Formal Verification for Embedded System Designs

Xi Chen and Harry Hsieh
University of California, Riverside, CA, USA

Felice Balarin and Yosinori Watanabe
Cadence Berkeley Laboratories, Berkeley, CA, USA

Abstract. Embedded electronics today are becoming increasingly complex, which makes their
design and analysis more and more difficult. In this paper, we focus on the formal verification
of embedded system designs at multiple levels of abstraction, enabled by the Metropolis design
environment. Based on the Metropolis framework and the model checker SPIN, a translation
mechanism from a Metropolis design to a Promela description is presented and an automatic
translator is developed accordingly. We discuss the challenges and solutions in semantically
translating from an object-based system design language to a procedural verification language.
To demonstrate the correctness and effectiveness of our approach for formal verification, we
verify properties for both system level representations and refined representations, where the
representations may contain system functions or abstract architectures.

Keywords: formal verification, model checking, Metropolis, Meta-Model, SPIN, LTL

1. Introduction

Electronic products today demand high performance, high integration, and a
long list of features. As a consequence, embedded electronics are becoming more
complex and difficult to design. To combat complexity and explore design space
effectively, it is necessary to represent systems at multiple levels of abstraction.
Initial functions and architectures should be specified at a high abstraction level,
so as not to bias unnecessarily toward any particular implementation. Through
successive refinements and abstractions, the design space can be explored ef-
fectively and the design decisions can be made intelligently [12]. Synthesis (i.e.
steps taken toward implementation) is applied systematically to transform the
specification into manufactured products. Synthesis steps may include structural
transformations, where designs are partitioned, composed, or otherwise altered;
and formal refinements, where possible behaviors of the design are formally re-
fined through the use of constraints or implementation annotations. A formal
grounding for all system representations and operations is essential for the ability
to perform analysis and optimization with the high degree of automation.

Our contribution focuses on the formal verification of embedded system de-
signs, especially at higher levels of abstraction. We develop a verification method-
ology for designs that may go through different levels of abstraction and a transla-
tion mechanism from system designs to descriptions more suitable for formal ver-
ification engines. We devise solutions to many challenges encountered in semanti-
cally translating from an object-based system design language (i.e. Metropolis

';:‘ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 24/07/2003; 18:15; p.1

Function Design
Specification Constraints

l

Metropolis Infrastructure

Architecture
Specification

e Design methodology

® Basetools
- Design imports
- Simulation
r o Meta-model of Computation 41
Metropolis Point tools: Metropolis Point tools:
Synthesi s/Refinement Analysis/Verification

Figure 1. Metropolis design framework.

Meta-Model [5]) to a procedural verification language (i.e. Promela [9]). We
demonstrate the correctness and effectiveness of our approach with several veri-
fication case studies all using automatic translation.

The Metropolis design framework [5] enables designers to represent and ma-
nipulate their designs at multiple levels of abstraction and with multiple models
of computation (MoC). Central to the framework is the Metropolis Meta-Model
(MMM) representation. Different high-level languages, models of computation,
design constraints, as well as specifications of system functions and architecture
platforms can be represented in MMM while retaining their correct semantics.
Constructs in MMM are chosen to facilitate the transformations and refinements
between different abstraction levels. Incorporated into the Metropolis design en-
vironment is a set of back-end tools, with which one can simulate, synthesize, and
verify the design at hand. This paper describes the formal verification back-end
tool. A flow diagram for the Metropolis framework is shown in Figure 1.

Formal property verification can be very powerful for catching errors early in
a design process. Formal verification tools, notably model checkers (e.g. SPIN [9]
and SMV [15]), are available to designers. One problem for formal property
verification is that a verification model needs to be written, often manually,
from the specification model. This tedious process multiplies if designers wish to
verify the properties of a design as it goes through various abstraction/refinement
operations. Metropolis, with its formal semantics, allows full integration of for-
mal verification tools [5]. Verification models can be automatically generated for
all abstraction levels of a design, so a designer no longer has to manually re-
describe the design in a formal verification language each time the design moves
from high levels of abstraction toward implementation. The central challenge
in this approach is that the verification languages, such as Promela used by

paper.tex; 24/07/2003; 18:15; p.2

3

SPIN model checker [9], allow only simple concurrency modeling and are not
amenable to system design specification where complex synchronization and ar-
chitecture constraints are needed. Our translator automatically constructs the
verification model from the specification model, taking care of all the system
level constructs. While we focus on the verification methodology for Metropolis
designs, the same approach can be easily applied to other abstraction/refinement
design frameworks [2].

In the next section, we introduce the basic constructs and semantics of Metropo-
lis Meta-Model and Promela, the input language of the model checker SPIN. In
section 3, we discuss several aspects of the translation from Metropolis Meta-
Model, an object-oriented system specification language, to Promela, a procedural
formal software protocol format [3]. The designer needs to work only at the specifi-
cation level (i.e. MMM). The constraints, along with the system specification, are
translated automatically into the SPIN environment. In section 4, we present our
verification methodology and show how verification can be done along with the
synthesis procedures. In section 5, we present several case studies of the property
verification for system level specifications. Section 6 concludes the paper.

2. Background

In this section, we describe the syntactic and semantic features of Metropolis
Meta-Model, the design representation used in Metropolis, and Promela, the
input language for SPIN model checker. Despite some apparent similarity between
the two languages, MMM contains many system level constructs which need to
be translated carefully into semantically equivalent code segments in Promela.
The translation mechanism will be described in the next section.

2.1. METROPOLIS META-MODEL FORMAT

Metropolis Meta-Model is a system representation formalism capable of repre-
senting designs at different levels of abstraction. A description of a system (func-
tion and/or architecture) can be made in terms of computation, communication,
and coordination.

2.1.1. Processes, Media, and Netlists

In Metropolis Meta-Model, systems are represented as networks of processes
that communicate through media [5]. Processes and media are used to describe
computation and communication respectively. A process is an active object and
always defines a function called thread as the top-level function where its behavior
is specified. A medium implements a set of functions which are grouped into
interfaces. Processes connect to media through ports. Each port has a type,
which must be an interface implemented by the medium to which the port is

paper.tex; 24/07/2003; 18:15; p.3

process P{ N medium M{
port pX, pZ; int[] storage;
thread(){ s ™ () s P g || it
/icondition to read X S NG x pZ void write(int[] Z) { .}

/lan agorithm for f(X) int[] read() {... }
/lcondition to write Z @ @ }
} S scheduler S{ ...}

' statemedium SM{ ... }

Figure 2. An example of MMM design.

connected. Similar to Java or C++ objects, processes and media have member
functions and member variables. Processes communicate to each other through
invocation of functions implemented in the shared media. A scheduler is a special
object of MMM that can be used to specify user-defined scheduling algorithms
to control the coordination of a set of processes in a network. Schedulers connect
to these processes through statemedia, a special type of media. Unlike processes,
schedulers are not active objects, which means that they implement functions
that are called whenever scheduling needs to be done, but don’t have their own
running threads. With a properly designed scheduler, the running processes are
synchronized in a particular way (e.g. round-robin, priority-based) to satisfy the
constraints. In MMM, objects of processes, media, schedulers and their derived
types are instantiated in a netlist, which can be used to model a complete network.
Figure 2 shows an example of a netlist N. The netlist IV contains two processes,
P1 and P2, communicating through a medium M. The processes P1 and P2 are
coordinated with each other through a scheduler S and statemedium SMs.

2.1.2. Await Statement

Processes run concurrently, each at its own pace. The relative speed of processes
may arbitrarily change at any time, unless they synchronize with each other using
the synchronization primitive called await statement, or some constraints are
placed on system executions. The await statement can be used to make a process
wait until some conditions hold and establish critical sections that guarantee
mutual exclusion among different processes. To limit the behavior of processes, a
designer can also put high-level LTL (Linear Temporal Logic) [14] or LOC (Logic
of Constraints) [4] constraints on the system specification without giving any
specific scheduling algorithm, and leave the implementation of these constraints
to the detail design stage.

The await statement is used to establish mutually exclusive sections and syn-
chronize processes. It contains one or more statements called critical sections,
each controlled by a triple (guard; testlist; setlist), where guard is a Boolean
expression, and testlist and setlist denote sets of interface functions of other
processes. A critical section is said to be enabled if its guard is true, and none
of the interface functions in the testlist are being executed at that moment. A

paper.tex; 24/07/2003; 18:15; p.4

5

critical section may start executing only if it is enabled. In addition, while the
critical section is being executed, no interface functions included in the setlist can
begin their executions. Whenever an gwait is encountered in the execution flow,
one and only one of the enabled critical sections is executed. If no critical section
is enabled, the execution blocks. If more than one critical sections are enabled,
the choice is non-deterministic.

2.2. PROMELA AND SPIN

SPIN [9, 1] is a popular model checker that can be used for the formal verification
of distributed software systems, especially protocol designs. In SPIN, the software
designs are specified with Promela, a C-style procedural language with a few
protocol level extensions. In Promela, the basic concurrent execution units are
processes that are defined in proctype declarations. The execution of a Promela
program always starts from a special process called init. If a process is declared
as an active process, it is instantiated and initiated at the very beginning of
the execution by the system. All the other processes need to be instantiated and
started explicitly by the existing processes, e.g. the init process. A useful Promela
primitive is atomic, where only one among all the atomic blocks can be executed
at any given time. A communication construct, channel, is used to implement
both synchronous and asynchronous message passing between processes. The
processes may also exchange information through global variables, i.e. shared
memory.

As a model checker, SPIN can be used to exhaustively verify a Promela
design and prove the validity of any system properties that can be expressed
as linear temporal logic (LTL) [14]. Some optimization techniques, e.g. partial
order reduction and graph encoding, are available to help reduce the usage of
CPU time or memory space. If SPIN cannot complete an exhaustive verification
for a complex design with the existing computing resources, one can use the
approximate verification, e.g. the bitstate technique [10], to get a partial proof
of the property validity. If an error is found during the verification, one can use
SPIN’s simulator to perform a guided or interactive simulation to find where the
error comes from.

3. Translation from MMM to Promela

The main issues in the translation from MMM to Promela include the model-
ing of MMM processes, media, interfaces, await statements (coordinations), and
dynamic objects. We do not believe that it will be profitable, at this stage, to
develop a new model checker specific to MMM system level specification language.
Instead, we rely on automatic translation, both to decouple this very complex
problem, and to make it easier for Metropolis environment to take advantage of
the latest advancement from the formal verification community.

paper.tex; 24/07/2003; 18:15; p.5

@ | processP1{ (®) | active proctype P1_thread(){
void thread(){
P1_method1()
methodl();
)
} void method1() { ...} inline PL_method10{ ...}
A MMM Process Promela Translation with Function Inlining

Figure 3. Translation of a MMM process.

3.1. MMM PROCESSES AND MEDIA

In MMM, computation is usually modeled as functions defined in processes, and
communication between processes is made by calling functions defined in media.
We use a translation approach that translates each MMM process instance to a
Promela process, and inlines all the functions into the process that calls them
directly or indirectly. The translator simply pastes its translated code into the
point of the invocation in the calling process. In the situation of multiple level
function calls, all the functions are inlined recursively so that one MMM process
corresponds to only one Promela process. With function inlining, the verification
becomes much more efficient regarding both time and memory usage compared
to the dynamic function invocation. Figure 3(a) shows the function thread() of
process P1 making a call to its member function methodl(). To perform function
inlining, in Promela, the function P1_methodl() is declared using the keyword
inline as shown in Figure 3(b).

3.2. INTERFACES AND AWAIT STATEMENTS

In MMM, an interface is used to define the I/O data ports of a process or medium
and the I/O control points of a process or medium. To implement the control
point, an MMM interface is used as a semaphore in the setlist and testlist of an
await statement. We translate each interface into a pair of integer variables used
as semaphores in Promela. The first variable, called ACTIVE is used to indicate
whether the interface (and its member functions) are in active state (i.e. whether
they are being executed). Another one called EXCLUSIVE indicates whether this
interface semaphore is set (i.e. whether it is included in the setlist of some await
statement that is currently being executed). We use these variables as semaphores
to signal that interface functions appearing in testlist’s are being executed and to
prevent, when appropriate, interface functions appearing in setlist’s from being
executed. Figure 4 illustrates how an await statement is translated to Promela.
Promela constructs such as atomic, repetition do-od and case selection if-fi are
utilized to guarantee the exact semantics equivalence. Specially, if an await state-
ment has more than one critical sections that are enabled, one of them will

paper.tex; 24/07/2003; 18:15; p.6

await { do //start of await

(guardl; testlistl; setlistl) {stmts1} 1> atomic { await

(quard?; testlist2; setlist2) {stmts2} if //evaluation of guards and testlists
g :(guardl && intfcl_active == 0 && intfcl_exclusive == 0)

> intfcl_exclusive ++; /1 set setlist 1

(guardk; testlistk; setlistk) {stmtsk} - atomic

awaitFlag_1 = true; /I select critical section 1 :
}) i i . .| Guard & Testl | :
::(guard2 && intfc2_active == 0 && intfc2_exclusive ==0) : :
—> intfc2_exclusive ++; 1/ set setlist 2 : i
awaitFlag_2 = true; /I select critical section 2

:] :
| Guard & Testk | :

:(guardk && intfck_active == 0 && intfck_exclusive == 0)

=> intfck_exclusive ++; 11 set setlist k JUUURRRUN IO
awaitFlag_k = true; /I select critical section k none
} @
od; pass one
if /lenter and execute a critical section
::(awaitFlag_1 == true) —>
/lstmtsl - -
:: (awaitFlag_2 == true) —> exit await

/stmts2

i (awaitFlag_k == true) —>
[/stmtsk
fi;

Figure 4. Translation of an await statement.

be chosen non-deterministically and executed. This non-determinism is directly
supported by Promela in do-od and if-fi statements.

3.3. DyNAMIC OBJECTS

Another interesting aspect of MMM is the dynamic object (i.e. the reference
type). An array is such a reference type in MMM, and its memory space could
be allocated and changed dynamically at runtime. However, most model checkers
(including SPIN) only support static memory allocation, i.e. arrays have to be
declared explicitly at design time. To solve the problem, we have to put some
restrictions on the MMM code. All the reference types have to be declared ex-
plicitly once and only once with fixed memory space allocated, so that they can
be translated to Promela as static objects. For example, an array in MMM must
be declared in the form of “int[] a = mnew int[12];”, then it can be translated
to Promela as a static array “int a[12];”. After an array (e.g. a) is declared in
MMM, its reference cannot be changed any more.

4. Formal Verification Methodology

By using an automatic translation procedure to generate a verification model
from a system specification model, we allow designers to perform verification at
different levels of abstraction as a design goes through various synthesis steps

paper.tex; 24/07/2003; 18:15; p.7

(MMM Design J=— Synthesis

Procedures

Trandation

Promela Description

Feed to SPIN
Property Checking

Modify original Add constraints
design or schedulers

No

Pass Verification?

Figure 5. Formal verification methodology.

without the tedious and error-prone step of manually re-writing the design. Fur-
thermore, the verification can be used to drive the refinement and transformation
of system representation, i.e. the synthesis procedures.

SPIN provides two powerful ways to specify properties of a design: assertions
and Linear Temporal Logic (LTL) [14, 8]. An assertion is an annotation construct
in Promela used to “assert” that a particular condition (e.g. space>3) must hold.
Assertions written with variables in MMM can be easily translated into Promela
segments and inserted into the Promela code after translation. The LTL formulas
are constructed using terms, classical boolean operators such as — (not), V (or), A
(and), — (imply), and the temporal operators O (always), { (eventually) and U
(strong until). Terms are Boolean conditions on variables or process states. There-
fore, LTL is strictly more expressive than assertions. Without loss of generality,
we will only deal with LTL formulas in the rest of the presentation.

Our verification methodology is illustrated in Figure 5. A MMM design is au-
tomatically translated into a Promela description, and the properties are checked
using SPIN model checker. A designer may perform any synthesis step (e.g.
composition, decomposition, constraint addition or scheduler assignment) and
a new Promela code can be automatically generated to verify the property. If
it does not pass, the error trace may be used to help the designer figure out
whether the design needs to be altered. If the verification session runs too long,
approximate verification can be used to explore a subset of the state space and
report the probability that the property will pass. Obviously, a partial exploration
can not prove that a property holds. However, it is our experience that a lot of
“easy” bugs can be found within a relatively small amount of time and memory
usage. If a SPIN verification session continues to run after a long time, it is highly
likely that the property will eventually pass.

The same methodology can also be used for a verification-driven synthesis
methodology. If the property does not pass the verification, an error trace is

paper.tex; 24/07/2003; 18:15; p.8

9

generated and examined. Based on the error trace, the original design may be
incorrect, or refinement may be applied to the original specification for it to have
the desired property. At a higher level of abstraction, constraints may be used to
constrain the behavior so the property may pass. At a lower level of abstraction,
schedulers which coordinate the interacting processes may be used to achieve
the same result. Subsequent synthesis steps may then actually implement the
schedulers on a particular platform.

5. Formal Verification Case Studies

The first set of case studies consider a prototypical network of m producers and n
consumers communicating through one or more media (see Figure 6 and 8). The
producers receive inputs from the environment, process the data in some way, and
then output it to a medium of a single space. The consumers read in information
from that medium, process it, and then output to the environment. It is possible
for all producers and consumers to execute concurrently. We verify properties of
the designs before and after synthesis steps. The second set of case studies involves
property checking of systems designed using YAPI model of computation and its
more refined, T'TL, counterpart. In all the cases, the automatic generation of the
verification models (i.e. Promela) from the specification models (i.e. MMM) takes
less than one minute of CPU time.

Figure 6. Example of a MMM design.

5.1. VERIFICATION OF FUNCTIONAL PROPERTIES

Given the network of consumers and producers with one medium (see Figure 6),
we want to check the property:

“When a consumer wants to read and there is no data in the medium and
none of the producers has started to write, the consumer cannot finish reading
until some producer starts to write.”

In LTL, this property is expressed as:

O ((Cy_start N My_emptyN\ — (Py_start V ...V Py, _start))
— ((— Cy_end) U (Py_start V ...V Py _start))) , (1)

paper.tex; 24/07/2003; 18:15; p.9

10

Peliredd P2_writeByte()
C1_thread() write start
C1_readByte() 3
e write end P1 writeByte() Pl thread()

37

S
47

from here

_| Cycle

Figure 7. Verification error trace produced by SPIN. The numbers indicate the verification steps
and arrows indicate communications between processes through channels.

where start indicates the condition that a consumer initiates a read operation
or a producer initiates a write operation, and end indicates that they complete
the operations. We consider the case with m=2 and n=2, which has 102 lines of
MMM source code and 670 lines of Promela code after translation. The property
is verified by SPIN within one minute of CPU time on our 1.5GHz Athlon machine
with 1GByte of memory. The same setup is used for all case studies in this paper.
All relevant verification parameters are listed in Table 1.

Table I. Summary of verification for property (1).

Search Depth Total States State Transitions Memory CPU Time
62839 289828 561226 42.6 MB 1.49s

Another property we want to check is:

“If the consumers are able to keep reading data from the medium, then when-
ever a producer initiates a write, it will eventually complete the write”:

In LTL, the property can be expressed as:

O <¢ (Ciread V ...V Cp_read)— O (Py_start — { Py_end) , (2)

where read indicates the condition that a consumer completes a read operation,
start indicates the condition that the producer initiates a write operation, and
end indicates that the producer completes this write operation. Specifically, we
prove the case where m=2, n=1 and x=1. SPIN reports that the property does
not hold. From the error trace using the debug mode (see Figure 7), we see that

paper.tex; 24/07/2003; 18:15; p.10

11

Figure 8. Example of a refinement.

there is possibility of starvation. It is possible for P; to keep accessing the medium
and prevent P; from ever be able to write.

5.2. CONSTRAINTS AND SCHEDULERS

In a Metropolis design, LTL or LOC constraints can be used to limit the possible
behavior of a design. However, downstream synthesis procedures must guarantee
that the constraints are correctly implemented. If we want the property (2) (with
m =2, n = 1and x = 1) to hold, i.e. P; is not allowed to starve, we may put the
following constraint into the design:

P, _start N Py_start — — Py_end U Pi_end (3)

where start indicates the condition that a producer initiates a write operation,
and end indicates that it completes the write operation. The constraint is triv-
ially “translated” into SPIN environment as the left-hand-side of an implication.
Property (2) should be proven only for the cases where the constraint is satisfied.
In other words, we prove the LTL formula:

Constraint (3) — Property (2) . (4)

Formula (4) is proven by SPIN within one minute of CPU time.

In an architecture specification, constraint (3) can be implemented as a sched-
uler(or arbiter) that has a static-priority policy with P; having higher priority.
After mapping the function to the architecture, We use SPIN to prove that
property (2) (with m = 2, n = 1 and x = 1) holds in the presence of such a
scheduler. In addition, if we assign P» to have higher priority, the property fails.
Another scheduling policy that can be proven to allow property (2) (with m = 2,
n=1and x =1 or 2) to hold is the round robin scheduling, where the producers
take turns accessing the medium.

5.3. TRANSFORMATION AND REFINEMENT

Of course, system level synthesis procedures may not always be driven by the
result of functional verification. For example, communication media may be

paper.tex; 24/07/2003; 18:15; p.11

12

combined to reduce the cost. MMM can be used to formally represent the design
before and after a particular synthesis step. Consider the example in Figure 8.
In (a), m media are used and producer-consumer data streams are running
independently. It is trivial to verify that

O (C,_start A M,_empty A = P, _start— — C,_end U P, _start) , (5)

where x = 1,...,m, start indicates the condition that a consumer initiates a
read operation and a producer initiates a write operation, and end indicates that
the consumer finishes its read operation. Now, let us consider Figure 8(b) where
a single medium is used. It is derived from the network in Figure 8(a) through a
structural composition. The property

O (Cy_start A\ Mi_empty A\ = Py_start— — Cy_end U Py_start) (6)

is not guaranteed to hold. Indeed, SPIN verifies that the property does not hold
within one minute of CPU time. The error trace shows that for the property to
hold, a constraint must be added such that streams of data do not mix (i.e. if Py
write, then no other consumer can read until C; read):

O (Pywrite & \ (= Cy_read U Cy_read)) . (7)
y#z

With these constraints, the property may be verified by SPIN using the LTL
formula;:

Constraint (7) — Property (6) . (8)

We verify the case where m=2. This design has 113 lines of MMM source code and
836 lines of Promela code after translation. The verification completes without
error. Table IT lists the detailed resource usage of the verification.

Table II. Summary of verification for LTL formula (8).

Search Depth Total States State Transitions Memory CPU Time

1112111 1.49894e+07 6.6521e+07 101.6MB 31m:54s

We have also run a verification session with a dynamic scheduler of the fol-
lowing form: “if P, writes, then no other consumer can consume until C; does”.
As expected, the property pass with similar complexity measurements. Through
experimentation, we have found that no round-robin scheduling nor any static
priority real-time scheduler can make the property pass.

paper.tex; 24/07/2003; 18:15; p.12

13

YAPI Channel

TTL Channe!

Figure 9. YAPI Channel and TTL Channel.

5.4. YAPI aNnD TTL

Y-chart Application Programming Interface (YAPI) is a popular model of com-
putation for designing signal processing systems [13]. It is basically a Kahn
process network [11] extended with the ability to non-deterministically select
an input port to consume and an output port to produce. Within Metropolis, a
library environment is set up such that any YAPI design can be written using
constructs in the Metropolis library. Central to YAPI is the definition of a com-
munication channel and its refinement into Task Transition Level (TTL) [6, 7].
Figure 9 shows how a YAPI channel is refined to a TTL channel in Metropolis.
A YAPI channel models an unbounded First-In-First-Out (FIFO) buffer, simi-
lar to Kahn process network. Asynchronously, writer processes write data into
one end of the channel and reader processes read the data from the other end.
At the lower level (T'TL), the channel is modeled by a bounded FIFO buffer.
The mutual exclusion and boundary checking of the bounded FIFO buffer is
guaranteed by a central protocol. As Figure 9 shows, the TTL channel has a
bounded FIFO(BoundedFifo) whose size is set at design time, and a control
medium(RdW rThreshold) which implements a protocol to guarantee correctly
writing to and reading from the FIFO buffer. To test the YAPI channel and its
TTL refinement, we use a writer process(DataGen) to write a series of data into
the channel and a reader process(Sum) to read the data from the other end of
the channel. One property we want to check is that there should be no deadlock
situation within the channel, i.e. once the writer starts writing data into the
channel, it will finish writing eventually. This property can be expressed as an
LTL formula:

O (datagen_start — (O datagen_finish)) . 9)

In order to formally verify the YAPI channel, we use a fixed-size array to model
its unbounded buffer and choose an array size that is always greater than or
equal to the maximum number of elements that need to be stored in the buffer,
given the particular processes DataGen and Sum. This property is verified on
the YAPI level with exhaustive verification within 9 hours. The YAPI channel

paper.tex; 24/07/2003; 18:15; p.13

14

design has 199 lines of MMM source code and 326 lines of Promela code after
translation. The other relevant verification parameters are listed in Table III.

We then proceed to verify the TTL channel [6], which has 720 lines of MMM
source code and 2158 lines of Promela code after translation. Due to the bound-
edness of the TTL buffer, the writer will block when there is not enough free
buffer slots to write data , and the reader will block when there is not enough
data available in the buffer. The TTL channel controller(RdW rThreshold) imple-
ments a protocol that uses a threshold value to indicate if the writer or the reader
can be unblocked. If there is a condition on which a process may be unblocked,
the controller uses events wakeup_reader or wakeup_writer to signal unblocking.
The detail of this algorithm can be found in [6].

Unexpectedly, the deadlock-free property does not hold any more. In less than
1 minutes of CPU time, the verification fails. After the analysis of the error
trace (which is similar to Figure 7), a bug is located in the protocol part of the
channel(RdW rThreshold), where a statement to wakeup the reader is missing.
So it becomes possible that the reader is still blocked even when the threshold
value indicates that it can be unblocked. After correction (adding one statement
to allow the reader to be waken explicitly), we re-run the verification with the
existing setup (1.5GHz Atholon and 1GB memory). The verification could not
be finished even after it ran for 40 hours and used up the 1GB memory. The
refinement process has caused the channel to become much more complex(a
protocol controller has been added). We attempt the verification again using
the approximate verification, i.e. bitstate technique [10], to verify the property
on the TTL channel and get the approximate coverage of at least 98%. Other
relevant verification parameters are listed in Table III.

Table III. Summary of verification for YAPI channel and TTL channel.

Design | Search Depth Total States State Transitions Memory CPU Time

YAPI |19195 4.48827e+07 6.97818e+07 507.5 MB 8h:41m:3s

TTL | 43149 1.00611e+-08 1.55842e+08 728.5MB 3h:30m:50s

SPIN model checker also provides its own particular mechanism to detect
deadlocks. In Promela, designers can explicitly set expected end states and let
SPIN search the unreachable end states that are caused by deadlocks. In our
study, we detect deadlocks using an LTL formula, which is functionally equivalent
to the end state search, but works on the system source code (MMM) rather than
Promela. Our deadlock case study is consistent with the idea that designers should
work at the system level specification language (MMM) as much as possible so
as not to entangle themselves in detailed implementations or the details of the
verification models (i.e. Promela).

paper.tex; 24/07/2003; 18:15; p.14

15

6. Conclusions

In this paper, we present a verification methodology for system level designs.
This methodology is unique in that it is able to operate at different levels of
abstraction and allow verification to drive the design process. Integral to the
methodology is a semantically correct translator from a system level language,
Metropolis Meta-Model, to a software verification language, Promela. Case stud-
ies have been performed to show the power of such an approach both in terms of
property verification driving synthesis and formal verification of designs before
and after a synthesis step. Future work includes verification of complex platform
architectures and function-architecture mapping.

10.

11.

12.

13.

14.

15.

References

SPIN manual, http://netlib.bell-labs.com/netlib/spin/whatispin.html, 2003.

SystemC homepage, http://www.systemc.org, 2003.

A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press,
1998.

F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and A. Sangiovanni-
Vincentelli. Constraints specification at higher levels of abstraction. International
Workshop on High Level Design Validation and Test - HLDVT(01, Sept. 2001.

F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. Metropolis: An integrated electronic system design environment. IEEE
Computer, pages 45-52, April 2003.

J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter, and W. J. M. Smits.
Communication refinement in video systems on chip. Proceedings of the 7th International
Workshop on Hardware/Software Codesign, pages 142-146, 1999.

O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data synchronization
scheme for embedded hw-sw shared-memory systems. International Symposium on System
Synthesis, October 2001.

P. Godefroid and G. J. Holzmann. On the verification of temporal properties. Proc.
IFIP/WG6.1 Symp. on Protocols Specification, Testing, and Verification, June 1993.

G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279-258, May 1997.

G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in Systems Design,
13(3):289-307, Nov. 1998.

G. Kahn. The semantics of a simple language for parallel programming. Proceedings of
IFIP Congress 74, pages 471-475, 1974.

K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System
level design: orthogonalization of concerns and platform-based design. IEEE Transactions
on Computer-Aided Design, 19(12):1523-1543, Dec. 2000.

E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer, P. Lieverse, and
K. Vissers. YAPI: application modeling for signal processing systems. Proceedings of the
87th Design Automation Conference, 2000.

Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:
Specification. Springer-Verlag, 1992.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

paper.tex; 24/07/2003; 18:15; p.15

paper.tex; 24/07/2003; 18:15; p.16

