
VALERA: An Effective and Efficient
Record-and-replay Tool for Android

Yongjian Hu
University of California, Riverside

yhu009@cs.ucr.edu

Iulian Neamtiu
New Jersey Institute of Technology

ineamtiu@njit.edu

Abstract
We demo VALERA, a Versatile-yet-lightweight Record-
and-replay tool for Android. Record-and-replay is useful
across the Android development lifecycle, from bug repro-
ducing to systematic testing. VALERA uses a novel tech-
nique named sensor-oriented replay (recording and replay-
ing sensor and network input, event schedules, and inter-app
communication via intents) to achieve high accuracy and
low overhead. VALERA can be used as an effective replay
tool on both real phones and emulators. Evaluation on more
than 50 popular Android apps shows that VALERA’s perfor-
mance overhead for either record or replay is just 1%. We
demonstrate how VALERA can be used in many develop-
ment scenarios: bug reproducing, regression testing, event-
driven race reproduction and verification, mutation testing
via fuzzy replay, and cross-app testing.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-
dation; D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms Reliability, Verification

Keywords Mobile applications, Record-and-replay, Google
Android, App testing, Event-based races

1. Introduction
As smartphones and the applications (“apps”) running on
them continue to grow in popularity [6], there is a growing
trend to develop high quality, reliable, secure and energy
efficient apps. The mobile development lifecyle includes
activities such as systematic testing, reproducing bugs, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobileSoft ’16, May 16-17 2016, Austin, TX, USA.
Copyright c© 2016 ACM 978-1-4503-4178-3/16/05. . . $15.00.
http://dx.doi.org/10.1145/2897073.2897712

performance/energy profiling. Recording and replaying the
execution of smartphone apps is particularly useful in these
contexts.

However, record-and-replay on mobile devices has proven
difficult: smartphone apps revolve around concurrent streams
of events that have to recorded and replayed with precise
timing. To keep overhead low, prior record-and-replay ap-
proaches for smartphones only capture GUI input [5] which
hurts accuracy as they cannot replay input from the net-
work or sensors; or events, to reproduce event-based race
[7]. Prior work on record-and-replay for desktop and server
platforms [1, 8] has relied on techniques such as hardware
changes, or instruction logging which is too heavyweight
for mobile apps. To address these challenges, we have de-
veloped VALERA (VersAtile yet Lightweight rEcord and
Replay for Android) [4], a novel sensor- and event-stream
driven approach to record-and-replay; VALERA is practical
and has been designed to meet several key desiderata:

1. Support I/O (sensors, network) and record system in-
formation required to achieve high accuracy and replay
popular, full-featured apps.

2. Accept APKs as input—this is how apps are distributed
on Google Play—rather than requiring access to the app
source code.

3. Work with apps running directly on the phone, rather
than on the Android emulator which has limited support
for only a subset of sensors.

4. Low overhead to avoid perturbing the app’s execution.
5. Require no hardware, kernel, or VM changes.

Our experiments [4] have shown that VALERA is able to
replay 50 popular Android apps which use a variety of sen-
sors with low overhead (about 1% for either record or re-
play). VALERA is effective for reproducing bugs by replay-
ing the input and event schedule that led to an error state.
With the support of deterministic replay of event schedules,
VALERA is able to reproduce hard-to-debug event-driven
races. VALERA can also verify races reported by a race de-
tector via event flipping, and classify the race to be benign,
harmful of false positive by comparing the outcome states
of different schedules. Finally, VALERA provides useful test-

ing techniques such as semantic sensor data alteration and
cross-app testing to help developers and testers.

2. Installation and Usage
2.1 Building and Installing
VALERA is open source; build instructions are available on
its website.1 While VALERA supports both the Android em-
ulator and real devices version, for real devices additional
hardware drivers are required, e.g., proprietary drivers for
Google’s Nexus series phones [2].

2.2 Basic Usage
In this demo, we run VALERA on an open source app named
Nori on a Galaxy Nexus phone. First, the user needs to run
adb root (the log data is saved in the app’s private loca-
tion and VALERA needs root privilege to access it). Second,
the app is installed via adb install nori.apk. Third, the
user needs to write a config file describing the app. The
config file must have the app’s package name, main entry
activity, options for tracing (on/off) and recording network
(on/off) or not and the app’s home folder. Here is an exam-
ple:

PKG=pe.moe.nori

MAIN=pe.moe.nori.SearchActivity

TRACING=0

NETWORK_REPLAY=1

APP_HOME_DIR=/data/data/$PKG

To start recording the app, the user runs the command:

./script/run.sh --config=config.txt --cmd=record

Users can then run the app as usual. VALERA will au-
tomatically save some key information into log files, e.g.,
input.bin for input events, io.bin for HTTP/HTTPS net-
work data, record.trace for event schedules.

Replaying the app is very simple, the user just invokes:

./scripts/run.sh --config=config.txt --cmd=replay

VALERA then automatically replays the recorded execu-
tion with deterministic input and schedule.

3. Applications
VALERA has many applications in Android development; we
demo several.

3.1 Reproducing Bugs
Reproducibility is key to bug fixing. VALERA provides sig-
nificant help for reproducing bugs by recording executions
until a bug is encountered and then replaying the trace. We
tested VALERA’s bug reproducing capabilities using actual
bugs in popular apps. The bugs varied from incorrect file
format, to invalid input, to stress testing, to erroneous scripts
or plugins [5].

1 http://spruce.cs.ucr.edu/valera/

3.2 Semantic Sensor Data Alteration
To test the stability of an app, or create new test cases by
fuzzing existing executions, VALERA provides features to
alter the recorded sensor data in a semantically meaningful
way [3]. For example, VALERA can alter GPS readings (e.g.,
inject a null location object to simulate GPS hardware
exceptions), blur or darken the pictures captured by camera
to emulate different physical environments, or change the
sample rate of the audio data to test the reaction of the app
towards different audio qualities.

3.3 Reproducing Event-driven Races
Event-driven races in Android are hard to debug and repro-
duce by current record-and-replay tools. With determinis-
tic event order recorded, VALERA can help reproduce these
races by preserving the exact event ordering [4]. Our exper-
iments show that VALERA can do this effectively on several
open source apps: we were able to reproduce harmful event-
driven races that crash the app (e.g., Tomdroid) or lead to
incorrect GUI view state (e.g., NPR News).

4. Conclusions
We have demoed VALERA, an approach and tool for versa-
tile, low-overhead, record-and-replay of Android apps. Ex-
periments with using VALERA on popular apps from Google
Play, as well as replaying event race bugs, show that our ap-
proach is effective, efficient, and widely applicable to var-
ious development tasks such as testing, finding and fixing
bugs.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1064646.

References
[1] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.

Chen. Revirt: enabling intrusion analysis through virtual-
machine logging and replay. In OSDI’02.

[2] Google. Binaries for Nexus Devices, 2015. https://

developers.google.com/android/nexus/drivers.

[3] Y. Hu and I. Neamtiu. Fuzzy and cross-app replay for smart-
phone apps. In AST’16.

[4] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight
record-and-replay for android. In OOPSLA’15.

[5] L. Gomez, I. Neamtiu, T.Azim, and T. Millstein. Reran:
Timing- and touch-sensitive record and replay for android. In
ICSE ’13.

[6] M. Ronkko and J. Peltonen. Software industry survey, 2013.
http://www.softwareindustrysurvey.org/.

[7] P. Maiya, A. Kanade, and R. Majumdar. Race detection for
android applications. In PLDI’14.

[8] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continu-
ously recording program execution for deterministic replay de-
bugging. In ISCA ’05.

