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ABSTRACT
Concurrency has been a perpetual problem in Android apps,
mainly due to event-based races. Several event-based race
detectors have been proposed, but they produce false pos-
itives, cannot reproduce races, and cannot distinguish be-
tween benign and harmful races. To address these issues,
we introduce a race verification and reproduction approach
named ERVA. Given a race report produced by a race de-
tector, ERVA uses event dependency graphs, event flipping,
and replay to verify the race and determine whether it is a
false positive, or a true positive; for true positives, ERVA uses
state comparison to distinguish benign races from harmful
races. ERVA automatically produces an event schedule that
can be used to deterministically reproduce the race, so de-
velopers can fix it. Experiments on 16 apps indicate that
only 3% of the races reported by race detectors are harmful,
and that ERVA can verify an app in 20 minutes on average.

CCS Concepts
•Human-centered computing→ Smartphones; •Software
and its engineering → Software defect analysis;

Keywords
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1. INTRODUCTION
Concurrency has been a perpetual problem in Android

apps since the platform’s inception in 2007 [32]. The root of
the problem is Android’s event-based programming model,
where lack of synchronization between events leads to event-
driven races. To find such races, several detectors have re-
cently been developed, e.g., DroidRacer [21], CAFA [18],
and EventRacer Android [7] (for brevity, we will refer to
the latter as simply “EventRacer” since the scope of this
paper is Android apps). They operate in a similar fash-
ion. First, they define a set of Happens Before (HB) rules
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for Android’s event-driven model. Then, they instrument
the Android platform to collect runtime traces and run the
app under this instrumentation; the collected traces contain
event begin/end/posting and memory read/write informa-
tion. Finally, they analyze the trace according to the HB
model graph. If there exist read/write or write/write opera-
tions on the same memory location and these operations are
not ordered by HB, the tools report an event-driven race.

However, these tools have several drawbacks: (1) they are
prone to false positives, (2) they cannot verify the effect of
the race, e.g., is it a benign or harmful race, and (3) they
do not give developers a way to reproduce the race. We
now discuss these drawbacks and how our approach helps
address them.

False positives. Most Android apps use ad-hoc synchro-
nization to protect shared variable access across asynchronous
events. Therefore, race detectors can improve their preci-
sion by identifying a broad range of synchronization opera-
tions, to avoid reporting safe/synchronized access as races.
In our experience, even the most precise race detector cur-
rently available, EventRacer, is still prone to false positives.
EventRacer attempts to filter out false positives by applying
a technique called “race coverage” [24] which was previous
used for event-driven races in web applications. While race
coverage can greatly reduce the false positives rate, it still
fails to identify certain categories (types) of false positives.
In Section 3 we describe these categories.

Harmful vs. benign races. The second problem with cur-
rent tools is that for true positives – accesses unprotected
by synchronization – they fail to distinguish between benign
and harmful races. Our study shows that only a very small
portion of reported races are harmful. Previous studies have
reached similar conclusions for desktop applications [26].
Since analyzing races requires substantial human effort, an
approach with a high rate of false positives or benign races
is less likely to be adopted by developers, as it is a high-
investment/low-return activity. Thus we argue that we need
an automatic race verification tool that can distinguish be-
tween benign and harmful races. In Section 3 we define
benign races, harmful races, and false positives.

Reproducing races. Current Android race detectors do
not help reproduce a race, hence developers have to man-
ually adjust synchronization operations or timing (e.g., set
breakpoints via debugger) until the race is reproduced – this
is time-consuming and not guaranteed to succeed (in con-
trast, we provide deterministic replay, which guarantees that
a race can be reproduced so the developers can help find and
fix the cause of the race).
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Our approach. To address these issues, we introduce ERVA

(Event-race Reproducer and Verifier for Android)1, an au-
tomated approach and tool for verifying and reproducing
event-based races in Android apps. ERVA, described in de-
tail in Section 4, takes as input a report of a potential race,
categorizes the race, and uses a suite of techniques to catego-
rize the race into three categories. First, if the race is a false
positive, it is reported as such. If the race can be confirmed,
it is classified as benign or harmful. To support this classifi-
cation, we introduce event dependency graphs (EDG) and a
novel definition of benign vs. harmful races in Android apps
based on state comparison. If the race is harmful, ERVA au-
tomatically produces an event schedule that can be used to
deterministically reproduce the race, so the developers can
study the race, understand its cause, and fix it.

ERVA does not require access to the app source code, but
rather relies on dynamic tracking of happens-before (HB) re-
lationships, schedule replay, and “event flipping”. Given an
app, ERVA proceeds in two stages. In the first stage, ERVA

runs the app in the EventRacer [7] race detector to obtain
a set of candidate races (pairs of race events). While the
app is running in EventRacer, ERVA records replay infor-
mation (e.g., UI events, input stream, sensor streams) and
synchronization information (e.g., begin/end of thread and
synchronization actions, event posting, etc); this informa-
tion is used in later phases. For each candidate race from
the report, ERVA’s post-run analysis will confirm whether
the candidate is indeed a race, to distinguish between false
positives and true positives.

The second stage examines the true positives to further
distinguish between benign and harmful races. ERVA replays
executions multiple times using the inputs recorded in the
first stage, this time instrumenting the app to record app
state. In each of these executions, ERVA “flips” – alternates
the ordering of – the events to check their side effects, i.e.,
the effect of flipping on app state (app state includes all the
UI view states, shared preferences, file, database, network
traffic). If the flipping has no side effect, ERVA categorizes
the race as benign, otherwise it is declared as harmful. Since
ERVA employs replay, developers have the opportunity to
replay the app with those inputs and event schedules that
lead to harmful races, to facilitate finding and fixing the
cause of the race.

In Section 5 we present a study and evaluation of running
ERVA on 16 real-world Android apps. The study found that
out of the 260 race reports in these apps, only 8 (that is,
3%) are harmful. Running ERVA takes about 20 minutes on
average per app, which indicates that it is both effective and
efficient at verifying and reproducing races.

In summary, our main contributions are:

1. Event dependency graphs and a definition of harmful
vs. benign races for Android.

2. A practical tool, ERVA, which analyzes event-driven
race reports to distinguish between false positives, be-
nign races, and harmful races.

3. Debugging and fault location support: once the harm-
ful race is confirmed, ERVA displays the event depen-
dency graph as well as the flipped events, and can de-
terministically replay the app to help developers find
the race’s root cause.

1Available at http://spruce.cs.ucr.edu/valera/erva.html
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Figure 1: Thread model of a typical Android app.

4. An evaluation of ERVA on 16 real-world Android apps.

2. BACKGROUND: ANDROID AND ITS
EVENT MODEL

The Android software stack consists of apps using the ser-
vices of the Android Framework (AF). Each app runs as a
separate process on top of a custom, smartphone version of
the Linux kernel. Android apps are typically written in Java
and compiled to either Dalvik bytecode that runs in a VM
(Android version < 5.0), or directly to native code (Android
version ≥ 5.0).

The Android platform is event-driven, with the AF or-
chestrating the app control flow by invoking user-provided
callbacks in response to user and system events. The AF
provides support for events, threads, and synchronization.
In Android, threads can communicate with each other in two
ways: via messages (the most common way) or via shared
memory (as in traditional Java applications, used sparsely).

In Android’s concurrency model, every application pro-
cess has a main thread (also called “UI thread”); only the
main thread can access the GUI objects, to prevent non-
responsive threads from blocking the GUI. To update the
GUI, other (non-main) threads can send messages to the
main thread, and the main thread will dispatch these events
to the appropriate user interface widgets. Long-running
tasks such as network access and CPU-intensive operations
are usually run in background threads. When these tasks
are finished, the background threads post back messages (we
call these messages internal events) together with the data
to the UI thread. We now describe the Android threading
model and then provide an example of how threads are used
in a concurrent app.

Threading Model. The following grammar describes An-
droid thread kinds.

Thread ::= Looper | Non−looper
Non−looper ::= Background | Binder

Looper threads are threads with an associated Looper ob-
ject that confers threads message dispatching capabilities:
the thread blocks waiting for messages and when a mes-
sage comes, it is processed atomically. The main thread is
a looper thread.

378



Background thread is the result of a regular thread fork ()
which does not register a Looper. Binder thread is cre-
ated when an app is launched; binders are widely-used for
inter-process communication (IPC). Each app holds a binder
thread pool. The number of binder threads in the pool is
automatically adjusted based on IPC usage.

Example. Figure 1 shows a standard Android app that
downloads an image. When the user touches the touch-
screen, the hardware touch events are delivered to the Win-
dow Manager Service (WMS). WMS keeps a record of all the
apps’ windows, i.e., window coordinates and layers. WMS
checks the hardware touchscreen event’s coordinates and
sends it to the corresponding app. A handler is then in-
voked on the app’s UI thread. The handler traverses the
view tree hierarchy and invokes the corresponding view’s
action. If the user clicks a button, the handler posts an in-
ternal event with the onClick action to the UI thread’s event
queue. The onClick action forks a new background thread to
download the image, offloading the task from the UI thread.
The downloader thread may periodically send back internal
events to show the percentage it has downloaded. When the
download task is done, the downloader thread will post an-
other event message along with the image to the UI thread.
Finally, the UI thread decodes the image and displays it.

Event Model. The following grammar describes the An-
droid event model.

Event ::= ExternalEvent | InternalEvent
ExternalEvent ::= InputEvent | SensorEvent

| IPC | HardwareInterrupt
InputEvent ::= MotionEvent | KeyEvent
SensorEvent ::= Compass | Accelerometer

| Light | . . .
InternalEvent ::= Message | Runnable Object

In Android, events can be either external or internal. Ex-
ternal events originate in the hardware, cross into the OS
and then into the AF. Apps can choose to use default han-
dling for these events, in which case they are handled by
the UI thread, or can register custom event handlers in
other looper threads. Typical external events include input
events (e.g., gesture or key events), sensor events (e.g., ac-
celerometer, compass), IPC and hardware interrupts (such
as VSYNC, a hardware “heartbeat” signal invoked 60 times
per second). Internal events are messages or runnable ob-
jects sent from a non-looper thread to a looper thread. In-
ternal events are created and sent via the Handler API at
the AF or app level, rather than coming from the OS.

Event Posting. Event posting and processing is at the core
of the Android platform. We have identified several event
posting types. First, external events coming from the hard-
ware or the OS that make a looper thread post messages to
itself. For example, when the user clicks a button, the click
gesture is actually a series of input events beginning with
ACTION DOWN and ending with ACTION UP. In ACTION UP,
the UI thread will check which View object this event’s co-
ordinates are located in. If the View object has registered
a click handler, the UI thread will post an onClickListener
event to itself. Second, internal events, created and handled
by the same thread — these events are created programmat-
ically in the app code, in contrast to external events which
come from the hardware or OS. Third, events (messages)
generated by a looper, background or binder thread, and
posted to another looper.

3. EVENT-BASED RACES: DEFINITION
AND EXAMPLES

In this section we first present our model, including the
happens-before relationship, which allows us to define true
races, benign or harmful, as well as false positives. We then
illustrate these on actual race reports in real-world apps.

3.1 Event-based Race Definition
We begin by defining the concurrency model in terms of

threads, events, memory locations, and operations on them.
ERVA first records per-thread traces of events/operations,
then uses a set of rules to establish HB based on the traces,
and finally classifies race reports into false positives, benign
races, and harmful races. We now present the formal defini-
tions that underlie ERVA’s analyses.

Thread type t ::= tl | tnl
Access type τ ::= read | write
Memory location ρ ∈ Pointers
Memory access α ::= ατ (ρ)
Message m ∈ Pointers
Runnable object r ∈ Pointers
Event posting β ::= post(e, tl,m | r,∆)
Thread operation γ ::= fork(t1, t2) | join(t1, t2)
Operation op ::= α | β | γ
Event e ::= begin; op1; ...opn; end
Looper trace πl ::= e∗

Non− looper trace πnl ::= op1; ...opn
Trace π ::= πl | πnl

Definitions. In our approach, threads t can be either loop-
ers tl or non-loopers tnl. For each thread we record a trace.
For looper threads, their traces πl contains a (possible empty)
sequence of events e. For looper threads, their traces πnl
contain sequences of operations. Operations op can be mem-
ory accesses α (which capture the location ρ and access
kind reads or writes); thread operations γ, for example,
fork(parenttid, childtid) or join (parenttid, childtid); or event
postings β. Event postings create new events e (event types
were defined in the “Event Model” part of Section 2) by ei-
ther sending a message m or posting a runnable object r to
looper thread tl with a time delay ∆.

Happens-before relationship. Existing event-based race
detectors [7, 18, 21] have proposed various HB definitions
(≺). We now proceed to define HB as a set of rules tied
together by transitivity.

Program order rule: if an operation op1 precedes another
operation op2 on the same thread in the trace, then they
follow program order op1 ≺π op2. Program order on non-
looper threads implies HB, i.e., op1 ∈ tnl∧op2 ∈ tnl∧op1 ≺π
op2 =⇒ op1 ≺ op2, but not on looper threads. Rather,
HB on looper threads can only be introduced by the looper
atomicity rule, discussed next

Looper atomicity rule: the order of operations executed
within one event establishes HB; that is, if op1 ∈ ek ∧ op2 ∈
ek ∧ op1 ≺π op2, then op1 ≺ op2.

Event order rule: e1 ≺ e2 if end(e1) ≺ begin(e2).
Event post rule: new events can be posted from looper

threads tl or non-looper threads tnl. For the former case,
say β = post(e2, t

l
1,m | r,∆) ∧ β ∈ e1 ∧ e1 ∈ tl1, i.e., event

e1 posts an event e2 to the looper thread tl that e1 belongs
to, then e1 ≺ e2. For the latter case, say β = post(e, tl,m |
r,∆) ∧ β ∈ tnl, i.e., an event e is posted by a non-looper
thread, then β ≺ e and ∀α ∈ tnl ∧ α ≺ β we have α ≺ e.
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Thread rule: if thread ti creates a new thread tj (γ =
fork(ti, tj)), then ∀α ∈ tj we have γ ≺ α. Similarly, for a
thread join γ = join(ti, tj), we have ∀α ∈ tj =⇒ α ≺ γ.

External event rule: in our model, each external event
sensor si has a begin(si, θ) and end(si, θ) where θ is the se-
quence number. The external events within the boundary
of begin(si) and end(si) are ordered by HB. For example,
a click operation is a series of external events from the touch-
screen starting with ACTION DOWN, many ACTION MOVEs,
and ending with ACTION UP. Here the begin(si, θ) is ACTION
DOWN and end(si, θ) is ACTION UP. All the external

events e1, e2, . . . , en within this boundary follow HB order.
However, if e1 and e2 are from two different sequences, then
there is no strict HB order. An example is two click opera-
tions that could be triggered in alternative order.

Android component lifecycle rule: callbacks in different
components such as Activity , Service , Fragment, View, etc.
are ordered by HB. For instance, Activity ’s onCreate call-
back is always invoked before its onDestroy. Based on An-
droid’s documentation [2], a lifecycle graph [8] can be built
to precisely describe the HB relation between Android com-
ponent callbacks.

Transitivity: HB is transitive, that is α1 ≺ α2 ∧ α2 ≺
α3 =⇒ α1 ≺ α3 and e1 ≺ e2 ∧ e2 ≺ e3 =⇒ e1 ≺ e3.

Event-based races. We can now state the race definition.
We say that event ei races with event ej if there exists a
shared variable ρ such that αi(ρ) ∈ ei, αj(ρ) ∈ ej and
ei 6≺ ej . On occasion we will refer to the event pair that
satisfies this definition as “racy”.

False positive. We define as false positive a race reported
between ei and ej by a race detector (e.g., EventRacer)
whereas ERVA can establish that the events are actually or-
dered by HB, i.e., either ei ≺ ej or ej ≺ ei.

Access influence. Let α1 = ατ1(ρ1) and α2 = ατ2(ρ2). We
say that access α1 influences access α2 (denoted α1 � α2)
if executing α1 leads to a different value for ρ2 compared to
omitting α1.

Benign race. We say that two events ei and ej have a
benign race if they have an event-based race (which we de-
fined above) on at least one location ρ but ∀αi ∈ ej and
∀αj ∈ ej , we have αi;αj 6� αEV S and αj ;αi 6� αEV S . That
is, the different order of executing αi and αj does not have
any effect on the externally visible state (EVS). EVS can
be customized by the user; ERVA’s default EVS definition is
presented in Section 4.6.

Harmful race. We define as harmful a race where event
execution order influences program state and this is reflected
into the EVS. More precisely, we say that two events ei and
ej have a harmful race if they have an event-based race on
at least one location ρ and ∃αi ∈ ei, ∃αj ∈ ej , such that
αi;αj � αEV S or αj ;αi � αEV S . Harmful races can have
various consequences, e.g., crash, exception, erroneous GUI
state; we provide examples of harmful races in real-world
apps in Section 5.1.

3.2 False Positive Type-1: Imprecise Android
Component Model

False positives may arise due to imprecise modeling of the
Android components and their interaction. Figure 2 shows
an example: a race reported by EventRacer in AnyMemo (a
flashcard app) that is actually a false positive. The RecentList
Fragment is a sub-class of Android’s Fragment component.
In the onResume() callback, the app performs a database

1 public class RecentListFragment extends Fragment {
2 private ArrayAdapter mAdapter = null;
3 private Handler mHandler = null;
4
5 @Override
6 public View onCreateView(...) {
7 ...
8 mHandler = new Handler();
9 mAdapter = new ArrayAdapter(...);

10 }
11
12 @Override
13 public void onResume() {
14 Thread thread = new Thread() {
15 public void run() {
16 // query database operations
17 mHandler.post(new Runnable() {
18 public void run() {
19 mAdapter.clear() ;
20 for (RecentItem ri : database)
21 mAdapter.insert( ri ) ;
22 }
23 });
24 }}
25 thread. start () ;
26 }}

Figure 2: False positive type-1 in the AnyMemo app.

query and updates the recent list ri to the fragment views.
Since the database access is time-consuming, to make the
app responsive, the database query is performed by a back-
ground task (lines 14–16). When the task is done, a callback
will be posted to the main thread, and the main thread up-
dates the UI (lines 18–22).

The race detector reports a race between onCreateView()
and onResume() callbacks. Due to imprecise modeling, the
race detector cannot find any HB relation between these
callbacks. Hence, since onCreateView() writes the mAdapter
variable and onResume reads the same variable, a read-write
race is reported.

However, this race is actually a false positive. According
to the Android documentation2 a Fragment’s onCreateView()
method is always invoked before its onResume() method.
Thus this read-write race can never happen.

3.3 False Positive Type-2: Implicit Happens-
before Relation

Another category of false positives is due to imprecise
modeling of happens-before relationship. Figure 3 shows an
example of FP caused by implicit HB relation in Cool Reader,
an eBook reader app. EventRacer reports that the callbacks
onRecentBooksListLoaded and getOrLoadRecentBooks have a
race condition because they both access the mBooks shared
object, but the tool cannot derive any HB relation between
these two callbacks. The CoolReaderActivity is an instance of
an Android Activity subclass, i.e., a separate screen. Its life-
cycle starts with the onStart() callback invoked on the main
thread. In onStart, the app first starts the database service
CRDBService. If the service starts successfully, a Runnable
callback will be posted back to the main thread indicating
that the database service is ready. The callback first tries to

2http://developer.android.com/guide/components/
fragments.html
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[CoolReaderActivity.java]
CoolReader.onStart() {
  ...
  waitForCRDService(new Runnable() {
    public void run() {
      Service.getHistory().loadFromDB(...);
      ...
      new CRRootView(...);
    }
  });
}

[History.java]
void onRecentBooksListLoaded(List list) {
  ...
  mBooks = list;
  ...
}

[History.java]
void getOrLoadRecentBooks(...) {
  if (mBooks != null && mBooks.size() > 0) {
    // read and update mBooks.
  }
}

post(Runnable r)

post(Runnable r)

Figure 3: False positive type-2 in the Cool Reader app.

1 public class ImageLoader {
2 private Runnable mRunnable;
3
4 private void batchResponse (...) {
5 if (mRunnable == null) {
6 mRunnable = new Runnable() {
7 public void run() {
8 // deliver batched requests
9 mRunnable = null;

10 }
11 }
12 mHandler.post(mRunnable);
13 } } }

Figure 4: Benign race type-1 in the Volley library.

load some history records by invoking loadFromDB(), then
creates a new CRRootView object. These two methods will
both post callbacks (detailed implementation omitted).

Note that the loadFromDB and CRRootView initialization
methods are invoked in the same action on the Looper thread
(i.e., the main thread). According to the looper atomic-
ity rule, loadFromDB happens before CRRootView; in other
words, the calls loadFromDB and CRRootView are in pro-
gram order. In the implementation of these two methods,
they both use the Handler.post(Runnable r) to post callbacks.
The post method inserts the actions into the queue in FIFO
order. Since loadFromDB posts the callback before CRRootView,
the callback onRecentBooksListLoaded will always happen
before getOrLoadRecentBooks. However, EventRacer misses
this implicit HB relation and thus reports a race, which is a
false positive in this case.

3.4 Benign Race Type-1: Control Flow Pro-
tection

We now discuss a benign race in Volley, a popular HTTP
library [4]. Figure 4 shows the relevant source code. Even-
tRacer reports a race on the mRunnable object. The method

QACardActivity
(Looper Thread)

startLoading() {
  for (Loader loader : mLoaders) {
    loaderManager.initLoader(loader)
    runningLoaderCount++;
  }
}

checkAllLoaderCompleted() {
  runningLoaderCount--;
  if (runningLoaderCount <= 0) {
    onAllLoaderComplete();
  }
}

Loader 1 Loader 2

checkAllLoaderCompleted() {
  runningLoaderCount--;
  if (runningLoaderCount <= 0) {
    onAllLoaderComplete();
  }
}

onLoadFinished

onLoadFinished

Figure 5: Benign race type-2 in the AnyMemo app.

batchResponse on line 4 and the creation of the Runnable ob-
ject on line 6 are two distinct actions executed on the main
thread. On line 6, the mRunnable object is updated to point
to a new Runnable object while on line 9 it is set to null .
Since EventRacer does not capture the HB relation between
these two actions, it reports a write-write race, but it is a
benign race.

The null test on line 5 can be true or false depending
on when the next batchResponse is executed. Usually, the
Runnable.run() is executed before the next batchResponse,
the mRunnable will be set to null (line 9) hence in the
next batchResponse a new Runnable (line 6) is created and
posted to the main thread’s looper (line 12). However, in
cases when there are multiple batchResponse actions queued
and executed before the Runnable.run(), the check on line
5 sees that mRunnable is already non-null , takes the else
branch and does nothing. Thus the order in which the
batchResponse and Runnable are executed does not matter
due to the control flow protection offered by the if on line 5.
This race is classified as benign.

3.5 Benign Race Type-2: No State Difference
Figure 5 shows an example of benign race type-2 in the

AnyMemo app. When QACardActivity is launched, it will cre-
ate several loaders to load data from the database or config-
uration files. In the startLoading method, the global variable
runningLoaderCount tracks how many active loaders are cur-
rently running. When the loader finishes, it will post an
onLoadFinished callback to the main thread and invoke the
checkAllLoaderCompleted method. In this method, the vari-
able runningLoaderCount is first decreased; if runningLoader
Count <= 0, it will invoke the onAllLoaderComplete callback
to inform that all the loaders have finished their job.

Since the time spent in the loader is unpredictable, the
order of these two onLoadFinished callbacks executed on the
main thread is not deterministic. The race detector reports
this pair of callbacks as a race because it cannot find any
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HB relation and these callbacks do write to the same ob-
ject, runningLoaderCount. Although this reported race is
a true positive, it is actually harmless, because app state
does not depend on the order in which the callbacks write
to runningLoaderCount. ERVA can flip the execution order
of the callbacks and does not find any harmful effect (EVS
difference). Thus this race is classified as benign.

4. APPROACH
Figure 6 shows an overview of our approach; it consists

of two phases, a race detection phase and a race verifica-
tion phase. Note that ERVA relies on dynamic analysis and
instrumentation hence the app source code is not required.

In the race detection phase, we run the app on an instru-
mented platform; traces described in Section 3.1 are col-
lected at this stage. The platform’s instrumentation con-
sists of three main modules. First, a publicly-available cus-
tom Android emulator3 with EventRacer running on top
of it. Second, an input capture module provided by the
VALERA [19] record-and-replay tool. Third, an event capture
part, shown in thicker black line and font as it is a contribu-
tion of this work, unlike EventRacer and VALERA which are
off-the-shelf tools. EventRacer runs the app and produces
a race report. ERVA saves the instrumentation results in an
input log and EDG, respectively. With these logs at hand,
we proceed to the race verification phase.

In the verification phase, we replay the execution multiple
times, flipping event order. The platform used for this phase
can either be the emulator or an actual Android phone. Us-
ing the input log collected during detection, we use the input
replay support of VALERA to ensure that the input provided
to the app in this phase is the same as during detection
(record). Due to event flipping we have multiple executions;
we capture app state from each execution and then use app
state comparison to classify potential race as either false pos-
itive, benign race, or harmful race. We now provide details
on each of these components.

4.1 Race Detection
We choose EventRacer [7] as the race detector in ERVA as

it is publicly available and robust. Compared with CAFA [18]
and DroidRacer [21], EventRacer’s HB model is more pre-
cise, while its race reports are easy to parse.

4.2 Input Capture and Replay
To capture app input for subsequent replay, we leverage

VALERA [19], a tool that can record and replay app input,
e.g., touchscreen, network, GPS, etc. VALERA can also cap-
ture and replay event schedules, but it does so“blindly”— it
does not capture event dependencies that are instrumental
for this work.

IPC Events. Android apps use IPC heavily, for isolation
reasons. For instance, the Input Method Manager Service
(IMMS) uses IPC: when the user inputs text into the current
window, the soft keyboard is actually a global server service
instead running in the app’s address space. The IMMS re-
ceives the inputs from the user and dispatches them to the
currently active window via IPC calls.

In Android, IPC is carried out via the Binder mechanism:
each app has several Binder threads to handle incoming IPC
calls. ERVA records the data and timing of each Binder

3http://eventracer.org/android/

transaction. The data contains two parts: primitive data
and reference data. Reference data such as Binder object ref-
erences and OS file descriptors are not deterministic across
different runs. For primitive data, ERVA saves their concrete
content while for reference data ERVA just keeps a slot in the
log. The concrete value is filled in during the real execution.

Threads and Event Posting. ERVA intercepts thread and
event operations to capture the HB relationships defined in
Section 3.1. Android apps achieve asynchronous program-
ming via message posting. When the background threads
need to update the UI, they post messages (events) to the
Looper on UI thread. As described Section 2, there are
three types of event posting. ERVA captures these message
by recording relevant API such as Handler.sendMessage and
Handler.post.

4.3 Handling I/O Non-determinism
Besides event schedule non-determinism, I/O is another

source of non-determinism. Since we use app state com-
parison to classify benign and harmful races, it is crucial
to eliminate I/O non-determinism because it can affect app
state and lead to divergence between different replays of the
same execution. ERVA leverages VALERA [19] to make I/O
input deterministic by recording and replaying I/O from a
variety of sources: file system operations, network input,
GPS, microphone, camera, random number API, etc.

4.4 Event Dependency Graph
By capturing the external and internal events and their

posting, ERVA builds an event dependency graph (EDG).
Figure 7 illustrates EDGs by showing an excerpt from the
actual EDG of the TomDroid app. Each edge in the graph
describes the causal relationship between events. For ex-
ample, in Figure 7, the user performs two interactions with
the app. First, the user clicks the ‘Sync’ button on the
ViewNoteActivity. The onClick listener will create a back-
ground thread that performs a long-running task (data syn-
chronization with the cloud). When the SyncThread is suc-
cessfully created, the app will show an animation indicating
that the task is running in the background. After the task is
finished, the SyncThread will post an internal message to the
UI thread to stop the animation. When the user is notified
that the Sync task is done, she can use the ‘Back’ button to
go back to the previous activity. The Back button press will
trigger the onBackPressed() handler. The ViewNoteActivity
sends an IPC binder transaction to inform the Activity Man-
ager Service (AMS) to finish the current activity. AMS han-
dles this transaction and then sends back an IPC to the app
telling the UI thread to switch to the NoteListActivity . This
activity contains updated content hence the user sees an up-
dated screen.

The EDG precisely describes each event transition. Us-
ing the EDG, ERVA knows the root cause of a particular
event. For instance, the ViewNoteActivity.updateUI() is trig-
gered because the user has clicked the ‘Sync’ button and this
event will create another background thread. During replay,
an event can be ready to replay if and only if its recorded
preceding event has been replayed. This is controlled by
ERVA’s underlying scheduler which will be described next.

4.5 Event Flipping
In Android, each Looper has an associated Message Queue.

The Looper runs in an infinite loop, waiting for incoming

382



App	  

Input	  
capture	  

Race	  
Report	  

Instrumented	  pla0orm	  
(emulator)	  

Event	  
Racer	  

Event	  
capture	  

Input	  
log	  

EDG	  

Replay	  pla0orm	  
(emulator	  or	  phone)	  

Input	  
replay	  

Event	  
flipping	  

Race	  detec9on	  phase	   Race	  verifica9on	  phase	  

False	  
posi5ve	  

Benign	  
race	  

Harmful
race	  

single	  execu9on	   mul9ple	  e
xecu9on

s	  

App	  state	  
comparison	  

Figure 6: Overview of ERVA.

events and placing them in a queue. Messages (i.e., events)
are dispatched by invoking the event handler’s callback. We
changed the Looper implementation to support flipping“racy”
(unordered by HB) pairs of events, as follows. During replay,
ERVA retrieves all recorded events (VALERA saves those to
support event replay). Whenever our modified Looper re-
ceives an event, it checks whether this event is executable
according to the EDG. If all the precedent events in the
EDG have been executed, the message will be dispatched
to the handler as usual. Otherwise, the event is postponed
(added to a “pending” queue) because it could potentially
be flipped.

For example, in Figure 7, the ViewNoteActivity.updateUI()
and NoteListActivity .onResume() do not have an HB rela-
tion according to the race detector, which means their exe-
cution order can be flipped. To flip the event, ERVA adds a
“fake” dependency edge in the EDG as shown in Figure 8.
During replay, the updateUI event handler comes before the
Back Key handler, but this time updateUI cannot be exe-
cuted because it has a preceding event ( NoteListActivity .
onResume) in the EDG. Thus the event is added to the
pending queue. When the NoteListActivity is brought back
into the foreground, the onResume callback is invoked. Af-
ter onResume is finished, the looper scheduler notices that
onResume has a succeeding edge in the EDG, i.e., updateUI.
The scheduler then inspects the pending queue, finds updateUI
and allows it to execute. To summarize, this strategy guar-
antees that the order of events is flipped compared to the
original (record) order.

4.6 State Recording and Comparison
Replay-based race classification has been used in prior

tools [5, 26]: it starts from an execution that experienced
one ordering of the racing accesses and re-runs it while en-
forcing another ordering, then it compares the states of the
program to check whether the race is benign or harmful. The
main problem of these tools is that, by using instruction-
level deterministic replay their overhead is too high and
would not work for Android apps for several reasons. First,
Android devices usually have limited resources of compu-
tation and storage. Second, whole-system instruction-level
replay would be difficult on mobile devices without hardware
changes. Third, Android apps are sensitive to timing: large

slowdown is likely to incur ANR (Android No Respond) er-
rors. Fourth, Android’s UI gestures are very sensitive to
input timing and large overhead may change gesture seman-
tic leading to replay divergence [15, 19].

We define Externally Visible State (EVS) as the subset of
app state that might be accessed, or viewed, by the user; in
ERVA the EVS consists of GUI objects (layouts, views, im-
ages) and Shared Preferences (a system-wide key-value store
where apps can save private or public data [3]). The extent
of the EVS can be customized by ERVA users. However, for
this work we decided to limit the EVS to just the GUI and
Shared Preferences for two reasons: (1) capturing more state
e.g., file contents, would incur higher overhead and lead to
spurious differences; and (2), Android event-race bugs tend
to manifest as GUI differences or crashes [21, 18, 24].

Hence instead of recording and comparing whole-memory
contents, ERVA finds state differences (hence harmful races)
via EVS snapshot differencing, as follows: (1) in the original
event order execution, ERVA snapshots the EVS upon enter-
ing or leaving each activity into EVSoriginal; (2) likewise,
ERVA snapshots the EVS after the event order is flipped,
into EVSalternate; and (3) ERVA compares EVSoriginal and
EVSalternate to find differences—a benign true should show
no difference, that is, the user cannot tell the difference be-
tween the original and alternate executions. Note that some
differences might still exist in hidden state, e.g., memory
contents or the VM stream, but these differences are not
our focus — in our experience, many are spurious — rather,
we expose those races that lead to visible EVS differences.
In additions, ERVA allows the EVS definition (i.e., its extent)
to be customized by the user.

4.7 Race Verification
As described in Section 3, ERVA classifies race reports into

five bins: two types of false positives, two types of benign
races, and harmful races. We now describe how ERVA per-
forms this classification.

False positives type-1 occur because race detectors do not
model the app’s lifecycle callback events (or do not model
them precisely). The result of event flipping is deadlock
because an event with logical timestamp 1 cannot happen
before another event with logical timestamp 2. Once ERVA

detects deadlock after flipping the events, we bin this report
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as false positive type-1.
For false positive type-2, the cause is missing implicit HB

relations. ERVA detects this type of FP by analyzing the
EDG. For example, for onRecentBooksListLoaded and getOr
LoadRecentBooks (the racy pair of events in the Cool Reader

example from Section 3.3) the EDG shows that the event
posters are within the save event and are ordered by program
order. Since the Handler.post(Runnable) follows the FIFO
property, these two events cannot be flipped. Note that, had
one of the posters used postDelayed(Runnable r, long time),
the events would be flippable.

For benign race type-1, memory accesses are protected by
the control flow. ERVA first tries to flip the racy pair and
finds the events can be flipped. Then, during event execu-
tion, ERVA enables tracing of instructions to detect reads
and writes protected by control flow. In the example shown
in Figure 4, the access of mRunnable is protected by the
branch condition in line 5. By analyzing the instruction
trace of flipped events, ERVA bins such reports as benign
race type-1.

For benign race type-2, ERVA flips the order of events and
does find that the memory value is different after flipping,
thus this is a race. Next, ERVA dumps the state of the app
(Section 4.6) and finds no difference. Thus ERVA considers
this as a benign race type-2.

5. EVALUATION
We now describe our experimental setup, then evaluate

the effectiveness and efficiency of ERVA.

Environment. The race detector used in our experiments
is the publicly-available EventRacer for Android [1]. ERVA

is based on Android version 4.3.0. All the experiments were

conducted on the Android emulator on top of an 8-core
24GB desktop machine running 64-bit Ubuntu 14.04.2 LTS.

We have evaluated ERVA along two dimensions: (1) effec-
tiveness in verifying races and (2) efficiency, i.e., the time
required to process an app.

App dataset. We ran ERVA on 16 real-world apps (column
1 of Table 1). These apps were chosen according to several
criteria: (a) spanning various categories, from note-taking
to flashcards to news and utilities; (b) reasonable popularity
— column 2 shows the number of downloads, in thousands,
according to Google Play, all but two apps have at least
10,000 downloads while five apps have in excess of 1 million
downloads; and (c) nontrivial size — column 3 shows their
bytecode size, in KB.

5.1 Effectiveness
An effective race verification and reproduction tool should

support developers in triaging reported races and allowing
them to focus on true races, in particular on harmful races
— this helps bug finding and fixing. We quantified ERVA’s
effectiveness on the 16 aforementioned apps.

We present the results of both EventRacer and ERVA in
Table 1. The first set of grouped columns (columns 4–6)
summarize EventRacer’s output: the number of race reports
and its breakdown as high or normal priority.4 For exam-
ple, for the CoolReader app, EventRacer reports 35 potential
races; of these, 15 were high priority and 20 were normal pri-
ority. Presumably, the developer would proceed by trying to
confirm the 15 high-priority races and then move on to the

4EventRacer classifies a report as high priority if the race is
in app code and as medium priority if it is in the AF but
invoked from the app.
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Table 1: ERVA effectiveness.

App # Downloads Bytecode EventRacer Android ERVA

size Race High Normal False True Benign Harmful
(thousands) (KB) Reports Priority Priority Positives Positives Races Races

AnyMemo 100–500 5,986 22 2 20 4 18 17 1
aLogCat 500–1,000 298 43 10 33 3 40 40 0
Aard Dictionary 10–50 3,466 6 1 5 1 5 5 0
AnStop Stopwatch N/A 59 4 3 1 0 4 4 0
Cool Reader 10,000–50,000 854 35 15 20 20 15 15 0
DiskUsage 1,000–5,000 299 8 2 6 0 8 8 0
GhostCommander 1,000–5,000 1,699 30 8 22 11 19 18 1
GnuCash 50–100 5,511 26 2 24 8 18 18 0
Markers 500–1,000 89 8 2 6 0 8 8 0
Mirakel 10–50 6,191 20 1 19 8 12 12 0
Nori 1–5 1,045 5 2 3 2 3 3 0
NPR News 1,000–5,000 1,224 10 3 7 4 6 5 1
OI File Manager 5,000–10,000 675 8 3 5 2 6 5 1
OS Monitor 1,000–5,000 2,576 24 15 9 10 14 12 2
TextWarrior 50–100 237 5 3 2 0 5 4 1
Tomdroid 10–50 594 6 2 4 1 5 4 1

Total 260 74 186 74 186 178 8
(%) (100) (28.5) (71.5) (28.5) (71.5) (68.5) (3)

remaining 20 normal-priority races – this is likely to be quite
time-consuming. The last two rows show totals and percent-
ages across all apps: out of 260 race reports, 74 (28.5%) are
high priority while 186 (71.5%) are normal priority.

The remaining columns (7–10) summarize ERVA’s output:
the number of false positives, true positives, and among the
latter, how many of the races were benign or harmful. For
example, in the CoolReader app, ERVA has found that of the
35 reports produced by EventRacer, 20 were false positives
and 15 are true positives; however, none of the true positives
were harmful races.

The last two rows, which show totals and percentages
across all apps, reveal that out of 260 race reports, 74 (28.5%)
were false positives, 186 (71.5%) were true positives, and the
71.5% true positives were split as 68.5% benign, 3% harm-
ful. Note that harmful races make up only 3% of the total
number of race reports, which underscores the importance
of race verification. We now discuss harmful races in detail.

Harmful races. Since ERVA offers deterministic replay, the
schedules that expose the harmful races can be replayed,
which helps developers find and fix the root cause of the race.
We used this facility to manually confirm that the 8 races
reported by ERVA as harmful were indeed harmful. Harmful
races manifest in various ways. For example, some harm-
ful races crash the app. In the TomDroid example discussed
in Section 4.4, if the SyncThread and BACK key events are
flipped, the app will crash due to a null pointer exception.

Even if the app does not crash, the consequences can still
be deleterious. For example, AnyMemo has a harmful race
that leads to an exception and different GUI state, and is
caught by ERVA’s state differencing. An excerpt5 of the rel-
evant code is shown next.

1 try {
2 // get data from database
3 adapter. insert (db.getData());

5https://code.google.com/p/anymemo/source/
browse/src/org/liberty/android/fantastischmemo/ui/
RecentListFragment.java

4 } catch (Exception e) {
5 Log.e(”Exception Maybe caused by race condition .

Ignored . ”) ;
6 }

If the event race occurs, the adapter object may be ini-
tialized improperly and its dereference will cause a Null
PointerException. Interestingly, the developers are aware of
the race but they simply use a try ... catch to handle the
exception hence mask the effect of the bug. ERVA detects
this bug via state differencing and reports that the race will
cause a difference in the state of the View object.

Hence ERVA is effective at helping developers verify their
apps, as well as find and fix races.

5.2 Efficiency
Since ERVA consists of detection and verification phases,

we measured the time for each phase. We present the results
in Table 2, individually for each app and the average across
all apps in the last row. Recall that in the detection phase
we run each app on an instrumented platform – we call this
“online time” (column 2) and it takes on average 34 seconds
per app. Following the online stage, EventRacer performs
an offline analysis (column 3) which takes on average 54
seconds per app.

The time for the verification phase is presented in column
4: on average 1,111 seconds. This is due to ERVA having
to perform multiple executions to flip events and compare
state; we believe this time can be reduced substantially by
using checkpointing to only replay program regions rather
than whole executions [29], an idea we leave to future work.
Finally, in the last column we present the total time (the
sum of the detection and verification phases) for each app: it
ranges from 245 to 3,297 seconds (1,198 seconds on average),
which we believe is acceptable.

6. RELATED WORK
Race Detection. Race detection has been widely studied.
Prior efforts have used either static [28, 12] or dynamic [13,
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Table 2: ERVA efficiency: running time, in seconds.

App Race Detection Race Total
Phase Verification

Online Offline Phase

AnyMemo 26.32 53.18 1264.56 1344.06
aLogCat 18.80 26.50 1671.84 1717.14
Aard Dictionary 30.26 48.91 391.08 470.25
AnStop Stopwatch 21.57 32.62 190.88 245.07
Cool Reader 43.88 102.47 3150.70 3297.05
DiskUsage 35.10 69.29 589.12 693.51
GhostCommander 27.53 44.70 1792.8 1865.03
GnuCash 38.81 57.29 2093.00 2189.10
Markers 25.08 36.74 435.84 497.66
Mirakel 39.78 65.12 1675.20 1780.1
Nori 48.15 57.32 507.80 613.27
NPR News 63.18 75.74 1305.60 1444.52
OI File Manager 37.56 41.03 632.32 710.91
OS Monitor 28.24 52.13 1414.56 1494.93
TextWarrior 30.11 47.50 320.10 397.71
Tomdroid 26.55 52.80 340.92 420.27

Average 33.80 53.95 1111.02 1198.78

9] analysis to detect races. However, these efforts have
mainly focused on detecting multi-threaded data races in
applications running on desktop or server platforms. In An-
droid, event-driven races are 4x–7x more numerous than
data races [18, 21]. Moreover, techniques geared at desk-
top/server programs can be ineffective for detecting event-
based races. For example, traditional dynamic race detec-
tors assume that instructions executed on the same thread
have program order. However, this is not true for mobile or
web applications. These apps adopt an asynchronous pro-
gramming model and events handled by one thread come
in non-deterministic order. Recent works have looked at
detecting event-driven race patterns. For example, Even-
tRacer [6, 24] detects event-driven races in web applications
while EventRacer Android [7], CAFA [18] and DroidRacer [21]
focus on Android apps. As mentioned in Section 1, these
tools suffer from high false positive rates, cannot distinguish
between benign and harmful races, and cannot reproduce
races; these drawbacks are the main impetus for our work.

Race Classification. Race detectors that support race clas-
sification and prioritization are more likely to be adopted
by developers, because developers can decide how to priori-
tize investigating race reports. Narayanasamy et al. [26] use
instruction-level record-and-replay to replay alternate sched-
ules, then compare the register/memory state to classify the
races. Kasikci et al. [5] apply symbolic execution to clas-
sify the consequences of races by comparing their symbolic
output result. However, both works focus on multi-threaded
desktop/server apps; this approach is not suitable for mobile
applications because of their event-driven nature. In con-
trast, ERVA captures and flips events according to the event
dependency graph, rather than altering thread scheduling.

Model Checking. Model checking can help systematically
explore all the nondeterministic schedules to find concur-
rency bugs. R4 [20] aims to find event-driven races in web
applications; it uses dynamic partial order reduction (DPOR) [14]
and bounded conflict-reversal to limit the total number of
schedules to explore. Similarly, AsyncDroid [23] uses delay-
bounded prioritized systematic exploration of the recorded

schedule to find concurrency errors in Android apps. Un-
like these model checking techniques which target finding
new buggy schedules, ERVA checks only the potential racy
events reported by the race detector and aims to verify
whether they are false positives or harmless races. Thus,
ERVA cannot detect bugs in unexplored schedules. R4 can
check harmless races due to ad-hoc synchronization, but di-
rectly applying it to Android seems problematic: Android
provides a number of system callbacks that have implicit
happens-before relations, and ignoring these callbacks could
cause false positives as the example of false positive type-1
shows. ERVA can check this type of false positives by flipping
the events to see whether the system enters a deadlock con-
dition. ERVA and model checkers could be combined. For
example, the EDG from ERVA can be used as an auxiliary
model for R4 and AsyncDroid in their exploration algorithm
to check whether the new schedules are feasible or not. Fur-
thermore, the EVS can be used to check the harmfulness of
newly explored schedules.

Record and Replay. Record-and-replay has been widely
studied and implemented on various platforms. On desk-
top/server platforms, replay approaches can be categorized
into 3 groups: hardware modification [30, 22], virtual ma-
chine instrumentation [11, 27], and software-based [16, 31,
25, 10]. However, none of these approaches can be applied
to mobile apps, because that would entail either changing
the underlying mobile hardware (which is unrealistic) or the
VM (which entails high overhead); and software-based ap-
proaches do not capture sufficient or suitable information for
replaying Android apps due to their asynchronous nature.
On the smartphone platform, tools such as Reran [15] and
Mosaic [17] support replaying GUI events, but not sched-
ules. Reran is device-dependent while Mosaic, like ERVA,
is device-independent. Our own prior work, VALERA [19],
supports schedule replay, and we use that support in ERVA.
However, VALERA neither uses EDGs, nor can it flip events.

7. CONCLUSIONS
We have presented ERVA, an approach and tool for au-

tomatically verifying and reproducing event-based races in
Android apps. ERVA addresses the imprecisions in current
race detectors for Android by precisely modeling events and
their dependencies, which allows it to categorize race reports
and only point out those reports that are definite, harm-
ful races. Experiments on 16 Android apps show that most
races reported by race detectors are false positives or benign
races, and that ERVA is an effective and efficient approach
for automatically triaging and reproducing races.
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