Automatic Trace Analysis
for Logic of Constraints

Xi Chen, Harry Hsieh
University of California, Riverside

Felice Balarin, Yosinori Watanabe
Cadence Berkeley Laboratories

DAC June 2003

Outline

#Introduction
= System-level design
= Logic of Constraints

#Trace analysis methodology
= Methodology and algorithms
= Case studies

#Proving LOC formulas
#Summary

DAC June 2003

06/04/2003

System-Level Design
Methodology

RTL level design is no longer efficient for
systems containing millions of gates.

4 System-level design becomes necessary
. Reuse of design components
- Reduce overall complexity n n
. Ease debugging & J

4 Constraints need to be specified at the
highest level and verified ASAP

Verification methods must accompany
every step in the design flow

(Keutzer, TCAD’00)

DAC June 2003

Logic of Constraints (LOC)

A transaction-level quantitative constraint
language

Works on a sequence of events from a particular
execution trace

The basic components of an LOC formula:
= Boolean operators: — (not),v (or), A(and) and — (imply)
= Event names, e.g. “in”, “out”, “Stimuli” or “Display”
Instances of events, e.g. “Stimuli[0]", “Display[10]”
= Annotations, e.g. “t(Display[5])”
Index variable i, the only variable in a formula, e.g.
“Display[i-5]” and “Stimuli[i]”

DAC June 2003

06/04/2003

LOC Constraints

Stimuli : 0 at time 9
Display : 0 attime 13

Stimuli : 1 at time 19 FIR
Display : -6 at time 23

Stimuli : 2 at time 29 FSM

Display : -16 at time 33 A
Stimuli : 3 at ime 39 Stimuli Display
Display : -13 at time 43

Stimuli : 4 at ime 49 Datapath

Display : 6 at time 53

FIR Trace (SystemC2.0 Distribution)

Throughput: “at least 3 Display events will be produced in any
period of 30 time units”.

t (Display[i+3]) — t (Display][i]) <= 30
Other LOC constraints
Performance: rate, latency, jitter, burstiness
Functional: data consistency

DAC June 2003

Assertion Languages
(Related Work)

IBM’s Sugar and Synopsis' OpenVera

Good for both formal verification and simulation
verification

4 Implemented as libraries to support
different HDLs

Assertions are expressed with
= Boolean expressions, e.g. a[0:3] & b[0:3] = “0000”
= Temporal logics, e.g. always !(a & b)
= HDL code blocks, e.g. handshake protocol

Mainly based on Linear Temporal Logic

DAC June 2003

06/04/2003

Characteristics of LOC Formulism

% Constraints can be automatically synthesized into static
checkers, runtime monitors and formal verification models.

Performance constraints in addition to functional constraints
A different domain of expressiveness than LTL.

iy

i

t(Display[i]) - t(Stimulifi]) <= 25 ‘

LOC: data(Display[i]) > 10
LTL: [](Display occur = Display data > 10)

DAC June 2003

Outline

#Introduction

#Trace analysis methodology
= Methodology and algorithms
= Case studies

#Proving LOC formulas
#Summary

DAC June 2003

06/04/2003

Trace Analysis Methodology

Simulation Trace Format LOC Formula

An efficient checking
algorithm

An automatic LOC
checker generator

Extended to runtime
constraint monitoring

A rd

Automatic Checker
Generation

Source of the Checker

Compilation

v

Executable Checker

Simulation Traces|

DAC June 2003

Trace checking
(Execution)

Evaluation Report

Algorithm of the
LOC Checker

Throughput: “at least 3 Display events will
be produced in any period of 30 time units”

t (Display[i+3]) — t (Display[i]) <= 30

EIR | stimuli :0attime 9 \
Display : 0_at time 13
Stimuli : 1 at time 19
Display : -6 at time 23
Stimuli : 2 at time 29
Display : -16 at time 33
i=0 Stimuli : 3 at time 39
Display : -13 at time 43
Stimuli : 4 at time 49
Display : 6 at time 53

Trace

Display[0]

Display[3]

index 0 1 2 3 4 5

t(Display[i]) 13 |23 [33 |43 |53 |63
Queue data structure

DAC June 2003

i=0;

4
s
Trace terminate?

NO+

Read a line of trace

Store annotations
for events

N
Ready to evaluate?
Yes

evaluate the formula
with current

v
i ++ & recycle memory

space —

06/04/2003

Input and Output

Input of the checker generator — formula and trace format:

[LOC: rate]
formula: t(Display[i + 1] — t(Display[i]) == 10
annotation: event value t
trace: "%s : %d at time %f"

[LOC: latency]
formula: t(Display[i])—t(Stimuli[i]) <= 25
annotation: event value t
trace: "%s : %d at time %f"

Output of the trace checking — error report:

username@chimera § checker latency.trace
Reading from trace file "latency.trace” ...

Formula t(Display[i]) — t(Stimuli[i]) <= 25 is violated
at trace line# 278: Display : —6 at time 87

where i =23

t (Display[i]) = 87

t (Stimuli[i]) = 60

Dealing with Memory Limitation

scan trace and store the annotations only
once.

If the memory limit has been reached,
= stop storing more annotations
= search the rest of trace for current i
= resume storing annotations after freeing memory

DAC June 2003

06/04/2003

Static Trace Checking v.s.
Runtime Monitoring

Runtime constraint monitoring:

= Integrate the trace checker into a compiled-code
simulator, e.g. SystemC modules

= At runtime, the events and annotations are passed
to the monitor module directly

= Static trace checking v.s. runtime monitoring

Static Trace Checking Runtime Monitoring
Steps Simulation, then checking Simulation || Checking
Time More Less
Space More Less
Debug Easy Hard
Simulator Independent Dependent

DAC June 2003

FIR

[stimui [[Fsm |

_’I Display |

Rate:
Latency:
Jitter:
Throughput:

Burstiness:

(SystemC Distribution)

t(Display[i+1])-t(Display[i]) = 10

t(Displayfi]) - t(Stimul
| t(Displayf[i]) - (i+1) *

Case Study — FIR Filter

Stimuli : 0 at time 9
Display : 0 at time 13
Stimuli : 1 at time 19

Display : -6 at time 23

Stimuli : 2 at time 29

Display : -16 at time 33

Stimuli : 3 at time 39

Display : -13 at time 43

Stimuli : 4 at time 49
Display : 6 at time 53

FIR Trace

ifi]) <= 25
10]<=4

t (Display[i+100])-t(Display(i]) <= 1001
t (Display[i+1000])-t(Display]i]) > 9999

DAC June 2003

06/04/2003

Trace Checking Results (FIR)

Lines of Trace 10° 108 107 108
Rate Time(s) 1 8 89 794
Memory | 28B 28B 28B 28B
Latency Time(s) | 1 12 120 1229
Memory | 28B 28B 28B 28B
Jitter Time(s) 1 7 80 799
Memory | 28B 28B 28B 28B
Throughput Time(s) 1 7 77 803
Memory | 0.4KB 0.4KB 0.4KB 0.4KB
Burstiness Time(s) 1 7 79 810
Memory [4KB 4KB 4KB 4KB

Resource Usage for Checking Constraints (1) — (5)

DAC June 2003

Runtime Monitoring (FIR)

The checker implemented as a SystemC module and
applied on the latency constraint, i.e.

t(Display[i]) - t(Stimuli[i]) <= 25

(C2)

Simulation trace is no longer written to a file but
passed to the monitoring module directly.

Lines of Trace 105 108 107 108
Total: simulation+checking (s) |2 26 268 2633
Simulation w/ monitoring (s) 2 14 145 1420

Results of Runtime Monitoring on FIR
for the Latency Constraint (2)

DAC June 2003

06/04/2003

Picture-In-Picture (PIP)
= a system level design for set-top video processing
= 19, 000 lines of source code
= 120, 000 lines of simulation output (control trace)

Case Study — Picture In Picture

- (

USRCONTROL

)

FATOONL

WINDOW_DATA_OUT 23483 87000
WINDOW win_params_update x_begin: 12 y_begin: 6
RESIZE field_start field count: 2 size: 6720

WINDOW win_params_update x_begin: 12 y_begin: 6
USRCONTROL write pixels_out: 144
RESIZE field start field count: 3 size: 10368

USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876
RESIZE field start field count: 4 size: 14016

DAC June 2003

PIP trace

Performance and Functional

Constraints for PIP(cont’'d)

AAT1OONL

1. Data consistency: “The numbers of the fields read in and
produced should be equal.”

field count(infi]) = field count(out[i])

« field_count is an annotation: number of fields processed

* in, out are events: reading a field and producing a field

DAC June 2003

06/04/2003

06/04/2003

Performance and Functional
Constraints for PIP(cont'd)

-
=)
)
]
&
=)
=

2. “The field sizes of paired even and odd fields should be the
same.”

size(field_start[2i+2])-size(field start[2i+1]) =
size(field start[2i+1])-size(field start[2i])
3. “Latency between user control and actual size change <=5.”
field count(change_size[i]) - field count(read size[i]) <=5

Trace Checking Results: With the trace of about 120,000 lines,
all these three constraints are checked within 1 minute.

DAC June 2003

Outline

#Introduction
#Trace analysis methodology

#Proving LOC formulas
#Summary

DAC June 2003

10

Formal Verification Tools
and Methods

Model checkers, e.g. SPIN, SMV

€ Check if a finite state system(model) satisfy some
property
@ Properties are expressed with temporal logics, e.g. LTL

&

Limitation
— state explosion

— finite state

DAC June 2003

Formal Verification for LOC

4% We define a subset of LOC that has finite-state
equivalents

— represent the LOC formula with LTL
— use LTL model checking directly

— Example:

| {(Display[i+1]) - t(Display[i]) = 10 |
v

‘ Display _occur = Display t — Display t last = 10 ‘

DAC June 2003

06/04/2003

11

Formal Verification for LOC(cont'd)
@ Other LOC formulas are beyond the finite-state domain,
e.g. the latency constraint

— make assumption to limit the system to finite-state domain

— verify assumption and assumption = constraint separately

yes no

Assumption = constrain
satisfied?
Assumption satisfied:

Verification Outcomes

Case Study — A FIFO Channel

FIFO Buffer
DataGen

Data consistency constraint on the channel:

data(DataGen_write[i]) = data(Sum_read[i])

Assumption — “Sum_read always follows DataGen_write,
between a write and its corresponding read, only 30 more
writes can be produced”

DAC June 2003

06/04/2003

12

06/04/2003

Case Study — A FIFO Channel
(cont'd)

FIFO Buffer
DataGen
Control Unit

@ Using the model checker SPIN, the assumption is verified in
1.5 hours and assumption - constraint is verified in 3 hours

The FIFO channel is a library module
% Repeated use
Small 600 lines of source code v.s. PIP (19,000 lines)

@

DAC June 2003

Summary

LOC is useful and is different from LTL

Automatic trace analysis

Case studies with large designs and traces
Formal verification approach

DAC June 2003

13

