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Abstract purposes [3]. Third, we can analyze phenomena such as

the spread of viruses [4][5], more accurately. In addition,

The lack of an accurate representation of the. Inte_rne[he current initiatives of rethinking and redesigning the
_tc_)pology at _the Autonpmou_s Systgm (AS) level ISa I'm'lnternet and its operation from scratch would also benefit
iting factor in the design, simulation, and modeling ef-¢. 0\ <,ch a model

forts in inter-domain routing protocols. In this paper, we
design and implement a framework for identifying AS
ItlnksI that are mrllsstmgvarom thle comfmonly—uslt(ed Ir:jterhne he recent flurry of studies [6][7][8][9][10][11][12][13]
opology snapshots. We apply our framework and sho urrently, several sources of topological information ex-
that the new links th_at we find _change the_curr_ent Interi'st: (a) archives of BGP routing tables, (b) archives of
ge: t_(l)polog?y model Il<n a n%n-tnwlal way. FIIrSt' n m(;]re BGP routing updates, (c) Internet Routing Registries, and
etall, ouriramework provides a large-scaie comprene d) archives of traceroute data. Each of these sources has
sive synthesis of the available sources of information. We ’ | advantages, but each of them also provides an in-
cross_-valldatg apd compare BGP routing ta_bles, Ir'tem%mplete, sometimes inaccurate view of the Internet AS
Routing Registries, and traceroute data, while we eXtra?)pology' these views are often complementary. Further-

significant new information from the less-studied Internemore as far as we know, IXPs (Intemnet Exchange Points)
. - . 0 L) L)
Exchange Points (IXPs). We identify 40% more edge§1ave not received attention in terms of Internet topology

1 0, -tO- _
and approximately 300% more peer-to-peer edggs cor iscovery, although they play a major role in the Internet
pared to commonly used data sets. Second, we 'dem'c\f)nnectivity
roperties of the new edges and quantify their effects on _ . .
propert W edg quantify thei The contributions of this work are two. (a) We design

important topological properties. Given the new peer-to- . . . >
P pological brop P nd implement a systematic framework for discovering

peer edges, we find that for some ASes more than 509

of their paths stop going through their ISP providers as[nissing links in our current Internet topology shapshot,

suming policy-aware routing. A surprising observationand address two limitations of previous studies —the syn-

is that the degree of a node may be a poor indicator c;[pe&s of different data source and incorporating topolog-

which ASes it will peer with: the two degrees differ by ical information f_rom IXPs. (b) We apply our framework
a factor of four or more in 50% of the peer-to-peer Iinks.anOI conduct an in-depth study of the importance of these

Finally, we attempt to estimate the number of edges Wt ew lllnks, ?trr‘]d |;\nSpTovelo\L/J\; ugders_tl;'mdm% of the Intkernedt
may still be missing. opology at the evel. We describe our framework an

our results in more detail below, while we discuss how
our work complements and differs from previous efforts
1 Introduction in the next section.
(a) A framework for identifying missing links: First,

An accurate topology model would be important for sim-our framework identifies and validates a significant num-
ulating, analyzing, and designing the future protocols efber of AS links by a careful cross-reference and synthe-
fectively [1]. With an accurate Internet AS-level topol- sis of most known sources of information: BGP tables,
ogy, first, we can design and analyze new interdomaitraceroute, and IRR [14]. Second, our framework extracts
routing protocols, such as HLP [2], that take advantagsignificant new topological information from Internet Ex-
of the properties of the Internet AS-level topology. Secchange Points (IXPs); such information is typically not
ond, we can create more accurate models for simulatiomsed in topological studies. While prior work [15] has

Developing an accurate representation of the Internet
Eopology at the AS level remains as a challenge despite



proposed methods to identify participating ASes at IXPsshould be modeled separatelyWe find that the degree
our study greatly extends their work and overcomes cedistribution of the provider-customer only edges can be
tain limitations. accurately described by a power-law (with correlation co-
Note that we set a highly selective standard in ouefficient higher than 99%) in all the topological instances
framework: we only accept edges which are verified byhat we examine. In contrast, degree distribution of the
BGP tables or from traceroute data. In other words, weeer-to-peer only edges is better described by a Weibull
do not provide a union of the existing sources of infor-distribution with correlation coefficient higher than 99%.
mation, but a critical synthesis. To achieve this goal, w8 hese results corroborate observations made in previous
develop a large scale traceroute-based tool, RETRO, sjudies [13][11].
confirm the existence of edges, which we suspect exist. (iii) The degrees of the nodes of a peer-to-peer link can
We arrive at several interesting observations: vary significantly: We find that 50% of the peer-to-peer
(i) We find a significant number of new edgedle edges are between nodes whose degrees differ by a fac-
discover 40% more edgeg15%) and approximately tor of more than 4 or by a degree difference of 144. This
300% more peer-to-peer edg5%) as compared to the has direct implications on how we think about and model
widely used Oregon Routeviews data set (all availablgeer-to-peer edges. For instance, this observation sug-
BGP routing tables). gests that researchers need to use caution when using the
(i) Most of the newly discovered edges are peer-todegree as an indication of whether two ASes could have a
peer edgesthe current topological models have a biagPeer-to-peer relationship. Our results can provide guide-
by under-representing peer-to-peer edges. lines to AS policy inference algorithms, which partly rely
(iii) Most missing peer-to-peer AS links are at theOn the node degree.
IXPs: Our results show that nearly 95% of the peer-to- (iv) More peer-to-peer edges may existle estimate
peer links missed from the BGP tables are incident dhat approximately 35% peer-to-peer edges, compared to
IXPs. This suggests that exploring the connectivity athe peer-to-peer edges we know at the end of this study,
IXPs may help us identify hidden edges between ASe@ay still be missing. Our estimate is an educated guess
that participate at IXPs. on how many more possible edges we could verify, if we
(iv) IRR is a good source of potential new edgkare had more traceroute servers.
than 80% of the new edges that are seen by considering anThe rest of this paper is organized as follows. We re-
increased number of BGP tables were also found to exi¥iew the data sources and previous work in Section 2. In
in IRR; this indicates that IRR is a good source for findingSection 3, we present our framework and the motivation
links missing from BGP tables. Note that our IRR data if€hind its design. In Section 4, we quantify the impact
carefully filtered by the state of the art tool [16] for this Of our new found AS links. We introduce our methods to
purpose, which was not used by previous IRR studies. |dent|fy the |XP participants in Section 5. In Section 6,
(b) The properties and the impact of the new links: ~We summarize our work.
The new edges significantly change our view of the In-
ternet AS topology. In addition, we i_deptify interestin92 Background
patterns of the new edges. Our key findings can be sum-
marized as follows: 2.1 Data Sources and Their Limitations
(i) The new edges change the models of Internet rout-
ing and financial implicatoins that previous researchin this section, we describe the most popular data sources
studies may have arrived at by using the incompletand their two main limitations: incompleteness and a bias
topology models: We quantify the routing decision in the nature of the discovered links.
changes in the routing model due to the peer-to-peer BGP routing table dumps are probably the most widely
edges not considered previously. We find that for somased resource that provides information on the AS In-
ASes, more than 50% of their paths stop going througternet topology. Each table entry contains an AS path,
a provider, compared to the models with incomplete ASvhich corresponds to a set of AS edges. Several
topology. Most of these ASes are with degrees in thsites collect tables from multiple BGP routers, such as
10 to 300 rangei,e., they are “middle-class” ASes. The Routeview[17] and RIPE/RIS[18]. An advantage of the
financial implication of this phenomenon is that manyBGP routing tables is that their link information is con-
“middle-class” ASes may not pay to their providers tosidered reliable. If an AS link appears in a BGP routing
the extent that was earlier expected. We conclude thable dump, it is almost certain that the link exists. How-
business-oriented and routing studies should consider aler, limited number of vantage points makes it hard to
peer-to-peer edges for accurate results. discover a more complete view of the AS-level topology.
(i) We find that provider-customer and peer-to-peerA single BGP routing table has the union of “shortest” or,
edges have significantly different properties and theynore accurately, preferred paths with respect to this point



of observation. As a result, such a collection will not see Internet Routing Registry (IRR)[14] is the union of a
edges that are not on the preferred path for this point ajrowing number of world-wide routing policy databases
observation. Several theoretical and experimental efforthat use the Routing Policy Specification Language
explore the limitations of such measurements [19][20](RPSL). In principle, each AS should register routes to
Worse, such incompleteness may be statistically biasedl its neighbors (that reflect the AS links between the
based on the type of the links. (Most ASes peer with eacAS and its neighbors) with this registry. IRR informa-
other with two types of links: the provider-customer linkstion is manually maintained and there is no stringent re-
and peer-to-peer links. Normally, customer ASes payguirement for updating it. Therefore, without any pro-
their providers for traffic transit, and ASes with peer-to-cessing, AS links derived from IRR are prone to human
peer relationship exchange traffic with no or little cost toerrors, could be outdated or incomplete. However, the
each other.) Some types of AS links are more likely to beip-to-date IRR entries provide a wealth of information
missing from BGP routing table dumps than other typeshat could not be obtained from any other source. A re-
Specifically, peer-to-peer links are likely to be missingcent effort [16] shows that, with careful processing of the
due to the selective exporting rules of BGP. Typicadly, data, we can extract a hon-trivial amount of correct and
peer-to-peer link can only be seen in a BGP routing tableiseful information.

of these two peering ASes or their customekstecent

work [13] discusses in depth this limitation. .
2.2 Related Work an mparison
BGP updates are used in previous studies[7][9] as a elated Work and Compariso

source of topological information and they show that byThere has been a large number of measurements studies
collecting BGP updates over a period of time, more ASelated to topology discovery, with different goals, at dif
links are visible. This is because as the topology changeferent times, and using different sources of information.
BGP updates provide transient and ephemeral route in- Our work has the following characteristics that distin-
formation. However, if the window of observation is guish it from most previous other efforts, such as [13][6]:
long, an advertised link may cease to exist [7] by the timg1)We make extensive use of topological information
that we construct a topology snapshot. In other wordsrom the Internet Exchange Points to identify more edges.
BGP updates may provide a superimposition of a numbet turns out that IXPs “conceal” many links which did
of different snapshots that existed at some point in timenot appear in most previous topology studies. (2)We
Note that BGP updates are collected at the same vantagse a more sophisticated, comprehensive and thorough
points as the BGP tables in most collection sites. Natool [16] to filter the less accurate IRR data, which was
urally, topologies derived from BGP updates share theot used by previous studies. (3) We employ a “guess-
same statistical bias per link type as from BGP routingand-verify” approach for finding more edges by identify-
tables: peer-to-peer links are only to be advertised to thiag potential edges and validating them through targeted
peering ASes and their customers. This further limits the@raceroutes. This greatly reduced the number of tracer-
additional information that BGP updates can provide cureutes that were needed. (4)We accept new edges con-
rently. On the other hand, BGP updates could be useful iservatively and only when they are confirmed by a BGP
revealing ephemeral backup links over long period of obtable or a traceroute. In contrast, some of the previous
servation, along with erroneous BGP updates. To tell thstudies included edges from IRR without confirming it
two apart, we need highly targeted probes. Recently, agith a traceroute.
tive BGP probing[12] has been proposed for identifying The most relevant previous work is done by Chang
backup AS links. This is a promising approach that couldl. [6] with data collected in 2001. They identify new
complement our work and provide the needed capabilitgdges by looking at several sources of topological infor-
for discovering more AS links. mation including BGP tables and IRR. They estimate that
By using traceroute, one can explore IP paths and thetb%-50% AS links were missing from Oregon Route-
translate the IP addresses to AS numbers, thus obtaiview BGP table, the most commonly used data set for
ing AS paths. Similar to BGP tables, the traceroute patAS topology studies. Their work was an excellent first
information is considered reliable, since it represengs thstep towards a more complete topology.
path that the packets actually traverse. On the other hand,In a parallel effort, Cohen and Raz [13] identify miss-
a traceroute server explores the routing paths from its Idng links in the Internet topology. Our studies corrobo-
cation towards the rest of the world, and thus, the colrate some of the observations there. Note that, their work
lected data has the same limitations as BGP data in terrdges not include an exhaustive measurement, data col-
of completeness and link bias. One additional challengection and comparison effort as our work. For example,
with the traceroute data is the mapping of an IP path to akXP information was not used in their work.
AS path. The problem is far from trivial, and it has been Several other interesting measurement studies exist.
the focus of several recent efforts [21][22]. NetDimes [8] is an effort to collect large volumes of host-



Table 1: The topological data sets used in our study. Table 3: A collection of BGP table dumps

OBD The Oregon routeviews BGP table dump Route collector of # of | # of | # of edges with jedgep edges not in
BD OBD and other additional BGP table dumps Router server nanidodefEdges type inferred hotir] OBD w/ type
IRRNc IRR edges processed by Nemecis with total] p-p [ p-c |OBDtotal p-p] p-C
non-conflicting policy declarations route-viewsQBD)[1984%264%257(5551]3676§ 0 | 0 | 0 | O
IRRdual | IRRnc edges correctly declared by both adjacent A$es route-views2 [1983741274412304464|36514 10251102 835/ 191
BD+IRR | BD and the edges of IRRdual confirmed by RETRO] route-views.eqix|1965(8488%B487$1027|3364(Q 674 |674|530| 143
IXPall Union of cliques of IXP participants route-views.linx [1965%3725¢872463246/33768251125112188 319
IALL BD+IRR and the potential IXP edges route-views.isc |1975386152361391915/34004 784 |783|663| 118
that are confirmed by RETRO rrc00.ripe  |1977(B647¢B64651641{34608 655|654|543( 111

rrcOl.ripe  |1964(B419%3418(1121)32854 617 (617|512| 105
rrc03.ripe  |19731391413912! 3850350423233322 609 616

L. . rrc05.ripe 1976%3267¢826591122(3132410951091658| 432

Table 2: The statistics of the topologies mcO7.ripe  [1961§82811317971219/30394 804|803 724| 79
[ Name | Nodes| Edges| p<_ | pp_ | rrcl2.ripe  [1962§83841338272024|31606161161¢1417 193
OBD | 19.8k | 42.6k | 36.7K | 55K [ TowlBD)  [1995(5134%1250L273)38269870486897183 1499

BD 19.9k | 51.3k | 38.2k | 12.7k
BD+IRR | 19.9k | 56.9k | 38.2k | 18.3k
ALL 19.9k | 59.5k | 38.2k | 20.9k

We present an overview of our work in order to pro-
based traceroute information. The key here is to increagéde the motivation for the different steps that we take.
the number of traceroute points by turning cooperativdVe start with the data set from Oregon routeviews BGP
end hosts into observation points. The challenge nowable Dump OBD)[17], the BGP table dumps collected
becomes the measurement noise removal, the collectiodt, route-views.oregon-ix.net, which is by far the most
and processing of the information [23]. Our approacwvide|y used data archive. Our work consists of four main
and NetDimes could complement and leverage each oth&ieps.
towards a more complete and accurate topology. Don- A. BGP routing tables: We consider the AS edges
netet al.[24] propose efficient algorithms for large-scalederived from multiple BGP routing table dumps[7], and
topology discovery by traceroute probes. Rocketfuel [25¢ompare them to the Routeview data (OBD). The ques-
explores ISP topologies using traceroutes. In [9], the auion we try to answer is what is the information that the
thors examine the information contained in BGP updatesiew BGP tables bring. We use the teBD to refer to

The exhaustive identification dKP participantshas the combined data from all available BGP table Dumps.
received limited attention. Most previous work focusesTable 1 lists the acronyms for our data sets.
on identifying the existence of IXPs. Xet al. [15] de- B. IRR data: We systematically analyze the IRR data
velop what appears to be the first systematic method feind identify topological information that seems trustwor-
identifying IXP participants. Inspired by their work, our thy by Nemecis[16]. We follow a conservative approach,
approach subsumes their method, and thus, it providgfiven that IRR may contain some out-dated and/or erro-
more complete and accurate results (see Section 5).  neous information. We do not accept new edges from
IRR, even after our first processing, unless they are con-

3 Framework For Finding Missing Links firmed by traceroutes (using our RETRO tool). Over-
all, we find that IRR is a good source of missing links.

In this section, we present a systematic framework fofOr example, we discover that more than 80% of the new
extracting and synthesizing the AS level topology infor-£dges found in the new tableisg(, the AS edges in BD
mation from different sources. The different sources havBut not in OBD) already exist in IRR [14]. Even com-
complementary information of variable accuracy. ThusPared to BD, IRR has significantly more edges, which
we cannot just simply take the union of all the edges. Aare validated by RETRO as we explain below.
careful synthesis and cross-validation is required. At the C. IXPs and potential edges\We identify a set of po-
same time, we are interested in identifying the propertietential IXP edges by applying our methodology on infer-
of the missing AS links. ring IXP participants from Section 5. We find that many
In a nutshell, our study arrives at three major obserof the peer-to-peer edges missing from the different data
vations regarding the properties of the missing AS linkssets could be IXP edges.
(1) most of the missing AS edges are of the peer-to-peer D. Validation using RETRO: We use our traceroute
type, (2) most of the missing AS edges from BGP tabletool, RETRO, to verify potential edges from IRR and
appear in IRR, and (3) most of the missing AS edges anXPs. First, we confirm the existence of many poten-
incident at IXPs. At different stages of the research, thestial edges we identified in the previous steps. We find
three observations direct us to discover even more edgdbat more than 94% of the RETRO-verified AS edges in
some of which do not appear in any other source of inforlRR indeed go through IXPs. We also discover edges that
mation currently. were not previously seen in either the BGP table dumps
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or IRR. In total, we have validated 300% more peer-to-
peer links than those in the OBD data set from Route-
views.

The statistics of the topologies generated from the dif-
ferent data sets in our study are listed in Table. 2.
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3.1 The new edges from a BGP table dump

Cumulative Number of New-found Edges

We collect multiple BGP routing table dumps from vari- Figure 1: Most new edges in BD but not in OBD are
ous locations in the world, and compare them with OBDpeer-to-peer edges.
On May 12, 2005, we collected 34 BGP routing ta-
ble dumps from the Oregon route collectors [17], the
RIPE/RIS route collectors [18] and public route server®f new found peer-to-peer edges and provider-customer
[26]. Several other route collectors were not operationatdges versus the total number of edges. To generate this
at the time that the data was collected and therefore, walot, we start withOBD with 42643 AS edges and com-
do not include them in this study. For each BGP routindine new AS edges derived from the BGP table dumps
table dump, we extract its “APATH" field and gener- other thanOBD, one table dump at a time, sorted by the
ate an AS topology graph. We then combine these 3@aumber of new edges they provide. At the end, when
graphs into a Sing|e graph and delete dup"cate AS edgég the BGP table dUmpS in our data set are inClUded, we
if any. The resumng graph, which is namedBid (BGP obtain the graprD, this has 51345 AS edges in total.
Dumps) has 19,950 ASes and 51,345 edges that inteRmong these edges, there are 7183 peer-to-peer edges
connect these ASes. The statisticsBi are similar to and 1499 provider-customer edges that do not exist in
what was reported in [7]. InterestingBD has only 0.5% the baseline grap®BD. Clearly, Fig 1 demonstrates that
additional ASes, but 20.4% more AS edges as compard¥e discover more peer-to-peer AS edges than provider-
with OBD. customer edges when we increase the number of van-
To study the business relationships of these edges, W@d¢ points. Furthermore, the ratio of the number of new
use the PTE algorithm [27], which seems to outperforniound peer-to-peer edges to the number of new found
most previous such approaches. Specifically, it Sigmfprovider-customeredges is almost constant given that the
icantly increases the accuracy (over 90%) of inferringWo plots (corresponding to the new found p-p edges and
peer-to-peer AS links. Most of the AS edges are clasthe p-c edges) in Fig. 1 are almost straight lines.
sified into three basic types on the basis of business re- The percentage of peer-to-peer edges increases with
lationships: provider-customer, peer-to-peer and siplin the number of BGP tables.A complementary observa-
to-sibling. Among them, sibling-to-sibling links only ac- tion is that for a BGP-table-based graph, the more com-
count for a very small (0.12%) portion of the total AS plete itis (in number of edges), the higher the percentage
edges and we do not consider them in this study. Wef peer-to-peer links. For example, the AS graph derived
count the number of peer-to-peer (or “p-p” for short) androm rrcl2.ripe.net has 33841 AS edges, 2024 (5.98%)
provider-customer (or “p-c” for short) AS links for each Of which are peer-to-peer edges. On the other hand,
BGP routing table. The statistics for dumps with signifi-the more complete AS grap@BD has 42643 edges,
cant number of new edges are shown in Table 3. and 5551 (13.0%) of these edges are peer-to-peer edges.
For comparison purposes, we pick the most widelyf e combined grapBD has an even higher percentage
used AS graplOBD as our baseline graph. For each(24.8%) of peer-to-peer links.
of the other BGP routing tables, we examine the num- The above observations strongly suggest that in order
ber of additional AS edges that do not appeadBD, as {0 obtain a more complete Internet topology, one should
classified by their business relationship. As shown in Taconsider peer-to-peer links than any other type of primary
ble 3, from each of the BGP routing tables that provideé\S links.
a significant number of new edges®@BD, most of the
new-found edges are of the pger—tp-peer type. 3.2 Exploring IRR
BGP table biases: underestimating the peer-to-peer
edges. A closer look at the data reveals an interesting/Ve carefully process the IRR information to identify po-
dichotomy: (1) Most edges in a BGP table are providertential new edges. Recall that we do not add any edges
customer. (2) Given a set of BGP tables, most new edgemtil we verify them with RETRO later in this section.
in an additional BGP table are peer-to-peer type. We can We extract AS links from IRR on May 12, 2005 and
see this by plotting the types of new edges as we add tletassify their business relationships using Nemecis [16]
new tables. In Fig. 1, we plot the cumulative numbeias per the exporting policies of registered ISPs. The pur-



Table 4: AS edges in IRR (May 12, 2005) without rela-

Table 5: Percentage of IRR edges missing fidih

tionship conflict #ofedges | # of edges
7 of Berc of Berc of Name #of edges| NOTinBD | Missing Perc.
Name of non-0 # of Avg total IRR edges IRRnc 89,540 63,660 71'12/°
Graphs degree | Edges | Degree IRR without psggﬁﬁgc g?gié ggggg gg;of’
B N y . 0
Nodes edges | _conflict siblinglRRnc | 2,510 1,300 51.8%
IRRNC 16952 | 89540 | 10.56 | 92.6% | 100.0%
peerlRRnC | 6619 | 49411 | 14.93 | 51.1% 55.2%
pcIRRNC 15277 | 37619 | 4.925 | 38.9% 42.0%
siblinglRRnc | 2277 | 2510 | 2204 | 2.6% 2.8%
0, 0, . .
p’fgaﬁzg;f' et ISl el Bl e Nemecis[16]. From among these classified edges, 5303
siblinglRRdual | 226 | 143 | 1.265 | 0.1% 0.1% edges are of the peer-to-peer type and only 832 are of the

provider-customer type. This confirms the result shown
in Fig. 1, where most new found AS edges are of the
. : . ) _peer-to-peer type. Recall that, for Fig. 1, the business re-
pose of using Nemecis to filter the IRR is that, Nemecig,jionships are inferred by the PTE algorithm[27], instead
can successfully eliminate most badly defined or inconst Nemecis[16], which we use here. Both algorithms give
sistent edges and, it can infer with fair accuracy the busiyantitatively similar results which provides high credi-
ness relationships of the edges. bility to both the data and the interpretations.

There are 96,654 AS |inkS in tOta| and they are CIaS' b IRR has many more edges Compared to our most
sified into three basic types in terms of their re|ati0n'complete BGP-table graph (BD) Motivated by the ob-
ships: peer-to-peer, customer-provider and sibling-toseryation above, we examine the number of AS edges in
sibling. Sometimes two ASes register conflicting poli-|RR that are not included iBD. Table 5 summarizes the
cies with each other. For example, ASmay register nymper and the type of IRR AS edges that do not appear
AS_B as a customer while AB registers ASAasapeer. jn BD. From among the IRR AS edges inferred as non-
There are 7,114 or 7.4% of such AS links and we eXC|Ud80anicting types, 71.1% are missing froBD. The per-
them in our data analysis. We call the remaining edgegentage is especially high for peer-to-peer edges: 80.7%
non-conflicting IRR edges IRRnc Considering the dif-  of the peer-to-peer AS edges in IRR are missing from
ferent types of policies, this set can be decomposed inf9p. This suggests that there may be many IRR links that
three self-explanatory setsclRRn¢peerlRRn@ndsib-  exjst but are yet to be verified. We also notice that 59.7%
lingIRRnc From these edges, we define thel®Rdual  of the provider-customer AS edges are missing. At this
to include the edges for which both adjacent ASes regsoint, we can only speculate that most of these missing

edges for which only one AS registers a peering relation-

ship while the other AS does not register at all.) Simi- .. .
larly, the IRRdual set can be decomposed by type of edg%'3 IXPs and missing links

into three setspclRRdual peerlRRduakndsiblinglR-  Note that, when two ASes are participants at the same
Rdual IXP, it does not necessarily mean that there is an AS
The statistics of these data sets are summarized in Tadge between them. If two participating ASes agree to
ble 4. We notice that the number of edges in the morgxchange traffic through an IXP, this constitutes an AS
reliably definedRRdualset is significantly less than that edge, which we call alXP edge Many IXP edges are of
of theIRRnc In other words, AS edges iiRRdualand  peer-to-peer type, although customer-provider edges are
its subsets peerlRRdual pclRRdualand siblingIRRd-  glso established.
ual) are fewer but we are more confident about: (a) their |dentifying IXP edges requires two steps: (a) we need
existence, and (b) their business relationships. to find the IXP participants, and (b) we need to identify
We make the following two observations: which edges exist between the participants. We defer a
a. IRR is a good source of hints for missing edges. discussion of our method and tool on how to find the IXP
We perform the following thought experimerknowing participants to Section 5. However, even when we know
only the OBD data set, would IRR be a good source dhe IXP participants, identifying the edges is still a chal-
potential edges¥e compare the edges in graBP but  lenge: not all participants connect with each other. In
not in graphOBD with the edges in IRR. We find that addition, the peering agreements among the IXP patrtici-
83.3% of these edges exist in IRR: 7251 from a total opants are not publicly known.
8702 new edges. This high percentage suggests that theWe start with a superset of the real IXP edges that con-
IRR can potentially be a source for finding new edgedains all possible IXP edges: we initially assume that the
We also notice that from among these 7251 edges, 63@&rticipants of each IXP form a clique. We denoted Xy
are classified in terms of their business relationships blall the set of all edges that make up all of these cliques.



with our traceroute probes, it is almost certain that an IXP

Table 6: Many missing peer-to-peer links are at IXPs edge between AS A and AS B exists.

Name #of Edges | (1) IXPall | Perc. ) ) - .
peerBD-OBD 7183 6197 | 86% We first tried to use the Skitter[28] traces as our veri-
peerlRRnc-BD | 39894 23979 | 60% fication source; however, we soon found that it was not

peerlRRdual-BD 13905 11477 83% .
BD-OBD 8700 5910 T 79% suitable for our purposes. Between May 8 and May 12

in 2005, we collected a full cycle of traces from each
of the active Skitter monitors. Despite a total number
of 21,363,562 individual traceroute probes in the data
IXPall contains 141,865 distinct AS edges. set, we were only able to confirm 399 IXP edges in

Potential missing edges and IXP edgesWe revisit peerlRRnc-BD The reason could be that the monitors
the previous sets of edges we have identified and cheglere not in the “right” place to discover these edges: the
to see if they could be IXP edges. First, we look at thenonitors should be at the AS adjacent to that edge, or
peer-to-peer AS edges that appeaBD but notinOBD.  at one of the customers of those two ASes. With the lim-
These are the peer-to-peer AS edges missing f@BD  jted number of monitors (approximately two dozen active
but are discovered witBD. We call this set of AS edges ones) in Skitter, itis difficult to witness and validate many
peerBD-OBD Here we use the minus sign to denote thef the peer-to-peer AS edges.
difference between two set&-Bis the set of entities in To address this |imitation’ we deve'op a tool for detect-
setA but not in setB. Second, we look at the AS edgesjng and verifying AS edges. We employ public traceroute
that appear irpeerlRRncbut not in the grapiBD. We  gerversg.g[29]) to construct RETRO (REverse TraceR-
call this set of linkspeerlRRnc-BDThese AS links are ouyte), a tool that collects traceroute server configura-
the ones that are potentially missing fr@®. We define  tions, send out traceroute requests, and collect tracer-
thepeerIRRdualinks not inBD aspeerlRRdual-BD oute results dynamically. Currently, we have a total of

Having made this classification, we compare eacho4 reverse traceroute servers which contain more than
class with the super setXPall, of edges that we con- 1200 distinct and working vantage points. These van-
structed earlier. The statistics are shown in Table 6. Witfages points cover 348 different ASes and 55 different
our first comparison, we find that approximately 86%countries.
of the edges irpeerBD-OBDare inIXPall and hence,  wjth the RETRO tool, we conduct the following pro-
are potenually IXP edges. Next, we observe that E_SOO/Eedure to verify AS edges in theeerlRRnc-BDset. For
of the edges irpeerlRRnc-Band 83% of the edges in gach edge ipeerlRRnc-BDwe find out if there are any
peerlRRdual-BCare inIXPall. Thus, if they exist, they RETRO monitors in at least one of the two ASes incident
could be IXP edges. _ on the edge. For about 2/3 of the edgepéerlRRnc-BD

In summary, the analysis here seems to suggest thgje do not have a monitor in either of the two ASes on the
most of the peer-to-peer AS links missing from the BGReqge. If there is at least one monitor, we try to traceroute
dumps but present in IRR are potentially IXP edges.  from that monitor to an IP that belongs to the other AS

on the edge. There are two problems in finding the right
3.4 Validating links with RETRO IP address to traceroute to._ First, some ASes dq not an-
nounce or can not be associated with any IP prefixes and

With the work so far, we have identified sets of edges anthus, we are not able to traceroute to these ASes. Sec-
obtained hints on where to look for new edges: (1) mosbnd, most of the rest of the ASes announce a large range
missing links are expected to be the peer-to-peer type, (2¢qual to or more than 256¢., a full /24 block) of IP ad-
IRR seems to be a good source of information, (3) mangiresses. To maximize our chances of performing a suc-
missing edges are expected to be IXP edges. cessful traceroute, we choose a destination from the list

However, as we have noted before, the peer-to-peef IP addresses that has been shown to be reachable by at
edges learned through the IRRs diéPall are not guar- least one of the Skitter monitors. We then trigger RETRO
anteed to exist. Therefore, in this section we focus on vato generate a traceroute from the selected monitor to the
idating their existence to the extent possibiote here destination IP address that we choose. We call this set of
that with the validation, we eliminate stale informationtracerouteRETRQTRACE1
that may still be presentin the IRR and IXP data sources. Most missing peer-to-peer links are incident at

To verify the existence of the edges peerlRRnc- IXPs. We define acandidateto be a potential edge be-
BD, we would like to witness these edges on tracertween two ASes, which satisfy the following two condi-
oute paths. Typically, when a traceroute probe passd®ns: (a) we have a RETRO monitor located in one of the
through an IXP edge between AS A and AS B, ittwo ASes, and (b) there is at least one IP address from the
will contain the following sequence of IP addressesother AS is reachable by the traceroute probe performed
[[Pas_a,IPrxp,IPas_g]- If such apatternis observed from the RETRO monitor. We have 8791 such “candi-
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Table 7: RETRO verifies peer-to-peer links in IRR miss- ¢, o o8 S
ing from BD L os L osl fesos
Name #0f | #0fRETRO # of confirmed peering s o (5,645 S o[ feeoso
edges candidates | total | vialXP | direct 03 it 03 L
peerlRRnc-BD | 39894 8791 5646 | 5317 | 329 02 oz [f
peerlRRdual-BD| 13905 4487 3529 | 3351 | 178 % %
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min(d;, dy)/max(dy, d,) 1d1-dal

_ - Figure 2: Degree ratio distribution(left) and degree dif-

Table 8: RETRO verifies AS edges notBD andIRRNC  terance distribution (right) of all peer-to-peer AS links i
Name # of # of RETRO # of confirmed peering
edges candidates [ total | viaIXP | direct the Internet.
IXPall-BD-IRR | 100,076 | 17,640 | 2,603 | 2,407 | 196

RETRO candidate paths. The percentage of confirmed
new AS edges is 14.8%. This is much lower than what
dates” for the potential AS edges peerlRRnc-BDBy  we see withpeerlRRnc-BDThis is due to the fact that
appropriately performing traceroutes on candidates, weXPall is an overly aggressive estimate. In addition, we
get traceroute paths. In these paths, we search for tWwwave already identified that many edges from IXPall are
patterns for each candidate§ 4, ASg): (a) [[Pas_a, inthe previous setdBD andpeerlRRnc-B.
IPss gl , and (b) [IPas_a, IPrxp, IPss_g]. If ei- We also notice that there is a small humber of con-
ther of the two patterns appears, it is almost certain thdirmed edges that are shown to exhibit direct peering in-
the AS edge betweeAS, and ASg exists either as (a) Stead of peering at some IXP. A closer look reveals that
a direct edge or, (b) as an IXP edge, respectively. Thmany of such cases are due to the fact that a small number
results that we obtain at the end of the above process apérouters do not respond with ICMP messages with the
summarized in Table 7. incoming interfaces, and therefore, the IXP IP address,
Among 8791 candidates jpeerlRRnc-BDRETRO is which is supposed to be returned by the traceroute, is
able to confirm that a total of 5646 edges indeed existskipped”. Note that this phenomenon does not stop us
The existence of the rest of the candidates does not shdi@m identifying the edge. It just makes us underestimate
in our RETRO data. Note that this method can only conthe percentage of IXP edges among the confirmed edges.
firm the presence, but not prove the absence of an edge.
It could very well !Je that that the trac_eroute qloes nog Significance of the new edges
pass through the right path. The most interesting result
is, from among the 5646 verified edges, 5317 or 94.2%, thjs section, we identify properties of the new edges.
of them are IXP edges. The result suggests that moshen, we examine the impact of the new edges on the
of the missing peer-to-peer links from BGP tables are ifopojogical properties of the Internet. Finally, we attémp

bly because the peer-to-peer links between middle or loye mjssing.

ranked ASes (national or regional ISPs) are typically un-

derrepresented in BGP tables. For those ASes, peerirfllg
with other ASes at IXPs is a much more cost-efficien .1 Patterns of the peer-to-peer edges

way than by building private peering links one by oneyye stydy the properties exhibited by nodes that peer.
Our result strongl_y suggests that in order to look for misstherefore, we examine the degreésandds, of the two

ing peer-to-peer links from BGP tables, we should examseering nodes that make up each peer-to-peer edge. Let
ine IXPs more carefully. us clarify that the degrees andd. include both peer-

Discover edges not observed in BGP tables or IRRs to-peer and provider-customer edges. One would expect
From the results so far, we suspect that the missing edggfat 4, andd, would be “comparable”. Intuitively, one
are often IXP edges. Following this pattern, we identifyyould expect that the degree of an ASdsselyrelated
and confirm edges that previously had not been observeg the importance and its place in the AS hierarchy; we
in any other data source. expect ASes to peer with ASes at the same level.

We consider those AS edgesliXPall that are neither However, we find thathe node degree of the nodes
in BD nor in IRRNg and call themXPall-BD-IRR We  connected with a peer-to-peer link can differ signifi-
then attempt to trace these edges by using RETRO. Weantly. We compare the two degrees using their ratio and
call this set of traceroustRETRQTRACE?2 The results absolute difference. Note that these two metrics provide
from our experiments are summarized in Table 8. complementary view of difference, which leads to the fol-

We find 2,603 new AS edges from out of 17,640lowing two findings: (1) Close to 78% of the peer-to-peer



R g 1: T e sence of a definitive statistical test. For example, in Fig.
i i i i 3 top left, we plot the complementary cumulative distri-
bution functions (CCDF), on a log-log scale, of the graph
ALL defined earlier in Table 1. The distribution is highly
skewed, and the correlation coefficient of a least square
10 cheéfﬁ,ee 000 R Nm;f:me 000 errors fitting is 98.9%. However, one could still use dif-
B ‘ ferent statistical metrics and argue against the accuracy
Lo P ponilialial of the approximation [32].

1 Furthermore, the answer could vary depending on
which source we think is more complete and accurate,
and the purpose or the required level of statistical con-
e e fidence of a study. For example, if we go wiRRdual

Note Degree Node Degree which is a subset of the AS edges recorded in IRR filtered
‘ * by Nemecis, the correlation coefficient is only 93.5%, see
Fig. 3 top right.

To settle the debate, we propose a reconciliatory
divide-and-conquer approach. We propose to model sep-
‘ ‘ ‘ ‘ ‘ ‘ arately the degree distribution according to the type of
Y oemes Y enegee " the edges: provider-customer and peer-to-peer. We ar-

gue that this would be a more constructive approach for
Figure 3: The degree distributions ALL (left) andIR- modeling purposes. This decomposition seems to echo
Rdual(right) in the top row, their provider-customer de- the distinct properties of the two edge types, as discussed
gree distributions in the middle row, and their peer-to4in a recent study of the evolution on the Internet topol-
peer degree distributions in the bottom row. ogy [11].
In Fig. 3, we show an indicative set of degree distribu-

. tion plots for graphALL on the left column antRRdual
edges connect ASes whose degrees differ b_y a faqtor Bh the right. We show the distributions for the whole
2. In Flg. 2‘(Ieft), we plot the CDF of the distribution graph (top row), the provide-customer edges only (mid-
of the ratiomin(dy, dz)/maz(dy, dz) of the peer-to-peer row), and the peer-to-peer edges only (bottom row).

edgesa Another obser:j/ationhis thgt 45% %f_ftfhebpeefr—tcwe display the power-law approximation in the first two
peerecges connectr_u_) eswhose degrees ditterby a aClBlys of plots and the Weibull approximation in the bot-
of 5. This is a surprisingly large difference. One m|ghtt0m row of plots

argue that this is an artifact of having peer-to-peer edges We observe the following two properties: (a)The
between low degree nodes, s@y = 2 andds, = 11, rovider-customer-onlv d distributi ‘ i
: . y degree distribution can be accu
whose absolute degree difference is arguably small. Th% . .
rately approximated by a power-law. The correlation co-

is why we examine the absolute difference of the degreesﬁicient is 99.5% or higher in the plots of Fig.3 in the

o e .
next. (2) 35% of the peer-to-peer edges have nodes Wltr(?r11iddle row. Note that, although the combined degree

3\/2 allasto tl;:;eggflze roefnt;:]ee %ﬁi}g;:&?}r‘oﬁﬁé gwbzgmze(\r/;gl:tgdistribution ofIRRdualdoes not follow a power law (top
b . ) . row right), its provider-customer subgraph follows a dtric
|dy — d2|, whered; andds remain as defined earlier. An-

other interesting observation is that approximately half o <" law (middle row right). (b)The peer-to-peer-only
. degree distribution can be accurately approximated by a
of the peer-to-peer edges have a degree difference lar

. : Yeibull distribution. The correlation coefficient is 99.2%
than 144. Differences of 144 and 215 are fairly large n‘Or higher in the plots of Fig.3 in the bottom row.

we consider that roughly 70% of the nodes have a degree |, . N :
less than 4. We intend to investigate why quite a few higg It 'Zgﬁl;;alfg?lgsknwrg tr}g:gfodn'sn:abgt'gp_lsad'ge;r;/vfe_
degree ASes establish peer relationship with low degrtﬁeugg 01owing Exp lon. ] W W
. ated to the rich-get-richer behavior: low degree nodes
ASes in the future. “ N X .
want” to connect to high degree nodes. For provider-
customer edges, this makes sense: an AS wants to con-
4.2 Impact on the Internet topology nect to a high-degree provider, since that provider would
42.1 The degree distribution I|kely provide shorter paths to other ASes. This is less
boviously rue for peer-to-peer edges. If AS1 becomes a
There has been a long debate on whether the degree dieer of AS2, AS1 does not benefit from the other peer-
tribution of the Internet at the AS level follows a power-to-peer edges of AS2: a peer will not transit traffic for a

law[30][31][32][6]. This debate is partly due to the ab-peer. Therefore, high peer-to-peer degree does not make
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S DU ‘ ‘ ‘ this is a small fraction of the total number of paths, it is
1 1000 still a significant number in terms of its absolute value.
’ In addition,no change in the length does not mean that
the path did not changeFor this reason, we study next
1= how many paths changed even if they did not change in
length.
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4.3 The effect on ISP revenue

2000

We examine how much the new discovered AS links
would change the models previous studies had arrived at
) about routing decisions and ISP income by using incom-
Figure 4:The number o&x-provider pathgshown as impulses plete Internet topology.

on the left y-axis) of each node in order decreasing nodes#egr - giijar to studying AS path length, we assume NVPC
(shown as a semi diagonal line corresponding _to the right ﬁcouting in our model. For each AS, we count how many
axis). The x-axis shows the rank of the nodes in the order of " . . .
descending degree. of its paths stop going through one of its providers once
the new edges are added. We refer to these patbkg-as
provider paths The number of ex-provider paths is an in-
a node more attractive as a peer-to-peer neighbor. Wiécation, of the financial gains for that AS. Clearly, there
intend to investigate its validity in the future. are other considerations, such as prefix-based traffic engi-
neering and performance issues, that our analysis cannot
possibly capture. However, our results are a good first
indication of the effect of the new peer-to-peer links.
We expect that theALL graph will be more clustered  The significant financial benefits of the new peer-
since we add edges. To quantify this, we usediister- to-peer edges. We plot the number of thex-provider
ing coefficientwhich has been used to characterize angaths for each node in Fig. 4. The x-axis represents
compare generated and real topologies [33]. Intuitivelythe rank of the nodes on a log scale in order of decreas-
the clustering coefficient captures the extent to which &g degree; The y-axis at the left represents the number
node’s one-hop neighborhood is tightly connected. f ex-provider paths. In addition, we plot the node de-
clustering coefficient of exactly one means that the neigtgrees (on the right y-axis) against their ranks as a semi
borhood is a clique. The average clustering coefficient ofiagonal line. We see that the difference between using
OBDis 0.25 and it increases to 0.31Ad.L. an incomplete graphdBD) and using a more complete

In addition, we find that the density increase is not hograph @ALL) is dramatic: there are many ASes, for each
mogeneous. The neighborhoods of “middle-class” nodef which, several thousands out of the total 20K paths (to
become more clustered: the clustering coefficient inall other ASes) stop going through a provider. For some
crease is larger for nodes with degrees in the 10 to 308Ses, more than 50% of their paths stop going through
range. Note that this property characterizes the neieir providers (10K out of 20K possible paths per AS).
edges, and could help us identify more missing edges in The rise of the “middle class” ASes.Another inter-
future studies. esting observation is that the nodes which seem to benefit
the most from these changes have degrees in the range
from 10 to 300 (right y-axis). Top tier nodes (top 20
ranked) almost do not benefit at all; this is expected, since
We study the effect of the new edges on the AS patthey do not have any providers anyway. Nodes with really
lengths with policy-aware routing. The routing policy is low node degree do not benefit much either, since nodes
a consequence of the business practices driven by cowith very low degrees are less likely to have a peer-to-
tracts, agreements, and ultimately profit. As a first-ordepeer edge.
approximation of the real routing policy, we use tNe
Valley Prefer Customer (NVP®)uting, which is defined
in [34] [35].

We have approximately 20,000 ASes present in the InCurrently, theALL graph has approximately 20.9K peer-
ternet topology and examine all possible pairs of ASedo-peer edges. However, we were very conservative in
For each AS pair, we compare the AS path lengths witladding edges frorRRnc we required that the edges are
OBD and withALL. We find that approximately 10 mil- verified by RETRO. So, a natural question is, how many
lion of the paths change in length. While we note thamore edges could we verify fromRRncif we had more

4.2.2 Clustering coefficient

4.2.3 AS path length

4.4 Are we missing a lot more peer edges?



RETRO servers? We attempt to provide an estimate by
extrapolating the success of our method in finding new

198.32.0.7 5.34.23.17
198.32.0.8 198.32.0

edges. First, we provide a conservative estimation and  Asa ASB

later, a more liberal estimation, below. 1238 L oo poria ssessis
Conservative extrapolation using IRRdual: We find 7 1ess ” RSEOS I 26745 T enn

35% more peer-to-peer edges compared to ALL. We re- 30824 ASC

visit the IRRdualgraph and examine if we can include 42010 723N ey | 108320

more edges than the ones we validate with RETRO. Re- ASD o Exchange ot (X6)

call from Table 7 that we find that there are 13905 edges
in thg peerIRRdgaI-BDand from thesg,_ only 4487 are Figure 5: A conceptual model of a typical IXP
“verifiable” candidates. From the verifiable edges, we
actually verify 3529 or 78.6% of the verifiable edges.
We generalize this percentage: we assume that if W1 1 path-based inference
had more RETRO monitors, we could verify 78.6% of
the peerlRRdual-BD This leads to an estimated 7.4K The high level overview of the method is deceptively sim-
(10.9K-3.5K) peer-to-peer edges not in ALL, which hasple. First, for each IXP IP addregs>,,, that we obtain
20.9K peer-to-peer edges. from PCH, we search for the IP address that appears im-
Liberal Extrapolation using IRRnc: We find 95% mediately after/ P;,,, in each of the obtained traceroute
more peer-to-peer edges compared to ALL. In a similapaths. Second, if we find more than one such IP address
way, we estimate how many edges we could verify fronfor the particular! P;;,,, we select the one that appears
peerlRRnc-BDwhich is a more “inclusive” set. Here, the most frequently to bé P,,.... We call the above proce-
total number of peer-to-peer edges is 39,894, the verifdure themajority selection processThird, we find the
able edges 8,791, and the verified edges 5,646. This givéS ASz that owns the IP addressp,..; and consider
rise to an estimate of 39894646/8791 = 25.6K peer-to- thatASz to be a participant at the IXP. Furthermore, we
peer edges out of which 5.6K are already in ALL. consider thaf P;,,, is the IP interface via whici .Sz ac-
cesses the IXP.
To illustrate this with an example let us consider Fig.
e i 5. A typical traceroute from AS A to router X yields the
5 lIdentifying IXP Participants following sequence of IP addresses: [1.2.3.5, 198.32.0.5,
. . . . 2.6.7.13, 5.34.23.17]. Since the address “2.6.7.13",
In th|s_, section, we present a method _for identifying th(?/vhich belongs to AS B, appears immediately after IXP IP
part|c_|pant§at Internet E)fc_hange Points (IXPs). Ou_raddress “198.32.0.5", we infer that, AS B is a participant
goal IS to_fl_nd all the part|C|!oants at_ea_ch IXP, and thISAS, and that 198.32.0.5 is the interface that is assigned to
Sanon tr|V|aI proplem._Wg find that fl_r1d!ng the IXP par- AS B. Note from Fig. 5 that, irrespective of the location
“C'pa!"ts IS key fo_r identifying many missing AS edges a%f the traceroute source and its destination, if an IXP ad-
explained in section 3. dress (the address 198.32.0.5 in our example) appears in
a traceroute, the IP address that appears immediately af-
ter (the address 2.6.7.13 in our example) is owned by the
5.1 From IPs to IXP participants AS (in our example AS B) that uses the IXP addresg.(
198.32.0.5) to access the IXP as long as two conditions
This part of our approach uses two techniques to infefiold. These are: (1) each IXP interface address is as-
IXP participants from IXP IP addresses: 1)path-basegigned to a Sing|e AS, and (2) routﬂlgvaysrespond to a
inference, where we perform a careful processing ofraceroute probe with the address that corresponds to the
collected traceroute data, and 2)name-based inferenGggcoming IP interface. While the first condition largely
where, we analyze the name and the related informayplds, the second condition does not. There is a small
tion with regard to IXPs from the DNS and/or WHOIS chance that a router could respond to a traceroute probe
databases. with an alternate (not the incoming) interface[37][21].
In both inference methods, we start with the IP adin our example, router R could respond to a traceroute
dress blocks allocated to the IXPs, which we dXIP  probe from AS A to router X with an alternate interface
IP addressesWe obtain this information from the Packet (e.g.3.9.8.21), which makes the traceroute path appear as
Clearing House (PCH) [36]. In terms of traceroute data[1.2.3.5,198.32.0.5,3.9.8.21,5.34.23.17]. Since 39.8
we use a full cycle of Skitter traceroute data between Magould be within the IP space of AS C, one could incor-
1,2005 and May 12, 2005, and dRETRQTRACE1data rectly infer that AS C is an IXP participant. We overcome
in May 2005 as described in Section 3.4. this limitation with ourmajority-selection procesghe



\ An IXP IP Address \ and (c) we find the AS that owns this address, and this
EQverse DNS lookup AS is considered a participant of that IXP. For example,
Host name IXP DE-CIX has the IP address 80.81.192.186. If we do

Search the IXP |
in traceroute dat;

; Trim to domain name
1Ps that appear | (1) St fors Ok ® areverse DNS lookup, we get the host name
after the 'Xzzji;es hostname s s st i “GigabitEthernet3-2.corel ftfl.level3.net”. A DNS
selecting ©) the domain nam lookup of the domain name “level3.net” yields an IP ad-
i dress of 209.245.19.41. An IP address to AS number

lookup
Mot conversion reveals that the IP address belongs to AS3356
(Level3). Therefore, AS3356 is considered a participant

IPZAS\\\ /|p2Ag
Conversiol Conversion
onversio at DE-CIX.
[ Paricpants AS number | Although this method has been used successfully by

. ] . revious studies [15], it has two limitations: (a) some-
Figure 6: A flow chart of our path-based method to 'nfe'{?mes it can return incorrect AS numbers for IXP partic-

IXP participants from I.XP P qddre;sgs. Starting .fro.n}pants, and (b) it does not always work: the DNS or the
the top, the numbers in the circle indicate the priority

o . . . Jreverse DNS lookup may not return an answer.
(lower number with higher priority) at a branching point. We address the first limitation by excluding the IXP

addresses that have been mapped on to AS participants
Table 9: IXP participants inferring comparison by our path-based inference method. This greatly reduces

Na;ne Actual ><DZ<|3 Apprloach [15] OlurApplroach the number of IXP addresses that are to be examined by
o) partici{|correctly total | R | P |[correctly total [ R | P .
xp || pants inferreinfene,l ‘ inferreinferre[j, ‘ the namgd-based inference method and therefore reduces
MSK-IXI| 154 90 115 [68%00%| 136 | 156 [88%879 the pOSSIbIe number of erroneous results.
JPIX || 110 || 58 | 82 [53%/1%) 107 | 128 9794849 We address the second limitation by proposing three
FREEIN| 101 || 38 | 39 [38%97%] 64 | 65 [63%4989 :
AMSIXII 211 [ 177 | 220 184%80%| 182 | 200 8694019 new methods to iImprove the success rate of name-based
CINX || 175 || 164 | 242 [04%68%| 168 | 193 [96%B7% inference:
DE-CIX|| 144 || 111 | 124 [7T7%00%| 137 | 142 [95%069

a. Examining host names containing AS numbers.
Sometimes, the DNS name of an IXP IP address con-
tains the AS number of an IXP participant. For exam-
basis is the assumption thiatthe majority of the cases ple, 195.66.224.71is an IP address at the London Inter-
routers will respond to a traceroute probe with the incomnet Exchange (LINX), which has a DNS name fe-3-4-
ing interface. This assumption has been shown to hold b§r2.sov.as9153.net. From that, we can infer that AS9153
numerous prior efforts [37][21]. is a participant at the LINX IXP.

The previously proposed method in [15] does not have b. Examining common naming practicedVe can
the majority selection process. Furthermore the methoithicrease the success rate of DNS lookups by including
does not associate the specific IXP IP interface addresse@nmon host names with the inferred domain names. For
with their respective participating ASes. Our majority se-example, althougkompany.nemnay fail to be resolved,
lection process eliminates measurement noise and thubg DNS look up may succeed witts.company.netin
ensures a lower “false positive” rate. We map the discovfact, there are several common host names such as “ns”,
ered AS participants to their assigned IXP IP addresse¥)s1”, “mail” and “www”. Hosts with these namassu-
and using this, exclude the addresses in the name-basalty belong to the same AS. For example, 195.66.226.104
inference process that we describe below. This practids an IP address at IXP LINX at London, England. The
reduces the number of total IXP IP addresses that are sufest name of that IP address is “linx-gw4.vbc.net” and
ject to the name-based inference procedures which are ithe DNS lookup for the domain name “vbc.net” is unsuc-
herently less reliable, and thus reduces the possibleserratessful. However, the DNS lookup for ns.vbc.net returns
overall. the address 194.207.0.129, which belongs to AS8785
(Astra/Eu-X and VBCnet GB).

c. Using the administrating personnel information.
A WHOIS lookup for a domain name often has an ad-
The basic name-based IXP participants inferenceinistrative/technical contact person’s e-mail address.
method, which was proposed in [15], works in three mairThe mail server is often within the same AS that corre-
steps: (@) for every IP address in each IXP prefix spaceponds to the domain name. For example, for “decix-
we do a reverse DNS look up, and we find the host namgw.f.de.bcc-ip.net”, all DNS lookups described previ-
for that IXP IP address, (b) we take the domain nameusly, fail. However, if we look at the WHOIS lookup for
part company{com,net,org, et¢) from the host name, domain “bcc-ip.net”, we will find the contact email server
and do a DNS look up, which leads to a new IP addresss “bcc.de”, which has an IP address of 212.68.64.114,

5.1.2 Named-based IXP participants inference.



and it belongs to AS9066 (BCC GmbH). and outputs the AS numbers of the participants periodi-
cally. We use the European Internet Exchanges Associ-
ation [38] which maintains a database with 35 IXPs and
their participants. We are also able to collect information
We integrate both the path-based and named-based teftom the web pages of 31 other IXPs. Naturally, as any
nigues, into a tool for inferring IXP participants from IXP manually-maintained data, these archives can also con-
addresses. We start with the path-based technique, atain inaccuracies. However, we did not find any major
for every IP address in the IP block of an IXP, we try toinconsistencies with our measured data.

find it in a traceroute path. If this works, then we do not

reexamine this IP address: .Otherwise, we use the namg-3  The combined results

based inference and we utilize the three mechanisms that

we proposed above. For completeness, we show the flowe applied our methods to infer the participants at vari-
chart of the inference method in Fig. 6. ous IXPs on May 12, 2005. We first use our web-based
archival inference. For the rest of the IXPs, we collect
information with regard to their IP address blocks from
Packet Clearing House [36], and infer their participants
We use two complementary metricRecallR andPre-  from their IXP IP addresses by using our inferring heuris-
cision P, which are widely used in the data mining lit- tics. We identify 2348 distinct participants at 110 IXPs.
erature for similar tasks. They are defined as followsSome ASes actively participate in multiple IXPs. For ex-
R = % andP = /\M where NVoorreer is  ample, AS 8220 (Colt Telecom) is inferred as a partici-

actual inferred

the number of correctly inferred participants from amongpant in 22 different IXPs in 15 different countries. In this
those inferred V,,..uq1 is the actual number of partici- study, we have used the combined results as our source
pants, andV,, serrcq is the total number of inferred par- of IXP data.

ticipants. Note that the Precision metrfe, has not been

gsed in previeus studies a!though it is critical for detec_:t6 Conclusion

ing false positives. Otherwise, we favor overly aggressive

inference methods that suggest a large number of corregf 4 nutshell, our work develops a systematic framework
and incorrect participants. for the cross-validation and the synthesis of most avail-
For the comparison and for lack of a better criteriongple sources of topological information. We are able to
we select the six largest IXPs (in terms of number of parfing andconfirmapproximately 300% additional edges.
ticipants) for which we know the participants through theryrthermore, we recognize that Internet Exchange Points
EURO-IX site [38] or the IXPs’ own web sites. In Table (xps) hide significant topology information and most of
9, for each IXP, we list its actual number of participants¢hose new discovered peer-to-peer AS links are incident
the number Of ASes that our algorithm inferred, and th%t IXPs. The reason for SUCh a phenomenon is probab'y
number of ASes that our algorithm inferredrrectly. We  pecause, most missing peer-to-peer links are likely to be
also show the Recall and Precision metrics. at the middle or lower level of the Internet hierarchy, and
Itis easy to see that: (a) our approach is very effectivBeering at some IXP is a cost-efficient way for the ASes
in determining most of the participants in these IXPs, angy setup peering relationships with other ASes. We show
(b) our approach identifies correctly more participantshat by adding these new AS links, some research results
than XDZC[].S] and almost always with better PrECiSionbased on previous incomp|ete topo|ogy, such as routing
For the case of MSK-IX, we only have slightly lower Pre-decision and ISP profit/cost, change dramatically. Our
cision (by 3%) but a significantly higher Recall (by 20%).study suggest that business-oriented studies of the Inter-
net should make a point of taking into consideration as
5.2 From web-based archive many peer-to-peer edges as possible.
So, how many AS links are still missing from our new
We notice there are some limitations on inferring IXPsnapshot of the Internet topology? Our findings suggest
participants by the IXP IP addresses alone. For examplghat if we know the peering matrix of all the IXPs, we
some IXPs do not have globally routable IP addresses amdight be able to discover most of the missing peer-to-
some |IP addresses are either invisible by traceroute or apeer AS links. Unfortunately, very few IXPs publish
pear as “*'s in responses to traceroute probes. their peering matrices. Futhermore, the published peer-
To overcome these limitations, we include an addiing matrices are not necessarily accurate, complete or up-
tional source of information by retrieving IXP participant to-date. In our conservative estimates, there might be stil
information from the web sites. We have developed a to@®5% hiding peer-to-peer edges, in addition to what we al-
that automatically downloads and parses the web pagesady have in current Internet AS graph.

5.1.3 Putting the two techniques together

5.1.4 Evaluating our inference approach



Our future plans have two distinct directions. First,[14] Internet routing registry, http://www.irr.net.
we want to continue the effort towards a more com{15] K. Xu, Z. Duan, Z. Zhang, and J. Chandrashekar. On
plete Internet topology instance. Using the framework
we developed here, we are in a good position to quickly

and accurately incorporate new information, such as neyyg)

BGP routing tables, or new traceroute servers. Second,
given our more complete AS topology, we are in a bette[ﬂ

position to understand the structure of the Internet an
the socio-economic and operational factors that guide i

growth. This in turn could help us interpret and anticipate[19
the Internet evolution and, indirectly, give us guidelines
for designing better networks in the future.

(20]
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