
06/04/2003

1

DAC June 2003

Automatic Trace Analysis
for Logic of Constraints

Xi Chen, Harry Hsieh
University of California, Riverside
Felice Balarin, Yosinori Watanabe
Cadence Berkeley Laboratories

DAC June 2003

Outline

Introduction
� System-level design
� Logic of Constraints

Trace analysis methodology
� Methodology and algorithms
� Case studies

Proving LOC formulas
Summary



06/04/2003

2

DAC June 2003

System-Level Design 
Methodology

System Architecture 
(Platform)

System Function

Mapping

Implementation 
of System

Function on 
Architecture

(Keutzer, TCAD’00)

RTL level design is no longer efficient for 
systems containing millions of gates.

System-level design becomes necessary
• Reuse of design components

• Reduce overall complexity

• Ease debugging

Verification methods must accompany      
every step in the design flow

Constraints need to be specified at the     
highest level and verified ASAP

DAC June 2003

A transaction-level quantitative constraint 
language

Works on a sequence of events from a particular 
execution trace
The basic components of an LOC formula:
� Boolean operators:    (not),   (or),   (and) and    (imply)
� Event names, e.g. “in”, “out”, “Stimuli” or “Display”
� Instances of events, e.g. “Stimuli[0]”, “Display[10]”
� Annotations, e.g. “t(Display[5])”
� Index variable i, the only variable in a formula, e.g. 

“Display[i-5]” and “Stimuli[i]”

→¬ ∧∨

Logic of Constraints (LOC)



06/04/2003

3

DAC June 2003

Throughput: “at least 3 Display events will be produced in any 
period of 30 time units”.

t (Display[i+3]) – t (Display[i]) <= 30
Other LOC constraints

Performance: rate, latency, jitter, burstiness
Functional: data consistency

Stimuli
FSM

Datapath

FIR

Display

( SystemC2.0 Distribution )

Stimuli : 0 at time 9
Display : 0  at time 13
Stimuli : 1 at time 19
Display : -6  at time 23
Stimuli : 2 at time 29
Display : -16  at time 33
Stimuli : 3 at time 39
Display : -13  at time 43 
Stimuli : 4 at time 49
Display : 6  at time 53

FIR Trace

LOC Constraints

DAC June 2003

Assertion Languages
(Related Work)

IBM’s Sugar and Synopsis' OpenVera 

Good for both formal verification and simulation 
verification

Implemented as libraries to support
different HDLs 

Assertions are expressed with 
� Boolean expressions, e.g. a[0:3] & b[0:3] = “0000”
� Temporal logics, e.g. always !(a & b)
� HDL code blocks, e.g. handshake protocol

Mainly based on Linear Temporal Logic



06/04/2003

4

DAC June 2003

LOC LTL

t(Display[i]) - t(Stimuli[i]) <= 25

LOC: data(Display[i]) > 10 
LTL: [](Display_occur � Display_data > 10)

[]<> A

Characteristics of LOC Formulism

Constraints can be automatically synthesized into static 
checkers, runtime monitors and formal verification models.

Performance constraints in addition to functional constraints

A different domain of expressiveness than LTL.

DAC June 2003

Outline

Introduction

Trace analysis methodology
� Methodology and algorithms
� Case studies

Proving LOC formulas

Summary



06/04/2003

5

DAC June 2003

Trace Analysis Methodology

An efficient checking 
algorithm 

An automatic LOC 
checker generator

Extended to runtime 
constraint monitoring

Simulation Trace Format LOC Formula

Automatic Checker 
Generation

Source of the Checker

Executable Checker

Compilation

Simulation Traces

Evaluation Report

Trace checking 
(Execution)

DAC June 2003

Throughput: “at least 3 Display events will 
be produced in any period of 30 time units”

t (Display[i+3]) – t (Display[i]) <= 30

FIR 
Trace

63

5

5343332313t(Display[i])

43210index

Queue data structure

Stimuli : 0 at time 9
Display : 0  at time 13
Stimuli : 1 at time 19
Display : -6  at time 23
Stimuli : 2 at time 29
Display : -16  at time 33
Stimuli : 3 at time 39
Display : -13  at time 43
Stimuli : 4 at time 49
Display : 6  at time 53

Algorithm of the
LOC Checker

Display[0]

Display[3]

i = 0

End

Start

i = 0;

Read a line of trace

Store annotations  
for events

evaluate the formula 
with current i

Trace terminate?

i ++ & recycle memory 
space

Ready to evaluate?

Yes

No

Yes

No



06/04/2003

6

DAC June 2003

Input of the checker generator – formula and trace format:

Output of the trace checking – error report:

Input and Output

DAC June 2003

Dealing with Memory Limitation

scan trace and store the annotations only 
once.

If the memory limit has been reached, 
� stop storing more annotations
� search the rest of trace for current i 
� resume storing annotations after freeing memory

memory

trace



06/04/2003

7

DAC June 2003

Static Trace Checking v.s. 
Runtime Monitoring

Runtime constraint monitoring: 
� Integrate the trace checker into a compiled-code 

simulator, e.g. SystemC modules
� At runtime, the events and annotations are passed 

to the monitor module directly
� Static trace checking v.s. runtime monitoring

Independent

Easy

More

More

Simulation, then checking

Static Trace Checking

DependentSimulator

HardDebug

LessSpace

LessTime

Simulation || CheckingSteps

Runtime Monitoring

DAC June 2003

Rate: t(Display[i+1])-t(Display[i]) = 10

Latency: t(Display[i]) - t(Stimuli[i]) <= 25

Jitter: | t(Display[i]) - (i+1) * 10 | <= 4

Throughput: t (Display[i+100])-t(Display[i]) <= 1001

Burstiness: t (Display[i+1000])-t(Display[i]) > 9999

Stimuli FSM

Datapath

FIR

Display

( SystemC Distribution )

Stimuli : 0 at time 9
Display : 0  at time 13
Stimuli : 1 at time 19
Display : -6  at time 23
Stimuli : 2 at time 29
Display : -16  at time 33
Stimuli : 3 at time 39
Display : -13  at time 43
Stimuli : 4 at time 49
Display : 6  at time 53

FIR Trace

Case Study – FIR Filter



06/04/2003

8

DAC June 2003

4KB       4KB       4KB       4KBMemory
1              7           79         810Time(s)Burstiness

0.4KB   0.4KB      0.4KB   0.4KBMemory
1              7           77         803Time(s)Throughput

28B        28B        28B      28BMemory
1             7            80         799Time(s)Jitter

28B        28B        28B        28BMemory
1            12          120        1229Time(s)Latency

28B        28B        28B        28BMemory
1            8            89          794Time(s)Rate

105 106  107 108Lines of Trace

Resource Usage for Checking Constraints (1) – (5)

Trace Checking Results (FIR)

DAC June 2003

Results of Runtime Monitoring on FIR 
for the Latency Constraint (2)

1420145142Simulation w/ monitoring (s)
2633268262Total: simulation+checking (s)
1229120121Static trace checking (s)
1404148141Simulation (s)
108107106105Lines of Trace

Runtime Monitoring (FIR)
The checker implemented as a SystemC module and 
applied on the latency constraint, i.e.

t(Display[i]) - t(Stimuli[i]) <= 25 (C2)

Simulation trace is no longer written to a file but 
passed to the monitoring module directly.  



06/04/2003

9

DAC June 2003
PIP trace

Case Study – Picture In Picture

Picture-In-Picture (PIP)
� a system level design for set-top video processing
� 19, 000 lines of source code
� 120, 000 lines of simulation output (control trace)

DAC June 2003

1. Data consistency: “The numbers of the fields read in and 
produced should be equal.”

field_count(in[i]) = field_count(out[i])

• field_count is an annotation: number of fields processed

• in, out are events: reading a field and producing a field

Performance and Functional 
Constraints for PIP(cont’d)



06/04/2003

10

DAC June 2003

2. “The field sizes of paired even and odd fields should be the 
same.”

size(field_start[2i+2])-size(field_start[2i+1]) =
size(field_start[2i+1])-size(field_start[2i])

3. “Latency between user control and actual size change <= 5.”

field_count(change_size[i]) - field_count(read_size[i]) <= 5

Trace Checking Results: With the trace of about 120,000 lines, 
all these three constraints are checked within 1 minute.

Performance and Functional 
Constraints for PIP(cont’d)

DAC June 2003

Outline

Introduction

Trace analysis methodology

Proving LOC formulas

Summary



06/04/2003

11

DAC June 2003

Formal Verification Tools 
and Methods

Model checkers, e.g. SPIN, SMV

Check if a finite state system(model) satisfy some 
property

Properties are expressed with temporal logics, e.g. LTL

Limitation 

– state explosion 

– finite state

DAC June 2003

Formal Verification for LOC
We define  a subset of LOC that has finite-state 
equivalents

– represent the LOC formula with LTL

– use LTL model checking directly

– Example:

t(Display[i+1]) – t(Display[i]) = 10

Display_occur � Display_t – Display_t_last = 10



06/04/2003

12

Formal Verification for LOC(cont’d)
Other LOC formulas are beyond the finite-state domain, 
e.g. the latency constraint

– make assumption to limit the system to finite-state domain

– verify assumption and assumption � constraint separately

Assumption � constraint 
satisfied?

Assumption satisfied?

YES

NO

Unknown

yes

yes

no

no

Verification Outcomes

DAC June 2003

Data consistency constraint on the channel:

Assumption – “Sum_read always follows DataGen_write,
between a write and its corresponding read, only 30 more 
writes can be produced”

data(DataGen_write[i]) = data(Sum_read[i])

Case Study – A FIFO Channel

DataGen Sum
FIFO Buffer

Control Unit



06/04/2003

13

DAC June 2003

Using the model checker SPIN, the assumption is verified in 
1.5 hours and assumption � constraint is verified in 3 hours

The FIFO channel is a library module 
Repeated use
Small 600 lines of source code v.s. PIP (19,000 lines) 

Case Study – A FIFO Channel 
(cont’d)

DataGen Sum
FIFO Buffer

Control Unit

DAC June 2003

Summary

LOC is useful and is different from LTL

Automatic trace analysis

Case studies with large designs and traces

Formal verification approach


