
NATALIE: An Adaptive, Network-Aware Traffic Equalizer

Yihua He
University of California – Riverside

yhe@cs.ucr.edu

Jack Brassil
HP Laboratories

jack.brassil@hp.com

Abstract— The bandwidth of multiple physical communica-
tion links can be aggregated with inverse multiplexing to create
a single, higher capacity logical communication link. How-
ever, achieving the maximum possible aggregated bandwidth
becomes challenging as the communication characteristics of
the underlying links (e.g., available bandwidth, packet loss rate)
change with time.

In this paper we introduce NATALIE, a Network-aware
traffic equalizer. NATALIE combines an arbitrary set of net-
work interfaces and schedules IP packet transmissions over
those interfaces in a weighted round-robin fashion. To achieve
the maximum possible throughput, NATALIE measures the
communication characteristics of the underlying links and
dynamically adjusts its scheduler to assign packets to each link
in proportion to its available capacity. We describe NATALIE’s
implementation, the test environment we built on the Emulab
Network Testbed, and the results of experiments demonstrating
NATALIE’s throughput performance for TCP connections over
diverse underlying links with cross-traffic. 1

I. INTRODUCTION

Inverse multiplexing is a conventional technique for aggre-
gating the bandwidth of multiple communication links. In
conventional settings, the underlying links used have been
similar or identical (e.g., bonding of multiple T1s). But
the increasing prevalence of multi-homed hosts and diverse
access network technologies (e.g., DSL, cable) compel us to
investigate the performance of aggregating the bandwidth of
links with dramatically different communication character-
istics. Consider, for example, a end system equipped with
two wireless network interface cards of different maximum
transmission rates (e.g., 802.11b, 802.11g) each connected
to a separate access point. Each wireless link may be seeing
different loss rates, and may be independently adapting its
transmission rate in response to varying signal strength.
How can these devices be aggregated to maximize TCP
throughput?

In this paper we focus on the problem of partitioning
a single TCP flow over multiple links. Previous research
has shown that inverse multiplexing a TCP connection over
heterogeneous links to obtain aggregated bandwidth is dif-
ficult. Splitting TCP segments belonging to a flow can and
does result in out-of-order packet delivery that can result
in a significant decrease in TCP throughput; sufficiently
misordered packets trigger timeouts and unnecessary retrans-
mission requests by the TCP receiver.

1This work was supported in part by DARPA Contract N66001-05-9-
8904.

The TCP receiver congestion window limits how fast a
sender can inject packets into the network, and consequently
limits throughput. The window size is adjusted in response to
measured network conditions. When an out-of-order packet
arrives, the TCP receiver generates a duplicate Ack with a
sequence number that has been acknowledged previously.
If the number of duplicate acks reaches a fixed threshold
(e.g., 3 packets), a sender using Fast Retransmit infers that a
packet was lost and retransmits it. Therefore, transmitting
packets from the same TCP connection over paths with
different delays may mislead the sender into shrinking the
congestion window unnecessarily, reducing throughput dra-
matically. TCP Selective Acknowledgements (SACK) allow
more detailed feedback of which out-of-order packets are
received and hence reduces unnecessary retransmissions.
However, SACK does not address the problem caused by
loss rate variation across different links.

Hence, as a result of the design of TCP congestion
control mechanisms, TCP traffic is often unable to take
advantage of bandwidth otherwise made accessible by multi-
path networking. It is important to note, though, that many
TCP variations exist, and each of these variants can and do
perform differently in a multi-path setting. We focus on only
one popular variant in this paper – TCP Westwood.

Naive attempts to aggregate two or more different links
often yield very poor performance. Indeed, it is not un-
common to observe the throughput of 2 aggregated links
approximately equaling the performance of the lowest quality
link alone. Phillips & Crowcroft [11] report that round-
robin scheduling becomes ”unusable” on two links whose
bandwidths differ by more than an order of magnitude.
Of course, for heterogeneous links it is crucial to sched-
ule packet transmissions to expedite delivery and minimize
packet reordering, jitter, and load imbalance. Round-robin
scheduling is typically limited to scheduling data over nearly
homogeneous links, while weighted scheduling algorithms
are more appropriate for heterogeneous links. Several re-
search groups have shown that maximum throughput is
achieved by assigning data to each channel in proportion
to the channel’s bandwidth-delay product [12], [17].

In this paper we present the design of NATALIE, a
Network-aware traffic equalizer with a packet scheduler
that maximizes bandwidth aggregation by adapting to the
available bandwidth of underlying links. Here we focus on
the considerably more challenging problem of splitting a
single TCP connection across multiple, heterogeneous links,

while constraining ourselves by making no change to TCP
at either sender or receiver. Many researchers have shown
that modifications of TCP can help maintain performance
in multipath settings. The remainder of this document is
organized as follows. Section II presents the design and
implementation of the traffic equalizer, and the next section
describes the testbed used to develop software and test its
performance. Section IV describes the empirical performance
of NATALIE when the characteristics of the underlying
communication links are known, while Section V discusses
system performance when dynamic cross-traffic is present.
Section VI examines related work, and the final section
summarizes our work.

II. NATALIE IMPLEMENTATION

NATALIE is based on a modifed version of a Linux-based
traffic control kernel module called Traffic Equalizer (TEQL)
that is included in the iproute2 package and included in
modern Linux distributions. TEQL assigns each incoming
packet to one of N physical network interfaces using a
deterministic round-robin discipline. Therefore, the traffic
directed to each of the links is 1/N th of the total traffic.

A strict round-robin discipline does not achieve optimal
bandwidth aggregation when links have different communi-
cation characteristics (e.g., unequal transmission rates). To
better utilize the aggregated bandwidth for disparate under-
lying links, Ji and Brassil [6] developed weighted-TEQL
(wTEQL). In this kernel module, the fraction of packets
assigned to the each link (i.e., weight) can be assigned based
on known parameters such as the underlying link bandwidths,
or assigned in a fashion to achieve a desired load balance.
However, the weights are assigned at module loading time
and can not be changed until the module is unloaded and
reinstalled in the system. This process takes at least tens of
milliseconds, and disrupts active TCP connections. Further,
wTEQL does not address the question of how to set link
weights to maximize bandwidth aggregation, particularly as
characteristics of the underlying links change due to factors
such as changes in background traffic.

To address these limitations NATALIE permits dynamic,
real-time adjustment of link weights on an installed module
by user-level programs. NATALIE reads weight parameters
from the /sys/module/NATALIE/parameter/weights directory,
resets a packet counter for each link, and starts distributing
packets according to the new weights. In this way, a user
program, preferably with root privileges, can dynamically
adjust weights as network conditions change. In Section V
we will show how NATALIE maintains high throughput as
the controlling application measures the available bandwidth
on each link, and adjust weights in proportion to those
bandwidths.

III. TESTBED

Emulab [1] was chosen to test the performance of a TCP
connection over multiple links with NATALIE. Emulab is a
publicly available time- and space- shared network emulator,

Fig. 1. A simple test topology on the Emulab testbed.

where arbitrary network topologies can be constructed, and
link loss, latency, bandwidth can be easily user-defined and
changed.

Figure 1 depicts our test topology where two end systems
are directly connected with multiple links. Link emulation is
performed by a node running dummynet that is transparent
to the end systems. Each end system is an Intel 64-bit Xeon
3.0 Ghz machine running the Redhat Linux Fedora Core 4
(2.6.11 kernel) operating system. These machines provide
sufficient computing and I/O performance to ensure that our
experiments are unaffected by background traffic generators
and network measurement tools required for our experiments.

We used the Distributed Internet Traffic Generator (D-
ITG) [2] to generate background traffic on each link, as
needed. We investigated three popular TCP versions available
under the 2.6 kernel — BIC-TCP [3] (the default TCP choice
since kernel version 2.6.8), TCP NewReno [5] and TCP
Westwood [4]. Our experiments show that TCP-Westwood
has better throughput than the other two in the presence
of packet loss. This is due in part to the fact that TCP-
Westwood does not regard a packet loss as an indication of
congestion; instead, it counts the rate of returning ACKs to
estimate bandwidth. Therefore, we choose to use TCP West-
wood throughout this paper, and set the tcp no metrics save
option to ensure memoryless TCP operation from experiment
to experiment. In all experiments TCP memory size was
increased to ensure that sending window size was not limited
by the system bandwidth-delay product.

IV. PERFORMANCE EVALUATION

In this section we present TCP throughput results for
NATALIE operating on the topology of Figure 1. Emulated
link parameters were fixed for each experiment, and no
background traffic was present. We seek to answer questions
such as the following: Suppose link A has relatively higher
bandwidth than link B, but also suffers relatively higher
packet loss. How should packets from a single connection
be scheduled on the links to maximize the aggregated TCP
throughput?

We next explore how NATALIE weights should be set to
maximize throughput as the underlying link bandwidth, la-

tency and packet loss are changed. All presented throughput
measurements were obtained using Iperf v2.02 [10].

A. Two Links with differing delay

Packets from a single TCP connection traversing different
links suffer different delays, both on the forward and reverse
paths. In our experiments we transmitted data on the forward
path, with ACKs returning on the reverse path. To distinguish
the effects of delays on forward and reverse paths, we
used 3 links (link0, link1 and link2) between 2 nodes with
NATALIE forwarding data packets on link0 and link1 with
equal weight, and all ACKs returning on link2. The delays
on link0 and link2 were set at 10 ms., while the delay on
link1 was varied. Here we take the delay to be the aggregate
end-to-end delay including propagation, transmission and
queuing delays. The delay range we considered (0-90ms)
was set to cover the bulk of the end-to-end delays we would
normally observe on either local or metropolitan area wire-
less networks, or intracontinental wired internet connections.
Fig. 2 shows the TCP throughput measured for 120 seconds
for each test on this aggregated link. For comparison, the
graphs also show the maximum possible TCP throughput,
which we take to be the sum of the maximum achievable
throughput of each link when used separately.

Fig. 2 (a) shows that for 1 Mbs links varying the delay
difference on the forward path by changing the delay of link1
maintains high throughput over a very wide range of link
delays. However, this was not the case when link bandwidth
was increased to 10 Mbs; Fig. 2 (b) shows that the total
throughput drops quickly when the latency on just one of
the two forward paths increases.

Before examining the reasons for this throughput loss, we
were curious whether a delay disparity on the reverse path
would produce a similar result. So we reversed the direction
of packet flow (i.e., forward on link0 and reverse on link 1
and link2) to examine the effect of ACK delay disparity. But
Fig. 3 shows that that there is almost no throughput loss due
to ACK delay disparity. This is likely the case because TCP
ACKs are accumulative — even when the ACKs arrive out-
of-order the TCP sender is still notified in a timely fashion.

Now we return to the falling throughput observed with
delay disparity in the forward path on 10Mbits/s links.
Figs. 4 (a)-(e) plot the throughput measured by iperf on
the aggregated forward link at one second intervals for the
first 120 seconds. For comparison we show the throughput
for each individual link, and their sum. Figs. 4 (a)-(c)
show that throughputs converge to the ideal within 120
seconds. However, convergence takes longer as forward delay
disparity increases. Figs. 4 (d) and (e) show that the TCP
throughputs fail to converge within the first 120 seconds.
To see if it will eventually converge, we plot Fig. 4 (f),
where measurement time is extended to 900 seconds. In
the case where link1’s forward delay is 70ms, the total
throughput eventually converges to ideal after approximately
250 seconds. But when link1’s forward delay reaches 90ms,

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Forward delay at link1 (ms)

By NATALIE
Ideal throughput

(a) 1Mbits/s links

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Forward delay at link1 (ms)

By NATALIE
Ideal throughput

(b) 10Mbits/s links
Fig. 2. Throughput as delay disparity increases on the two links in the
forward direction. The reverse path delay is fixed at 10 ms. for both links.
The forward delay for link0 is fixed at 10 ms., and the delay of link1 is
varied

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Ack delay at link1 (ms)

By NATALIE
Ideal throughput

(a) 1Mbits/s links

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Ack delay at link1 (ms)

By NATALIE
Ideal throughput

(b) 10Mbits/s links
Fig. 3. Throughput as delay disparity increases on the two links in the
reverse direction. The forward path delay is fixed at 10 ms. The reverse
delay for link0 is fixed at 10ms., and the delay of link1 is varied.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (second)

By NATALIE on both links
By link1 only
By link2 only

link1+link2 (ideal)

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (second)

By NATALIE on both links
By link1 only
By link2 only

link1+link2 (ideal)

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (second)

By NATALIE on both links
By link1 only
By link2 only

link1+link2 (ideal)

(a) link1: 10ms (b) link1: 30ms (c) link1: 50ms

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (second)

By NATALIE on both links
By link1 only
By link2 only

link1+link2 (ideal)

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (second)

By NATALIE on both links
By link1 only
By link2 only

link1+link2 (ideal)

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (second)

forward delay=50ms
forward delay=70ms
forward delay=90ms

(d) link1: 70ms (e) link1: 90ms (f) large forward delay disparity
Fig. 4. Throughput convergence on links with increasing delay disparity.

the throughput does not converge to the optimal value and
instead varies between 10-15 Mbits/s.

In summary, we find that delay disparity does not have
a significant impact on TCP throughput, unless there is a
huge delay disparity on relatively high bandwidth links. In
practice, one-way delays between the same pair of nodes
connected via multiple (even disjoint) paths rarely differ so
dramatically.

B. Two links with differing loss

We next consider NATALIE’s performance when aggre-
gating lossy links with different packet loss rates (PLR). We
focus on two questions. First, how much throughput gain,
if any, can be achieved by aggregating multiple lossy links,
compared to the throughput achievable using only the best
component link? Second, how should we assign weights
to links with differing PLR to realize the highest possible
throughput?

To answer the first question, we first look at the simple
case of two heterogeneous links, and measure the overall
throughput under various PLR combinations. For each PLR
combination we empirically find the maximum throughput
value by varying the weight ratio associated with the two
links from 0 to ∞. Figs. 5 (a) and (c) show the resulting
throughput for 1 Mbs and 10 Mbs links, respectively. For
comparison we also plot the throughput achievable on the
higher performing of the two links in Figs. 5 (b) and (d). For
the case of 1 Mbs links we can see that combining two links
with NATALIE can achieve much higher throughput than just
using the better of the two links, in most cases. The total
throughput drops when packet loss increases, only reaching

the same throughput as the better performing component link
when both links have PLR=0.1, a loss rate considered quite
high in most operational network settings.

For 10 Mbs links NATALIE achieves large throughput
gain when the PLR on each of the two links is small
(≤ 0.01). When the PLR reaches values between 0.01 and
0.04, throughput on the aggregated link is only slightly better
than only using the better link. When the PLR on both links
exceeds 0.04, the throughput achieved by aggregating links is
actually lower than just using the better one. In summary, our
results indicates that high PLRs can significantly decrease
NATALIE’s throughput, even at the optimal weight ratio.
Further, additional experiments show that the larger the
bandwidth of each link, the larger throughput decrease a
given PLR will produce. When the PLRs of both component
links are large, it is invariably better to use only one link
than to try aggregating two or more.

We next return to the second question we posed early
in this section, namely how we can maximize throughput
by assigning weights to links of different bandwidth and
different packet loss rates. To address this question we
examine three cases:

• Case I: One lossless link and one lossy link with
identical bandwidth.

• Case II: One lossless link and one lossy link with lower
bandwidth.

• Case III: One lossless link and one lossy link with
higher bandwidth.

In each case we consider NATALIE operating on two links
(link0 and link1) where the weight of link0 is set to w0 =
100; that is, if the weight of link1 is w1 = 50, then (50 +

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0 0.02 0.04 0.06 0.08 0.1
 0

 0.5

 1

 1.5

 2

Throughput(Mbits/s)

PLR link0

PLR link1

Throughput(Mbits/s)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0 0.02 0.04 0.06 0.08 0.1
 0

 0.5

 1

 1.5

 2

Throughput(Mbits/s)

PLR link0

PLR link1

Throughput(Mbits/s)

(a) Throughput with NATALIE on two 1 Mbs links (b) Throughput of the better performing 1 Mbs link only

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0 0.02 0.04 0.06 0.08 0.1
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Throughput(Mbits/s)

PLR link0

PLR link1

Throughput(Mbits/s)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0 0.02 0.04 0.06 0.08 0.1
 0

 5

 10

 15

 20

Throughput(Mbits/s)

PLR link0

PLR link1

Throughput(Mbits/s)

(c) Throughput with NATALIE on two 10 Mbs links (d) Throughput of the better performing 10 Mbs link only
Fig. 5. The maximum achievable throughput for two aggregated links and the best performing component link under all packet loss rate combinations.

100)/150 or 1/3rd of the packets are assigned to link1. In
addition, to simplify exposition we fixed the PLR of link0
to be zero (plr0 = 0) in all experiments.

These configurations are deceptively complicated, and
intuition provides little sure guidance on how to assign link
weights to maximize throughput. For example, a plausible
hypothesis might be to decide to weight links in proportion
to the maximum achievable bandwidth of each component.
However, as we will see shortly, this conjecture is not
generally correct.

Case I: Figs. 6 (a) and (b) show the throughput of two
links with identical bandwidth. For 1 Mbs links (Fig. 6 (a))
observe that throughput is maximized when the weight of
link1 equals that of link0 (w1 = w0 = 100). In general, our
experiments show that the maximum is achieved when the
weight ratio equals the ratio of the respective link bandwidths
(b1/b0) as long as the PLR of the lossy link remains modest
(0 ≤ plr1 ≤ 0.1).

This result also holds when the PLR is small (plr1 ≤ 0.01)
for 10 Mbits/s links (Fig. 6 (b)). However, as the PLR for

one of the 10 Mbs links increases, the weight ratio (w1/w0)
that maximizes throughput decreases. Note that when the
highest throughput is achieved by assigning a weight ratio
w1/w0 6= 1, the throughput is only marginally higher than
the throughput achieved using only the better performing
component link.

Case II: Figs. 6 (c) and (d) show NATALIE’s throughput
in the case where a lossless high bandwidth link pairs with
a lossy low bandwidth link. As in Case I, the throughput
peaks at w1/w0 = b1/b0 when the plr1 is small. As the PLR
increases the weight ratio maximizing throughput becomes
less than b1/b0. However, in these cases, the throughput
achieved by assigning weights according to the ratio b1/b0 is
only marginally less than the highest achievable throughput.
The only exception is when the PLR of the low bandwidth
link is very high (plr1 ≥ 0.1). However, in such a situation
it is prudent to use only the lossless high bandwidth link,
because this will achieve small throughput degradation, while
realizing a shorter convergence time to maximum throughput.

Case III: Figs. 6 (e) and (f) show the throughput of two

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Weight on link1

plr=0.00
plr=0.02
plr=0.04
plr=0.06
plr=0.08
plr=0.10

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Weight on link1

plr=0.000
plr=0.002
plr=0.004
plr=0.006
plr=0.008
plr=0.010
plr=0.020
plr=0.040
plr=0.060
plr=0.080
plr=0.100

(a) b0 = 1 Mbs, b1 = 1 Mbs (b) b0 = 10 Mbs, b1 = 10 Mbs

 5

 6

 7

 8

 9

 10

 11

 12

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Weight on link1

plr=0.000
plr=0.002
plr=0.004
plr=0.006
plr=0.008
plr=0.010
plr=0.020
plr=0.040
plr=0.060
plr=0.080
plr=0.100

 6

 8

 10

 12

 14

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Weight on link1

plr=0.000
plr=0.002
plr=0.004
plr=0.006
plr=0.008
plr=0.010
plr=0.020
plr=0.040
plr=0.060
plr=0.080
plr=0.100

(c) b0 = 10 Mbs, b1 = 2 Mbs (d) b0 = 10 Mbs, b1 = 5 Mbs

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 Inf

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Weight on link1

plr=0.000
plr=0.002
plr=0.004
plr=0.006
plr=0.008
plr=0.010
plr=0.020
plr=0.030
plr=0.040
plr=0.050
plr=0.060
plr=0.080
plr=0.100

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 Inf

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Weight on link1

plr=0.000
plr=0.002
plr=0.004
plr=0.006
plr=0.008
plr=0.010
plr=0.020
plr=0.040
plr=0.060
plr=0.080
plr=0.100

(e) b0 = 2 Mbs, b1 = 10 Mbs (f) b0 = 5 Mbs, b1 = 10 Mbs
Fig. 6. Throughput of NATALIE as the weight of link1 is adjusted to compensate for differing bandwidth and PLR on the component links. The PLR of
link0 is set to 0.0, and the weight assigned to link0 is fixed at 100.

links where a lossless low bandwidth link (either 2 or 5
Mbs) pairs with a lossy high bandwidth link (10 Mbs).
Once again we find that, when the PLR is small, assigning
w1/w0 = b1/b0 achieves the highest throughput. However,
when PLR increases the highest throughput is typically
achieved by just using the lossy, high bandwidth link alone.
When PLR grows larger, the highest throughput is achieved
by assigning a weight ratio w1/w0 to a value in the interval
0 ≤ w1/w0 ≤ b1/b0.

These results cause us to propose a simple guideline for
assigning link weights when using NATALIE to schedule
packets associated with a TCP connection to component
links with no cross traffic. This guideline is not a precise
specification of an optimal assignment, but rather a rough
rule-of-thumb likely to realize good throughput performance.
This rule can be summarized as follows: 1) In the absence
of a large disparity in packet loss rate or delay between
the component links, the link weight assignments should be
proportional to the component links’ bandwidths. 2) As the
disparity of the link impairments on the component links
increases, overweight the highest bandwidth link. 3) As the
disparity of the link impairments on the component links
grows large, avoid using multiple links entirely by assigning
all packets to the highest bandwidth component link.

V. DYNAMIC AUTO-WEIGHTING IN THE PRESENCE OF
CROSS-TRAFFIC

In the previous section we explored the throughput of
NATALIE on heterogeneous component links. To isolate the
effects of component link impairments, we excluded the
possibility of cross-traffic on those links. In this section
we explore how we have designed NATALIE to maximize
throughput by adapting to the presence of background traffic.

NATALIE permits authorized user programs to adjust
its link weights. In a typical application, an external user
program can probe component link communication char-
acteristics such as available bandwidth, packet loss rate,
and round-trip latency, and assign the weights to maximize
throughput.

To test the operation of this mechanism, we constructed a
simple bandwidth estimation program for directly connected
links on an end system. The program is either informed
of the transmission rate of locally attached interfaces, or
obtains this information from a standard Linux networking
utility such as ethtool. The program counts the number of
bytes transferred on each link in a specified time interval,
and calculates the available bandwidth on each link. These
measurements are then combined and filtered to calculate
a link weight set, and the resulting values are written to
the /sys/module/NATALIE/parameter/weights directory to set
current link weights. We call this operation “auto-weighting.”

Fig. 7 depicts a NATALIE auto-weighting experiment, and
compares the results to the performance obtained with the
native TEQL module, which assigns packets in a strict round-
robin to component links. The background traffic generated
by D-ITG on two 10 Mbs links is shown in Fig. 7 (a). This

traffic starts at time t = 10 seconds and ends at t = 110
seconds, with the traffic pattern changing every 20 seconds
in that period. Fig. 7 (b) shows achievable system throughput
using the TEQL module to assign traffic equally to each
of the two component links independent of the level of
background traffic. The dotted line depicts the maximum
achievable bandwidth – the sum of the available bandwidth
on each of these two links. The figure clearly shows that the
total throughput achieved by TEQL is frequently not close to
the ideal throughput. On the other hand, Fig. 7 (c) shows the
throughput achieved using NATALIE with auto-weighting.
The throughput achieved is very near the the maximum
available bandwidth; occasional sharp downward spikes cor-
respond to events where background traffic changes, and the
system requires several measurement intervals to recalculate
available bandwidth and adjust link weights accordingly.

VI. RELATED WORK

A large number of researchers have investigated various
techniques to aggregate bandwidth at every possible protocol
layer. Though pursuing similar objectives, these schemes
differ dramatically in the system components that must
be modified to achieve aggregation, the assumptions about
the similarity of the underlying communication links, and
whether the approach spans a single hop or an entire end-
to-end connection. For example, at the link layer bonding
has frequently relied on introducing hardware to combine
multiple identical physical links. Such an approach has
the advantage of not requiring changes to host protocols,
while suffering from added component costs and establishing
a relatively rigid configuration. A recent example of this
approach is the hardware based ethernet over copper bonding
product from Actelis Networks [14] that achieves symmetric
access up to 70 Mbs over multiple DSL wire pairs using ITU
Recommendation G.998 (G.Bond) [13].

A popular software-based technique used to logically
combine serial data links by splitting, recombining and se-
quencing datagrams is Multilink PPP (MLPPP) as described
in RFC 1990. Though not requiring new hardware, this
approach is also intended to be used on multiple similar serial
data links directly connecting two MLPPP-enabled routers or
hosts.

In general, these standards have not addressed the problem
of aggregating dissimilar links, as we have studied in this
paper. But the growing deployment of wireless networks –
where in some cases even links relying on similar technology
suffer dramatically different communication impairments –
has stimulated investigations by a variety of researchers [18]
[17], [19].

Handling diverse links has focused attention on approaches
to modifying TCP to support transmission over multiple
channels [15], [16]. These efforts attempt to address the
inherent TCP assumption that packet misordering on a single
path will be relatively infrequent, an assumption made invalid
when using different links for a single connection. The
principle disadvantage in this approach is the requirement

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

Background traffic on link0
Background traffic on link1

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

Throughput with TEQL
Available Bandwidth (ideal)

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

Throughput with NATALIE
Available Bandwidth (ideal)

(a) Background traffic (b) Throughput with TEQL (c) Throughput with NATALIE
Fig. 7. Auto-weighting significantly improves throughput.

to modify the end system TCP stacks for all participating
end systems. Though modifying TCP can be highly effective
at achieving aggregation gain, it unfortunately requires new
kernels to be deployed on all participating end systems.

By contrast, the approach we explore in this paper uses
loadable kernel modules that can be added or removed from
participating systems on demand, without requiring kernel
modifications. Further, NATALIE can be installed on a sender
alone to provide aggregation, with no need for any receiving
systems to be similarly configured.

VII. CONCLUSION

As multi-homing becomes increasingly prevalent and end
systems have access to multiple communications networks,
we are faced with the challenge of using these communi-
cation links effectively while not requiring change to either
communication infrastructure or widely deployed protocols
such as TCP. In this paper we have studied the problem of
combining multiple heterogeneous links into a single logical
link to increase the throughput of a TCP connection. We have
made two distinct contributions. First, we have developed a
Linux kernel module called NATALIE, a traffic distributer
that schedules packets to links dynamically. The weighting
can be adjusted in real time, without unloading the module,
and supports network-awareness via a companion application
that measures network characteristics.

Second, we have extensively examined the throughput
performance for NATALIE on multiple heterogeneous links
under various combinations of delay, packet loss rate and
bandwidth. We have found that, to achieve the best TCP
throughput under a wide range of network conditions –
including those commonly found in operational wired and
wireless networks – it is normally ‘best’ to set the ratio of
the weights on the component links in proportion to the ratio
of their bandwidths. Further, we have identified conditions
under which it is normally better to use the best performing
component link alone rather than attempting to aggregate
links.

In our future research we will seek to expand the network
settings where NATALIE can be used. In particular, we
see NATALIE scheduling packets on disjoint paths that can
extend many hops into the network. The challenge here is to
discover the characteristics of bottleneck links located deeper

in the network. We envision incorporating existing, end-to-
end available bandwidth estimation tools (e.g., pathChirp[7],
pathLoad[8], Spruce[9]) to probe network paths and provide
measurements needed for auto-tuning.

REFERENCES

[1] Emulab, http://www.emulab.net.
[2] D-ITG, http://www.grid.unina.it/software/ITG/.
[3] I. Rhee, ”BIC-TCP,” http://www.csc.ncsu.edu/faculty/rhee

/export/bitcp/.
[4] Ren Wang, Giovanni Pau, Kenshin Yamada, M. Y. Sanadidi, Mario

Gerla, ”TCP Startup Performance in Large Bandwidth Delay Net-
works,” Proc. of INFOCOM 2004, Hong Kong, March 2004

[5] S. Floyd, T. Henderson, ”The New-Reno Modification to TCP’s Fast
Recovery Algorithm,” RFC 2582, April 1999.

[6] J. Li, J. Brassil, ”On the Performance of Traffic Equalizers on
Heterogeneous Communication Links,” Proceedings of QShine’06,
Waterloo CA, 2006.

[7] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell,
”pathChirp: Efficient Available Bandwidth Estimation for Network
Paths,” Passive and Active Measurement Workshop, 2003.

[8] M. Jain, C. Dovrolis, ”End-to-End Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput,”
ACM/IEEE Transactions on Networking, 2003.

[9] J. Strauss, D. Katabi and F. Kaashoek, ”A Measurement Study of
Available Bandwidth Estimation Tools,” The Internet Measurements
Conference, Florida, 2003.

[10] Iperf version 2.02, http://dast.nlanr.net/Projects/Iperf/.
[11] J. Crowcroft, I. Phillips, TCP/IP and Linux Protocol Implementation,

Wiley, New York, 2002.
[12] H. Adiseshu, G. Parulkar, and G. Varghese, ”A Reliable and Scalable

Striping Protocol,” Proceedings of ACM SIGCOMM’96, Stanford,
CA, August 1996, pp. 131-141.

[13] ITU Recommendation G.998 (G.BOND), http://www.itu.int/ITU-
T/studygroups/com15/index.asp.

[14] Actelis Networks, http://www.actelis.com/.
[15] L. Magalhaes and R. Kravets, “MMTP: Multimedia Multiplexing

Transport Protocol,” Proceedings of the first ACM Workshop on Data
Communications in Latin America and the Caribbean, San Jose, Costa
Rica, April 2001, pp. 220-243.

[16] H. Hsieh, R. Sivakumar, “pTCP: An End-to-End Transport Layer
Protocol for Striped Connections,” ICNP 2002, pp. 24-33.

[17] D. S. Phatak and T. Goff, “A Novel Mechanism for Data Streaming
Across Multiple IP Links for Improving Throughput and Reliability in
Mobile Environments,” IEEE INFOCOM 2002, New York, NY, June
2002.

[18] A. C. Snoeren, “Adaptive Inverse Multiplexing for Wide Area Wireless
Networks,” IEEE GLOBECOM’99, Rio de Janeiro, Brazil, December
1999, pp. 1665–1672.

[19] P. Sharma, SJ Lee, J. Brassil, K. Shin, ”Distributed Channel Monitor-
ing for Wireless Bandwidth Aggregation”, Proceedings of Networking
2004, May 2004.

