
Improving the Android Development Lifecycle
with the VALERA Record-and-Replay Approach

Yongjian Hu Tanzirul Azim Iulian Neamtiu
University of California, Riverside

{yhu009, mazim002, neamtiu}@cs.ucr.edu

Abstract
As smartphones become more and more popular, develop-
ers are switching their focus from traditional desktop pro-
grams to mobile apps. Recording and replaying the execu-
tion of mobile apps is useful in development tasks, from re-
producing bugs to profiling and testing. However, achieving
effective record-and-replay on mobile devices is a balanc-
ing act between accuracy and overhead. Prior record-and-
replay approaches have focused on replaying low-level in-
structions, which impose significant overhead. We propose
a novel, stream-oriented record-and-replay approach which
achieves high-accuracy and low-overhead by aiming at a
sweet spot: recording and replaying sensor and network in-
put, event schedules, and inter-app communication via in-
tents. To demonstrate the versatility of our approach, we
have constructed a tool named VALERA that supports record-
and-replay on the Android platform. Through an evaluation
on 50 popular Android apps, we show that: VALERA’s replay
fidelity far exceeds current record-and-replay approaches for
Android; VALERA’s low-overhead allows it to replay high-
throughput, timing-sensitive apps; With the ability to deter-
ministically replay event schedule, VALERA can help to re-
produce and verify event-driven races.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-
dation; D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms Reliability, Verification

Keywords Mobile applications, Record-and-replay, Google
Android, App testing, Event-based races

1. Introduction
As smartphones and the applications (“apps”) running on
them continue to grow in popularity [5], client-side devel-
opment is shifting away from traditional desktop programs
and towards smartphone apps. For example, our recent study
that compared bugs and bug-fixing on desktop and mobile
platforms [8] has revealed that nowadays mobile bugs have
higher severity than desktop bugs, and mobile bugs are fixed
much faster than desktop bugs. Moreover, for Android, the
study has revealed that the majority of high-severity bugs are
due to concurrency errors, which creates an impetus for tools
that can help find and fix Android concurrency errors.

The mobile development lifecyle includes activities such
as testing, reproducing bugs, and profiling. To support
these activities, we have developed VALERA (VersAtile yet
Lightweight rEcord and Replay for Android) [2]. VALERA
records and replays smartphone apps, by intercepting and
recording input streams and events with minimal overhead
and replaying them with exact timing.

While useful, record-and-replay on smartphones has
proven difficult: smartphone apps revolve around concur-
rent streams of events that have to recorded and replayed
with precise timing. To keep overhead low, prior record-
and-replay approaches for smartphones only capture GUI
input [4] which hurts accuracy as they cannot replay input
from the network or sensors; or events, to reproduce event-
based race [6]. Prior work on record-and-replay for desktop
and server platforms [1, 7] has relied on techniques such
as hardware changes, or instruction logging which is too
heavyweight for mobile apps. To address these challenges,
we introduce a novel, sensor- and event-stream driven ap-
proach to record-and-replay; by focusing on sensors and
event streams, rather than system calls or the instruction
stream, our approach is effective yet lightweight.

Our experiments shows that: VALERA is able to replay
50 popular Android apps which use a variety of sensors
with low overhead (about 1% for either record or replay).
VALERA is effective for reproducing bugs by replaying the
input and event schedule that led to an error state. With the
support of deterministic replay of event schdules, VALERA
is able to reproduce hard-to-debug event-driven races.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

MobileDeLi’15, October 26, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3906-3/15/10...$15.00
http://dx.doi.org/10.1145/2846661.2846670

35

2. Overview
VALERA consists of an API interception component and
a runtime component. App instrumentation, achieved via
bytecode rewriting, is used to intercept the communication
between the app and the Android framework to produce log
files. The runtime component is a manually instrumented
Android framework which is used to log and replay the event
schedule.

Automatic Interception through App Rewriting. VALERA

leverages Redexer [3] (an off-the-shelf Dalvik bytecode
rewriting tool) to instrument the app. Given the original app
(APK file) along with an Interceptor specification, VALERA
is able to find all the callsites in the bytecode that match the
specification and should be intercepted. Finally, the dynamic
intercepting modules and stubs are passed on to the Redexer
to effect the interception, and repackages the bytecode into
an instrumented APK.

Recording and Replaying the Event Schedule. Android
is an event-driven system. Events can be classified into two
groups: external and internal. External events come from
the underlining hardware while internal events are posted
by different threads. VALERA records the event schedule by
logging each event and event processing operation into a
trace file. Each event, either internal or external, is assigned
a Lamport timestamp (logic order number) in the schedule.
During replay, VALERA replays the events in the recorded
order.

Effectiveness and Efficiency. VALERA is effective: we
were able to replay 50 popular apps (most of them have
in excess of 10 million installs) that use a variety of sen-
sors. Experiments show that VALERA imposes just 1.01%
time overhead for record, 1.02% time overhead for replay,
208KB/s space overhead, on average, and can sustain event
rates exceeding 1,000 events/second.

3. Improving Development Lifecycle
VALERA has many applications in Android development; we
present several.

3.1 Reproduce Bugs
Reproducibility is key to bug fixing. VALERA provides sig-
nificant help for reproducing bugs by recording executions
until a bug is encountered and then replaying the trace.
We test VALERA’s bug reproducing capabilities using actual
bugs in popular apps. The bugs vary from different catego-
ryies such as incorrect file format, invalid input, stress test-
ing, and errorous scripts or plugins.

3.2 Fast Forwarding
For long-running executions, it is particularly useful to
quickly reach the error state. VALERA can alter execution
time without changing app behavior. This is achieved by re-
ducing time delays between input events and gestures during

data entry (e.g., virtual and physical keyboard) or idle time
(e.g., user reading the screen).

3.3 Semantic Sensor Data Alteration
To test the stability of an app, VALERA also provides features
to alter the recorded sensor data in a semantically meaning-
ful way. For example, VALERA can alter GPS readings (e.g.,
inject a null location object to simulate GPS hardware excep-
tions), blur or darken the pictures captured by camera to em-
ulate different physical environments, or change the sample
rate of the audio data to test the reaction of the app towards
different audio qualities.

3.4 Reproducing Event-driven Races
Event-driven races in Android are hard to debug and repro-
duce by current record-and-replay tools. With determinis-
tic event order recorded, VALERA can help reproduce these
races by preserving the exact event ordering. Our experi-
ments show that VALERA can do this effectively on several
open source apps: we were able to reproduce harmful event-
driven races that crash the app (e.g., Tomdroid) or lead to
incorrect GUI view state (e.g., NPR News).

4. Conclusions
We have presented VALERA, an approach and tool for versa-
tile, low-overhead, record-and-replay of Android apps. Ex-
periments with using VALERA on popular apps from Google
Play, as well as replaying event race bugs, show that our ap-
proach is effective, efficient, and widely applicable to var-
ious development tasks such as testing, finding and fixing
bugs.

References
[1] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.

Chen. Revirt: enabling intrusion analysis through virtual-
machine logging and replay. In OSDI’02.

[2] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet lightweight
record-and-replay for android. In OOPSLA’15.

[3] Jinseong Jeon and Kristopher Micinski and Jeffrey S. Foster.
Redexer. http://www.cs.umd.edu/projects/PL/redexer/
index.html.

[4] L. Gomez, I. Neamtiu, T.Azim, and T. Millstein. Reran:
Timing- and touch-sensitive record and replay for android. In
ICSE ’13.

[5] M. Ronkko and J. Peltonen. Software industry survey, 2013.
http://www.softwareindustrysurvey.org/.

[6] P. Maiya, A. Kanade, and R. Majumdar. Race detection for
android applications. In PLDI’14.

[7] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continu-
ously recording program execution for deterministic replay de-
bugging. In ISCA ’05.

[8] B. Zhou, I. Neamtiu, and R. Gupta. A cross-platform analysis
of bugs and bug-fixing in open source projects: Desktop vs.
android vs. ios. In EASE ’15.

36

