) ≤a ≤ β(b + c) (A.1)

1
β
b ≤c ≤ βc (A.2)

We claim that at least one of the two operations will rebalanced the tree rooted at v in
Figure A.1 (0):

1. Single rotation: right rotation at u and v (as shown in Figure A.1 (1));
2. double rotation: Left rotation followed by a right rotation (as shown in Figure A.1

(2)).
Also, notice that the inbalance is caused by the insertion of a subtree at the leftmost

branch. Suppose the size of the smaller tree is x , and the size of the original left child of v
is y. Note that in the process of join, TL is not concatenated with v . Instead, it goes down
to deeper nodes. Also, note that the original subtree of size y is weight balanced with D.
This means we have:

x <
1
β
(d + y)

1
β
d ≤ y ≤ βd

x + y = a + b + c

From the above three inequalities we get x < 1
βd + d , thus:

a + b + c = x + y < (1 + β +
1
β
)d

Since a unbalance occurs, we have:

a + b + c > βdWe discuss the following 3 cases:
1. B +C is weight balanced with D, i.e.,

1
β
(b + c) ≤ d ≤ β(b + c) (A.3)
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In this case, we apply a right rotate. The new tree rooted at u is now balanced. A is
naturally balanced.
Then we discuss in two cases:

(a) βa ≥ b + c + d .
Notice that b + c ≥ 1

βa, meaning that b + c + d > 1
βa. Then in this case, A is

balanced to B +C + D, B +C is balanced to D. Thus just one right rotation
will rebalance the tree rooted at u (Figure A.1 (1)).

(b) βa < b + c + d .
In this case, we claim that a double rotation as shown in Figure A.1 (2) will
rebalance the tree. Now we need to prove the balance of all the subtree pairs:
A with B, C with D, and A + B with C + D.
First notice that when βa < b + c + d , from (A.3) we can get:

βd < a + b + c <
1
β
(b + c + d) + b + c

⇒(β −
1
β
)d < (

1
β
+ 1)(b + c)

⇒(β − 1)d < b + c (A.4)

Considering (A.3), we have (β − 1)d < b + c ≤ βd . Notice b and c satisfy (A.2),
we have:

b >
1

β + 1
(b + c) >

β − 1
β + 1

d (A.5)

c >
1

β + 1
(b + c) >

β − 1
β + 1

d (A.6)

Also note that when β > 1 +
√
2 ≈ 2.414, we have

β + 1
β − 1

< β (A.7)

We discuss the following three conditions of subtrees’ balance:
i. Prove A is weight balanced to B.

A. Prove b ≤ βa.
Since βa ≤ b + c (applying (A.1)) , we have b ≤ βa.

B. Prove a ≤ βb.
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In the case when βa < b + c + d we have:

a <
1
β
(b + c + d) (applying(A.2), (A.5))

<
1
β
(b + βb +

β + 1
β − 1

b)

=
β + 1
β − 1

b

< βb

ii. ProveC is weight balanced to D.
A. Prove c ≤ βd .

Since b + c ≤ βd (applying (A.3)), we have c ≤ βd .
B. Prove d ≤ βc .

From (A.6), we have

d <
β + 1
β − 1

c < βc

iii. Prove A + B is weight balanced toC + D.
A. Prove a + b ≤ β(c + d).

From (A.4), (A.2) and (A.7) we have:

d <
1

β − 1
(b + c) ≤

1
β − 1

(βc + c)

=
β + 1
β − 1

c < βc

⇒
1
β
d < c

⇒(1 +
1
β
)d < (1 + β)c

⇒(1 +
1
β
+ β)d < β(c + d) + c (applying (A.3))

⇒a + b + c < (1 +
1
β
+ β)d < β(c + d) + c

⇒a + b < β(c + d)

B. Prove c + d ≤ β(a + b).
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When β > 2, we have β
β−1 < β . Thus applying (A.4) and (A.1) we

have:

d <
1

β − 1
(b + c) ≤

β

β − 1
a < βa

Also we have c ≤ βb (applying (A.2)). Thus c + d < β(a + b).
2. B +C is too light that cannot be balanced with D, i.e.,

β(b + c) < dIn this case, we have a < β(b + c) < d (applying (A.1) and (A.8)), which means that
a+b +c < d + 1

βd < βd when β > 1+
√
5

2 ≈ 1.618. This contradicts with the condition
that A + B +C is too heavy to D (a + b + c > βd). Thus this case is impossible.

3. B +C is too heavy that cannot be balanced with D, i.e.,

b + c > βd (A.8)

⇒a >
1
β
(b + c) > d (A.9)

In this case, we apply the double rotation.
We need to prove the following balance conditions:

(a) Prove A is weight balanced to B.
i. Prove b < βa.

Since βa > b + c (applying (A.1)) , we have b < βa.
ii. Prove a < βb.

Suppose c = kb, where 1
β < k < β . Since b + c > βd , we have:

d <
1 + k
β

b (A.10)
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From the above inequalities, we have:

a + b + c = a + b + kb (applying(A.3))

< (1 + β +
1
β
)d (applying(A.10))

< (1 + β +
1
β
) ×

1 + k
β

b

⇒ a <

(
1 + β + 1

β

β
− 1

)
(1 + k)b

=
β + 1
β2
(1 + k)b

<
(β + 1)2

β2
b

When β > 7
9 ×(

√
837+47
54 )−1/3+ (

√
837+47
54 )1/3+ 1

3 ≈ 2.1479, we have (β+1)
2

β < β .
Hence a < βb.

(b) ProveC is weight balanced to D.
i. Prove d ≤ βc .

When β > 1+
√
5

2 ≈ 1.618, we have β > 1 + 1
β . Assume to the contrary

c < 1
βd , we have b < βc < d . Thus:

b + c < (1 +
1
β
)d < βd

, which contradicts with (A.8) that B +C is too heavy to be balanced with
D.

ii. Prove c < βd .
Plug (A.9) in (A.3) and get b + c < (β + 1

β )d . Recall that β > 1, we have:

1
β
c + c < b + c < (β +

1
β
)d

⇒c <
β2 + 1
β + 1

d < βd

(c) Prove A + B is weight balanced withC + D.
i. Prove c + d ≤ β(a + b).

From (A.2) we have c < βb, also d < a < βa (applying (A.9)), thus
c + d < β(a + b).

ii. Prove a + b ≤ β(c + d).
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Recall when β > 1+
√
5

2 ≈ 1.618, we have β > 1 + 1
β . Applying (A.8) and

(A.2) we have:

d ≤
1
β
(b + c) ≤ c +

1
β
c < βc

⇒
1
β
d < c

⇒(1 +
1
β
)d < (1 + β)c

⇒(1 +
1
β
+ β)d < β(c + d) + c (applying (A.3))

⇒a + b + c < (1 +
1
β
+ β)d < β(c + d) + c

⇒a + b < β(c + d)

Taking all the three conclusions into consideration, after either a single rotation or a
double rotation, the new subtree will be rebalanced.

Then by induction we can prove Lemma 3.2.6. �
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Appendix B

Implementations

B.1 The Implementation of Sweepline Paradigm
We implemented the sweepline paradigm introduced in Section 9.2.2. It only requires

setting the list of points (in processing order) p, the number of points n, the initial pre�x
structure t0 Init, the combine function (f ) f, the fold function (ϕ) phi and the update
function (h) h.

1 template〈class Tp, class P, class T, class F,

2 class Phi, class H〉

3 T* sweep(P* p, size_t n, T Init, Phi phi,

4 F f, H h, size_t num_blocks) {

5 size_t each = ((n-1)/n_blocks);

6 Tp* Sums = new Tp[n_blocks];

7 T* R = new T[n+1];

8 // generate partial sums for each block
9 parallel_for (size_t i = 0; i 〈 n_blocks-1; ++i) {

10 size_t l = i * block_size, r = l + each;

11 Sums[i] = phi(p + l, p + r);}

12 // Compute the pre�x sums across blocks
13 R[0] = Init;

14 for (size_t i = 1; i 〈 n_blocks; ++i) {

15 R[i*block_size] = f(R[(i-1)*each],

16 std::move(Sums[i-1])); }

17 delete[] Sums;

18 // Fill in �nal results within each block
19 parallel_for (size_t i = 0; i 〈 n_blocks; ++i) {

20 size_t l = i * each;

21 size_t r = (i == n_blocks - 1) ?
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22 (n+1) : l + each;

23 for (size_t j = l+1; j 〈 r; ++j)

24 R[j] = h(R[j-1], p[j-1]);

25 }

26 return R;

27 }

B.2 Using PAM for Geometry Algorithms
We give some examples of our implementations using the PAM library and sweepline

paradigm. We give construction code for RangeTree and RangeSwp, as well as the query
code for RangeSwp. They have the same inner tree structure. Note that the code shown
here is almost all code we need to implement these data structures. Comparing with all
existing libraries our implementations are much simpler and as shown in the thesis, are
very e�cient.
Range Tree.

1 template〈typename X,typename Y〉

2 struct RangeQuery {

3 using P = pair〈X,Y〉;

5 struct inner_map_t {

6 using K = Y;

7 using V = X;

8 static bool comp(K a, K b) { return a 〈 b;}

9 using A = int;
10 static A base(key_t k, val_t v) {return 1; }

11 static A combine(A a, A b) { return a+b; }

12 static A I() { return 0;} };

13 using inner_map = aug_map〈inner_map_t〉;

15 struct outer_map_t {

16 using K = X;

17 using V = Y;

18 static bool comp(K a, K b) { return a 〈 b;}

19 using A = inner_map;

20 static A base(K k, V v) {

21 return A(make_pair(k.second, k.first)); }

22 static A combine(A a, A b) {

23 return A::union(a, b); }

24 static A I() { return A();} };

25 using outer_map = aug_map〈outer_map_t〉;

26 outer_map range_tree;
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27
28 RangeQuery(vector〈P〉& p) {

29 range_tree = outer_map(p); }

30 };

RangeSweep.

1 template〈typename X,typename Y〉

2 struct RangeQuery {

3 using P = pair〈X, Y〉;

4 using entry_t = pair〈Y, X〉;

5 struct inner_map_t {

6 using K = Y;

7 using V = X;

8 static bool comp(K a, K b) { return a 〈 b;}

9 using A = int;
10 static A base(key_t k, val_t v) {return 1; }

11 static A combine(A a, A b) { return a+b; }

12 static A I() { return 0;} };

13 using inner_map = aug_map〈inner_map_t〉;

14 inner_map* ts;

15 X* xs;

16 size_t n;

18 RangeQuery(vector〈P〉& p) {

19 n = p.size();

20 Point* A = p.data();

21 auto less = [] (P a, P b)

22 {return a.first 〈 b.first;};

23 parallel_sort(A, n, less);

25 xs = new X[n];

26 entry_t *vs = new entry_t[n];

27 parallel_for (size_t i = 0; i 〈 n; ++i) {

28 xs[i] = A[i].first;

29 vs[i] = entry_t(A[i].second, A[i].first); }

31 auto insert = [&] (inner_map m, entry_t a) {

32 return inner_map::insert(m, a); };

33 auto fold = [&] (entry_t* s, entry_t* e) {

34 return inner_map(s,e); };

35 auto combine = [&] (inner_map m1, c_map m2) {
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36 return inner_map::union(m1, std::move(m2));};

37 ts = sweep〈inner_map〉(vs, n, inner_map(),

38 insert, fold, combine); }

40 int query(X x1, Y y1, X x2, Y y2) {

41 size_t l = binary_search(xs, x1);

42 size_t r = binary_search(xs, x2);

43 size_t left = (l〈0) ? 0 : ts[l].aug_range(y1,y2);

44 size_t right = (r〈0) ? 0 : ts[r].aug_range(y1,y2);

45 return right-left; }
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