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System-Level Design
Methodology

# RTL level design is no longer efficient for
systems containing millions of gates.

4 System-level design becomes necessary
. Reuse of design components
- Reduce overall complexity n n
. Ease debugging & J

4 Constraints need to be specified at the
highest level and verified ASAP

# Verification methods must accompany
every step in the design flow

(Keutzer, TCAD’00)
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Logic of Constraints (LOC)

# A transaction-level quantitative constraint
language

# Works on a sequence of events from a particular
execution trace

# The basic components of an LOC formula:
= Boolean operators: — (not),v (or), A(and) and — (imply)
= Event names, e.g. “in”, “out”, “Stimuli” or “Display”
Instances of events, e.g. “Stimuli[0]", “Display[10]”
= Annotations, e.g. “t(Display[5])”
Index variable i, the only variable in a formula, e.g.
“Display[i-5]” and “Stimuli[i]”
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LOC Constraints

Stimuli : 0 at time 9
Display : 0 attime 13

Stimuli : 1 at time 19 FIR
Display : -6 at time 23

Stimuli : 2 at time 29 FSM

Display : -16 at time 33 A
Stimuli : 3 at ime 39 Stimuli Display
Display : -13 at time 43

Stimuli : 4 at ime 49 Datapath

Display : 6 at time 53

FIR Trace ( SystemC2.0 Distribution )

Throughput: “at least 3 Display events will be produced in any
period of 30 time units”.

t (Display[i+3]) — t (Display][i]) <= 30
Other LOC constraints
Performance: rate, latency, jitter, burstiness
Functional: data consistency
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Assertion Languages
(Related Work)

# IBM’s Sugar and Synopsis' OpenVera

# Good for both formal verification and simulation
verification

4 Implemented as libraries to support
different HDLs

# Assertions are expressed with
= Boolean expressions, e.g. a[0:3] & b[0:3] = “0000”
= Temporal logics, e.g. always !(a & b)
= HDL code blocks, e.g. handshake protocol

# Mainly based on Linear Temporal Logic
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Characteristics of LOC Formulism

% Constraints can be automatically synthesized into static
checkers, runtime monitors and formal verification models.

Performance constraints in addition to functional constraints
# A different domain of expressiveness than LTL.

iy

i

t(Display[i]) - t(Stimulifi]) <= 25 ‘

LOC: data(Display[i]) > 10
LTL: [](Display occur = Display data > 10)
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Trace Analysis Methodology

Simulation Trace Format LOC Formula

# An efficient checking
algorithm

# An automatic LOC
checker generator

# Extended to runtime
constraint monitoring

A rd

Automatic Checker
Generation

Source of the Checker

Compilation

v

Executable Checker

Simulation Traces|
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Trace checking
(Execution)

Evaluation Report

Algorithm of the
LOC Checker

Throughput: “at least 3 Display events will
be produced in any period of 30 time units”

t (Display[i+3]) — t (Display[i]) <= 30

EIR | stimuli :0attime 9 \
Display : 0_at time 13
Stimuli : 1 at time 19
Display : -6 at time 23
Stimuli : 2 at time 29
Display : -16 at time 33
i=0 Stimuli : 3 at time 39
Display : -13 at time 43
Stimuli : 4 at time 49
Display : 6 at time 53

Trace

Display[0]

Display[3]

index 0 1 2 3 4 5

t(Display[i]) 13 |23 [33 |43 |53 |63
Queue data structure
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space —
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Input and Output

Input of the checker generator — formula and trace format:

[LOC: rate]
formula: t(Display[i + 1] — t(Display[i]) == 10
annotation: event value t
trace: "%s : %d at time %f"

[LOC: latency]
formula: t(Display[i])—t(Stimuli[i]) <= 25
annotation: event value t
trace: "%s : %d at time %f"

Output of the trace checking — error report:

username@chimera §  checker latency.trace
Reading from trace file "latency.trace” ...

Formula t(Display[i]) — t(Stimuli[i]) <= 25 is violated
at trace line# 278:  Display : —6 at time 87

where i =23

t (Display[i]) = 87

t (Stimuli[i]) = 60

Dealing with Memory Limitation

# scan trace and store the annotations only
once.

# If the memory limit has been reached,
= stop storing more annotations
= search the rest of trace for current i
= resume storing annotations after freeing memory
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Static Trace Checking v.s.
Runtime Monitoring

# Runtime constraint monitoring:

= Integrate the trace checker into a compiled-code
simulator, e.g. SystemC modules

= At runtime, the events and annotations are passed
to the monitor module directly

= Static trace checking v.s. runtime monitoring

Static Trace Checking Runtime Monitoring
Steps Simulation, then checking Simulation || Checking
Time More Less
Space More Less
Debug Easy Hard
Simulator Independent Dependent
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FIR

[ stimui [ [ Fsm |

_’I Display |

Rate:
Latency:
Jitter:
Throughput:

Burstiness:

( SystemC Distribution )

t(Display[i+1])-t(Display[i]) = 10

t(Displayfi]) - t(Stimul
| t(Displayf[i]) - (i+1) *

Case Study — FIR Filter

Stimuli : 0 at time 9
Display : 0 at time 13
Stimuli : 1 at time 19

Display : -6 at time 23

Stimuli : 2 at time 29

Display : -16 at time 33

Stimuli : 3 at time 39

Display : -13 at time 43

Stimuli : 4 at time 49
Display : 6 at time 53

FIR Trace

ifi]) <= 25
10]<=4

t (Display[i+100])-t(Display(i]) <= 1001
t (Display[i+1000])-t(Display]i]) > 9999
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Trace Checking Results (FIR)

Lines of Trace 10° 108 107 108
Rate Time(s) 1 8 89 794
Memory | 28B 28B 28B 28B
Latency Time(s) | 1 12 120 1229
Memory | 28B 28B 28B 28B
Jitter Time(s) 1 7 80 799
Memory | 28B 28B 28B 28B
Throughput Time(s) 1 7 77 803
Memory | 0.4KB 0.4KB 0.4KB 0.4KB
Burstiness Time(s) 1 7 79 810
Memory [4KB 4KB 4KB 4KB

Resource Usage for Checking Constraints (1) — (5)
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Runtime Monitoring (FIR)

# The checker implemented as a SystemC module and
applied on the latency constraint, i.e.

t(Display[i]) - t(Stimuli[i]) <= 25

(C2)

# Simulation trace is no longer written to a file but
passed to the monitoring module directly.

Lines of Trace 105 108 107 108
Total: simulation+checking (s) |2 26 268 2633
Simulation w/ monitoring (s) 2 14 145 1420

Results of Runtime Monitoring on FIR
for the Latency Constraint (2)
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# Picture-In-Picture (PIP)
= a system level design for set-top video processing
= 19, 000 lines of source code
= 120, 000 lines of simulation output (control trace)

Case Study — Picture In Picture

- (

USRCONTROL

)

FATOONL

WINDOW_DATA_OUT 23483 87000
WINDOW win_params_update x_begin: 12 y_begin: 6
RESIZE field_start field count: 2 size: 6720

WINDOW win_params_update x_begin: 12 y_begin: 6
USRCONTROL write pixels_out: 144
RESIZE field start field count: 3 size: 10368

USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876
RESIZE field start field count: 4 size: 14016
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PIP trace

Performance and Functional

Constraints for PIP(cont’'d)

AAT1OONL

1. Data consistency: “The numbers of the fields read in and
produced should be equal.”

field count(infi]) = field count(out[i])

« field_count is an annotation: number of fields processed

* in, out are events: reading a field and producing a field
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Performance and Functional
Constraints for PIP(cont'd)

-
=)
)
]
&
=)
=

2. “The field sizes of paired even and odd fields should be the
same.”

size(field_start[2i+2])-size(field start[2i+1]) =
size(field start[2i+1])-size(field start[2i])
3. “Latency between user control and actual size change <=5.”
field count(change_size[i]) - field count(read size[i]) <=5

Trace Checking Results: With the trace of about 120,000 lines,
all these three constraints are checked within 1 minute.
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Formal Verification Tools
and Methods

# Model checkers, e.g. SPIN, SMV

€ Check if a finite state system(model) satisfy some
property
@ Properties are expressed with temporal logics, e.g. LTL

&

Limitation
— state explosion

— finite state
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Formal Verification for LOC

4% We define a subset of LOC that has finite-state
equivalents

— represent the LOC formula with LTL
— use LTL model checking directly

— Example:

| {(Display[i+1]) - t(Display[i]) = 10 |
v

‘ Display _occur = Display t — Display t last = 10 ‘
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Formal Verification for LOC(cont'd)
@ Other LOC formulas are beyond the finite-state domain,
e.g. the latency constraint

— make assumption to limit the system to finite-state domain

— verify assumption and assumption = constraint separately

yes no

Assumption = constrain
satisfied?
Assumption satisfied:

Verification Outcomes

Case Study — A FIFO Channel

FIFO Buffer
DataGen

# Data consistency constraint on the channel:

data(DataGen_write[i]) = data(Sum_read[i])

# Assumption — “Sum_read always follows DataGen_write,
between a write and its corresponding read, only 30 more
writes can be produced”

DAC June 2003

06/04/2003

12



06/04/2003

Case Study — A FIFO Channel
(cont'd)

FIFO Buffer
DataGen
Control Unit

@ Using the model checker SPIN, the assumption is verified in
1.5 hours and assumption - constraint is verified in 3 hours

The FIFO channel is a library module
% Repeated use
# Small 600 lines of source code v.s. PIP (19,000 lines)

@
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Summary

# LOC is useful and is different from LTL

# Automatic trace analysis

# Case studies with large designs and traces
# Formal verification approach
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