
Automatic Trace Analysis for Logic of Constraints

Xi Chen, Harry Hsieh
University of California at Riverside

Riverside, CA 92521

{xichen, harry}@cs.ucr.edu

Felice Balarin, Yosinori Watanabe
Cadence Berkeley Laboratories

Berkeley, CA 94704

{felice, watanabe}@cadence.com

ABSTRACT
Verification of system designs continues to be a major chal-
lenge today. Simulation remains the primary tool for mak-
ing sure that implementations perform as they should. We
present algorithms to automatically generate trace checkers
from formulas written in the formal quantitative constraint
language, Logic Of Constraints (LOC), to analyze the simu-
lation traces for functional and performance constraint vio-
lations. For many interesting formulas, the checkers exhibit
linear time complexity and constant memory usage. We il-
lustrate the usefulness and efficiency of this approach with
large designs and traces.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Assertion checkers

General Terms
Verification

Keywords
Performance constraint, Trace analysis, Logic of Constraints,
Simulation checker

1. INTRODUCTION
The increasing complexity of embedded systems today de-

mands more sophisticated design and test methodologies.
Systems are becoming more integrated as more and more
functionality and features are required for the product to
succeed in the market. Embedded system architectures like-
wise have become more heterogeneous as it is becoming
more economically feasible to have various computational
resources (e.g. microprocessor, digital signal processor, re-
configurable logics) all utilized on a single chip. Designing
at the Register Transfer Level (RTL) or sequential C-code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

System Architecture
 (Platform)

System Functionality

Mapping

Functions on Architecture
(Implementation)

Figure 1: System Design Methodology.

level is no longer efficient. The specification of the function-
ality and the architecture should be done at a high level of
abstraction, and the design procedures refine the abstract
functionality, refine the abstract architecture, and map the
functionality onto the architecture through automatic tools
or manual means with tools support [10, 4]. High level de-
sign procedures allow the designer to tailor their architecture
to the functionality at hand or to modify their functionality
to suit the available architectures(see Figure 1).

To make the practice of designing from high level system
specification a reality, verification methods must accompany
every step in the design flow. Specification at the system
level makes formal verification possible [6]. Designers can
prove the property of a specification by writing down the
property they want to check in some logic (e.g. Linear Tem-
poral Logic (LTL) [8]) and use a formal verification tool (e.g.
the model checker Spin [9]) to run the verification. At the
lower level, however, the complexity can quickly overwhelm
the automatic tools and simulation becomes the workhorse
for verification.

While the coverage achieved by simulation is limited by
the number of simulation vectors, simulation-based property
analysis is still the standard vehicle for design analysis in
practical designs. One major problem of simulation-based
property analysis is that it is not always straightforward
to evaluate the simulation traces and deduce the absence
or presence of an error. In this paper, we propose an effi-
cient automatic approach to analyze simulation traces and
check whether they satisfy quantitative functional and per-
formance properties specified by denotational logic formulas.
The property to be verified is written in Logic of Constraints
(LOC) [5], a logic particularly suitable for specifying con-
straints at the abstract system level, where coordination of

executions, not the low level interaction, is of paramount
concern. We generate C++ trace checkers automatically
from the quantitative LOC formulas. The checkers analyze
the traces and report any violations of the LOC formulas.
Like any other simulation-based approach, the checker can
only disprove the LOC formula (if a violation is found), but
it can never prove it conclusively, as that would require an-
alyzing infinitely many traces. The automatic checker gen-
eration is parameterized, so it can be customized for fast
analysis for specific verification environment (e.g. memory
limitation). The choice of C++ for the checkers is a matter
of convenience. It allows us to tightly integrate the checkers
with the SystemC [2] simulator for runtime monitoring. No
theoretical difficulty exists to generate checkers in Hardware
Description Languages (HDLs) for integration with hard-
ware simulators, or in Java for concurrent execution with
the simulator. We illustrate the concept and demonstrate
the usefulness of our approach through two case studies: a
higher level description of a Picture-In-Picture design, and
a Register Transfer Level description of a Finite Impulse
Response filter.

Our simulation checker approach is similar in spirit to the
hardware embedded assertion languages which has become
very popular in recent years. Sugar [7] and OpenVera [1] are
two such languages that are the de facto standards in the
industry. Embedded assertions start out as simple compar-
ison logics that designers insert into their HDL descriptions
to help uncover bugs during simulation. Today’s embed-
ded assertion languages capture those simple logics as lan-
guage/platform specific library blocks (e.g. handshake asser-
tion) and use a set of extended Linear Temporal Logic (LTL)
to operate on those blocks for expressing more complex as-
sertions. Our approach can complement the embedded as-
sertion languages and are indeed different in at least four
fundamental aspects. First, Logic of Constraints is designed
for expressing all performance and functional constraints,
not just functional ones. Second, to express performance
constraints effectively, LOC can be used to express proper-
ties that belong to the infinite automata domain (through
the use of an integer index variable), while LTL is equivalent
to finite automata. Third, the checkers are stand-alone ob-
jects that do not have to be embedded into any simulation
language, hence are more platform independent. Fourth,
system level functional and performance constraints written
in LOC can be automatically and efficiently synthesized into
static checkers or runtime monitors, as will be shown in the
remainder of this paper.

In the next section, we discuss the definition and usage
of LOC. In section 3, we present the methodology for build-
ing a trace checker or monitor for any given LOC formula.
We demonstrate the usefulness and efficiency with two ver-
ification case studies in section 4. Finally, in section 5, we
conclude the paper and provide some future directions.

2. LOGIC OF CONSTRAINTS
Logic Of Constraints [5] is a formalism designed to reason

about simulation traces. It consists of all the terms and op-
erators allowed in sentential logic, with additions that make
it possible to specify system level quantitative functional and
performance constraints without compromising the ease of
analysis. The basic components of an LOC formula are:

• event names: An input, output, or intermediate

signal in the system. E.g. “in”, “out”, “Stimuli”,
and ”Display”.

• instances of events: An instance of an event de-
notes one of its occurrence in the simulation trace.
Each instance is tagged with a positive integer index,
in the order they appeared in the simulation trace.
E.g., “Stimuli[0]” denotes the first instance of the
event “Stimuli”.

• index and index variable: There can be only
one index variable i, a positive integer. Index expres-
sions of events may be any arithmetic operations on
i and the annotations of the instances of events. E.g.
“Display[i − 5]”, “Stimuli[value(Display[i])]”.

• annotation: Each instance of the event may be asso-
ciated with one or more annotations. Annotations can
be used to denote the time, power, area, or any value
related to the event instance. E.g., “t(Display[i −5])”
denotes the “t” annotation (probably time) of the “i−
5”th instance of the “Display” event.

LOC can be used to specify some very common and useful
real-time constraints:

• rate: E.g. “Display’s are produced every 10 time
units”:

t(Display[i + 1]) − t(Display[i]) = 10 (1)

• latency: E.g. “Display is generated no more than 25
time units after Stimuli”:

t(Display[i]) − t(Stimuli[i]) ≤ 25 (2)

• jitter: E.g. “every Display is no more than 4 time
units away from the corresponding tick of the real-time
clock with period 10”:

| t(Display[i]) − (i + 1) ∗ 10 | ≤ 4 (3)

• throughput: E.g. “at least 100 Display events will
be produced in any period of 1001 time units”:

t(Display[i + 100]) − t(Display[i]) ≤ 1001 (4)

• burstiness: E.g. “no more than 1000 Display events
will arrive in any period of 9999 time units”:

t(Display[i + 1000]) − t(Display[i]) > 9999 (5)

It should be emphasized that time is only one of the pos-
sible annotations and in the case of concurrent events, time
annotation values should be the same. The indexes of in-
stances of the same event name denote the strict order as
they appear in the simulation trace. There is no implied re-
lationship between instances of different events. LOC can be
used to express relationship between the annotations of the
different instances of the same event (e.g. rate), or instances
of different events (e.g. latency).

As pointed out in [5], the latency constraint above is truly
a latency constraint only if the Stimuli and Display are kept
synchronized. Generally, we will need an additional anno-
tation that denotes which instance of Display is “caused”
by which instance of the Stimuli. If the cause annotation

Automatic
Checker Generation

Simulation Trace Format

C++ Source of the Checker

 LOC formula

Simulation Traces

Evaluation Report

Executable Checker

Compilation

Execution

Figure 2: Trace Analysis Methodology.

is available, the latency constraint can be more accurately
written as:

t(Display[i]) − t(Stimuli[cause(Display[i])]) ≤ 25 (6)

and such an LOC formula can easily be analyzed through the
simulation checker presented in the next section. However,
it is the responsibility of the designer, the program, or the
simulator to generate such an annotation.

For a formula to be “formally proven” for a design, it
needs to hold for all possible traces and all values of i, as
it appears in the index expression of the formula. For a
formula to be “checked” (or “checked for conformance”) for
a simulation trace, it needs to hold for that trace only and
all values of i, which result in index values corresponding
to instances of the events that actually appear in the trace.
By adding additional index variables and quantifiers, LOC
can be extended to be at least as expressive as S1S [3] and
LTL. There is no inherent problem in generating checkers
for them. However, the efficiency of the checker will suffer
greatly as memory recycling becomes very difficult (as will
be explained in the next section).

3. TRACE ANALYSIS METHODOLOGY
The methodology for verification with an automatically

generated LOC checker is illustrated in Figure 2. From the
specification of LOC formulas and the trace format, an auto-
matic checker generator is used to generate a C++ source of
the checker. The source code is compiled into an executable
that takes in simulation traces and reports any constraint
violation.

An example of the definition file for the LOC formulas and
trace formats is shown in Figure 3. Each LOC formula is
preceded by a label and followed by the format for extracting
event names and their annotations out of the simulation
traces. The format described in the figure is written to work
with the trace shown in figure 7. It specifically looks for a
line that starts with a string which ends in a “:”, followed
by an integer, a string pattern “ at time ”, then followed by
a float. The string is taken as an event name, which may
be discarded if not mentioned in the formula. The integer is
taken as the “value” annotation of the event instance, which

annotation: event value t
trace: "%s : %d at time %f"

annotation: event value t
trace: "%s : %d at time %f"

formula: t(Display[i + 1] − t(Display[i]) == 10
[LOC: rate]

[LOC: latency]
formula: t(Display[i])−t(Stimuli[i]) <= 25

Figure 3: Definition of LOC formulas and Trace For-
mats for Rate and Latency Constraints.

is not used by the given formula and is discarded. Finally,
the float is taken as the “t” annotation of the event instance
which is needed for the evaluation of the formula. Any line
that does not match this format will be ignored. Multiple
formulas may be checked at the same time with possibly
different extraction formats.

The automatic checker generator parses the definition file
to generate the C++ source for the checker in a straightfor-
ward manner, setting up the queue data structures for stor-
ing the annotations and translating the formula into C++
code. The detail of the algorithm inside the checker will be
explained in section 3.1.

To help the designer find the point of error easily, the
error report includes the value of index i which violates the
constraint and the value of each annotation in the formula.
Figure 4 shows the case where latency between the 23rd
event instance of Display and 23rd event instance of Stimuli

violate the given formula. The checker is designed to keep
checking and reporting any violation until stopped by the
user or if the trace terminates.

username@chimera $

Formula t(Display[i]) − t(Stimuli[i]) <= 25 is violated

where i = 23
t (Display[i]) = 87
t (Stimuli[i]) = 60

checker latency.trace

Display : −6 at time 87at trace line# 278:

Reading from trace file "latency.trace" ...

Figure 4: Example of Error Report.

3.1 The LOC Checker
The algorithm of LOC checking progresses based on the

index variable i. Each LOC formula instance is checked
sequentially with the value of i being 0, 1, 2, ... etc. A
formula instance is a formula with i evaluated to some fixed
positive integer value, e.g. Display[30] − Display[29] = 10
is the 29th instance of the formula (1). Starting with i equal
to 0, the LOC checker scans the trace sequentially. If any
relevant data is read in, the checker stores it into a data
structure (double-ended queue) and checks the formula in
the following manner:

check_formula {

while (can evaluate formula instance i) {

evaluate formula instance i;

i++;

memory recycling;

} }

The time complexity of the algorithm is linear to the size
of the trace since evaluating a particular boolean expression
takes constant time. The memory usage, however, may be-
come prohibitively high if we try to keep the entire trace in
the queue for analysis. As the trace file is scanned in, the
checker attempts to store only the useful annotations and
in addition, evaluate as many formula instances as possible
and remove from the memory parts of the annotations that
are no longer needed (memory recycling).

For many LOC formulas(e.g. constraints 1, 3 - 5 in sec-
tion 2), the algorithm uses a fixed amount of memory no
matter how long the traces are (see table 1) 1. Memory effi-
ciency of the algorithm comes from being able to free stored
annotations as their associated formula instances are evalu-
ated. This ability is directly related to the choice made in
designing LOC. From the LOC formula, we can conserva-
tively identify what annotation data will not be useful any
more once all the formula instance with i less than a certain
number are all evaluated. For example, let’s say we have an
LOC formula:

t(Display[i + 10]) − t(Stimuli[i + 5]) < 300 (7)

and the current value of i is 100. Because the value of i

increases monotonically, we know that event Display’s an-
notation t with index less than 111 and event Stimuli’s an-
notation t with index less than 106 will not be useful in the
future and their memory space can be released safely. Each
time the LOC formula is evaluated with a new value of i,
the memory recycling procedure is invoked, which ensures
minimum memory usage.

Combination of multiple LOC formulas with logical oper-
ations is also an LOC formula. We employ a partial evalua-
tion mechanism that is based on 3-value logic [12], i.e. true,
false and unknown. When an annotation with a particular
index value is not yet available from the trace, or when the
index has an invalid value (e.g. negative value), the boolean
expression that contains this annotation is evaluated to un-
known. For example, given the following LOC formula:

t(Display[i + 10]) > 100 || t(Stimuli[i − 5]) < 300 (8)

Let the current value of i be 10. If we know, from the
trace, that the value of t(Display[20]) is 200, the formula
can already be evaluated to be true even if the value of
t(Stimuli[5]) is still not available. However, if the current
value of i is 4, -1 is then an invalid index for annotation t

of event Stimuli. The expression t(Stimuli[−1]) < 300 is
evaluated to unknown and the whole formula can be eval-
uated according to the evaluation of t(Display[14]) > 100.
Thus the LOC formula instances can be evaluated as soon
as possible, which further minimizes the memory usage.

3.2 Runtime Monitoring
The static trace checking technique, as described above,

assumes that a simulation trace is first generated and the
subsequent LOC checking parses the trace and looks for con-
straint violation. How the trace is generated is immaterial
as long as the format is correctly specified in the definition
file. The trace file for a realistic design, however, can fre-
quently occupy several gigabytes of disk space. It may be
desirable to compile the checker as a runtime monitor to run

1The verification of the constraint 2 also has constant mem-
ory usage due to the regular structure of the given trace

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

Figure 5: Picture-In-Picture Design.

concurrently with the simulator through a Unix pipe. Alter-
natively, the checker can be compiled into the compiled-code
simulator’s for higher efficiency and tighter integration. As
an example of such tight integration, the checker generator
has been extended to generate LOC checkers as SystemC
modules [2]. During the simulation, other SystemC mod-
ules (representing the design) can pass the events and anno-
tations directly to the monitor modules through channels. A
case study of this approach is reported in section 4.2. Run-
time monitoring is more efficient than static checking, but
then obviously the simulation need to be repeated if some
new formula need to be checked later. Furthermore, the
trace is no longer kept so any debugging has to rely solely
on the error report.

3.3 Dealing with Memory Limitation
Despite the memory efficient for most LOC formulas, some

LOC formula may require high memory usage which the ver-
ification environment can not support. To deal with the case
of preset memory limitation, another extension has been
added to the checker generator. Generally, the checker tries
to read the trace and store the annotations only once. How-
ever, if the preset memory limit has been reached, it stops
storing the annotation and instead, scans the rest of the
trace looking for needed events and annotations for evalu-
ating the current formula instance (current i). After freeing
some memory space, the algorithm resumes storing annota-
tions and reading the trace again from the same location.
The analysis time can certainly be impacted (see case study
in section 4.2) and may no longer be of linear complexity.
However, the verification can continue and the constraint
violations can be checked under the memory limitation of
the verification environment.

4. CASE STUDIES
We apply our methodology to two very different design

examples. The first is a system level design for set-top
video processing, Picture-In-Picture (PIP), which is origi-
nally specified with YAPI [11]. PIP is partially respecified
and simulated with Metropolis environment [4]. The second
is an RTL model of a Finite Impulse Response (FIR) fil-
ter written in SystemC and is actually part of the standard
SystemC distribution. We use the generated trace check-
ers to verify a wide variety of functional and performance
constraints.

4.1 Picture-In-Picture
Figure 5 shows the PIP design. TS DEMUX demulti-

plexes the single input transport stream (TS) into multiple
packetized elementary streams (PES). PES PARSER parses
the packetized elementary streams to obtain MPEG video

streams. Under the control of the user (USRCONTROL),
decoded video streams can either be resized (RESIZE) or
directly feed to the JUGGLER that combines the images to
produce the picture-in-picture videos. The entire descrip-
tion consists of approximately 19,000 lines of Metropolis
and YAPI code. With the sample input stream we used,
it produced 120,000 lines of output representing header in-
formation for the processed frames.

RESIZE field_start field_count: 2 size: 6720

RESIZE field_start field_count: 3 size: 10368

WINDOW win_params_update x_begin: 12 y_begin: 6

RESIZE field_start field_count: 4 size: 14016

USRCONTROL write pixels_out: 144

USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876

WINDOW win_params_update x_begin: 12 y_begin: 6

WINDOW_DATA_OUT 23483 87000

Figure 6: PIP Simulation Trace.

At the system level, we can use LOC to check the func-
tional properties. In the RESIZE component of PIP, the
images processed are in interlaced format with alternating
fields of all odd lines, then all even. The image size should
only change after a complete frame, each of which has 2
fields, is output and not in the middle of a frame. There-
fore, the field sizes of paired even and odd fields should be
the same. This property can be express as an LOC formula:

size(field start[2i + 2]) − size(field start[2i + 1]) =

size(field start[2i + 1]) − size(field start[2i]) (9)

where field start is an event at which RESIZE starts to
output a new image field. The annotation size is the to-
tal number of pixels processed by RESIZE. Figure 6 shows
snapshots of the PIP trace. The generation of the checker
for this LOC and the actual trace checking on the simulation
trace take less than 1 minute of CPU time.

Another functionality property we are interested in is that
the number of the fields the RESIZE component reads in
should be equal to the number of fields it produces. Two
local counters, one at the RESIZE’s input part and one at
its output part, provide these annotations. After a piece of
video is processed, these two counters need to be compared
to see if the property holds. The LOC used to check this
property is

field count(in[i]) = field count(out[i]) (10)

The events in and out are generated by the RESIZE input
and output parts respectively whenever they finish process-
ing a whole piece of video. The annotation field count is
the number of fields the RESIZE input and output parts
processed. The generation of the checker for this LOC and
the actual trace checking take less than 1 minute of CPU
time.

We can also check performance properties such as latency.
The latency issue in RESIZE relates to the timely response
to user size specification. Since PIP is specified at the behav-
ior level, no detail timing information is available. We there-

fore specifies a bound (e.g. 5) on the number of fields pro-
cessed between reading a new size specification (read size)
and the actual change in output image size (change size):

field count(change size[i])−

field count(read size[i]) ≤ 5 (11)

read size is generated whenever RESIZE reads a new size
specification from USRCONTROL. change size is gener-
ated whenever the size of the output image is actually changed.
The annotation field count is the value of a global counter
that is incremented by one whenever RESIZE processes a
new image field. The generation of the checker for this LOC
and the actual trace checking also take less than 1 minute
of CPU time.

Stimuli Display
FSM

FIR
Stimuli : 0 at time 9
Display : 0 at time 13
Stimuli : 1 at time 19
Display : −6 at time 23
Stimuli : 2 at time 29
Display : −16 at time 33

 DATA

Figure 7: FIR Design and Simulation Trace.

4.2 FIR filter
Figure 7 shows a 16 tap FIR filter which reads in samples

when the input is valid and writes out the result when output
is ready. The filter design is divided into a control FSM and
a data path. The test bench feeds sampled data of arbitrary
length and the output is displayed with the simulator.

We utilize our automatic trace checker generator and ver-
ify the properties specified in constraints (1) - (5) (of section
2). The same trace files are used for all the analysis and each
constraint is checked one at a time. The time and maximum
memory usage are shown in Table 1. We can see that the
time required for analysis grow linearly with the size of the
trace file, and the maximum memory requirement is formula
dependent but stays fairly constant. Using LOC for common
real-time constraint verification is indeed very efficient.

Table 1: Result of Checking Constraints (1-5) on
FIR

Lines of Trace 105 106 107 108

Time(s) 1 8 89 794
C1

Memory 28B 28B 28B 28B
Time(s) 1 12 120 1229

C2
Memory 28B 28B 28B 28B
Time(s) 1 7 80 799

C3
Memory 24B 24B 24B 24B
Time(s) 1 7 77 803

C4
Memory 0.4KB 0.4KB 0.4KB 0.4KB
Time(s) 1 7 79 810

C5
Memory 4KB 4KB 4KB 4KB

The simulation times for these traces are listed in Ta-
ble 2. Given the large file size, runtime monitoring (see
section 3.2) may reduce the total verification time (simula-
tion and checking) since no trace file need to be actually

generated. For the latency constraint (constraint 2), we im-
plement the checker as a SystemC module and the simu-
lation trace is no longer written to a file but passed to the
monitoring module directly. For the trace size of 100 million
lines, the static checking approach requires 1404 seconds of
simulation time and 1229 seconds of checking time for a to-
tal of 2633 seconds. Runtime monitoring approach requires
only 1420 seconds for both simulation and monitoring.

Table 2: Result of Runtime Monitoring on FIR for
Constraint (2)

Lines of Trace 105 106 107 108

Simulation (s) 1 14 148 1404
Trace Checking (s) 1 12 120 1229
Runtime Monitoring (s) 2 14 145 1420

We also verify constraint (6) to illustrate verification with
memory limitation since this constraint is particularly ex-
pensive in terms of memory usage. Table 3 shows that the
simulation time grows linearly with the size of the trace file.
However, due to the use of an annotation in an index ex-
pression, memory can no longer be recycled and we see that
it also grows linearly with the size of the trace file. Indeed,
since we will not know what annotation will be needed in
the future, we can never remove any information from the
queue. If the memory is a limiting factor in the simulation
environment, the analysis speed must be sacrificed to al-
low the verification to continue, as discussed in section 3.3.
The result is shown in Table 3 where the memory usage
is experimentally limited to 50KB. We see that the analy-
sis takes more time when the memory limitation has been
reached. Information about trace pattern can be used to
dramatically reduce the running time under memory con-
straints. Aggressive memory minimization techniques and
data structures can also be used to further reduce time and
memory requirements. For most LOC formulas and simula-
tion traces, however, the memory space can be recycled and
the memory requirements are small.

Table 3: Result of Constraint (6) on FIR
Lines of Trace (×104) 2 3 4 5
Unlimited Time(s) <1 <1 <1 1
Memory Mem(KB) 40 60 80 100

Mem Limit Time(s) <1 61 656 1869
(50KB) Mem(KB) 40 50 50 50

5. CONCLUSIONS
We have presented a methodology for design verification

through automatic trace analysis. We have demonstrated
how we can take any formula written in the formal quan-
titative constraint language, Logic Of Constraint, and au-
tomatically generate a trace checker that can efficiently an-
alyze the simulation traces for constraint violations. The
checker can also operate as a simulation monitor. Even un-
der memory limitation, the checker continues to operate and
provides debug information. We have applied the method-
ology to two case studies and demonstrated that automatic
LOC trace analysis can be very useful.

We are currently working on a few future enhancements
and novel applications. One such application we are consid-
ering is to integrate the LOC monitor with a simulator that
is capable of non-deterministic simulation, non-determinism
being crucial for design at high levels of abstraction. We will
use the checker to check for constraint violations, and once
a violation is found, the simulation could roll back and look
for another non-determinism resolution that does not vio-
late the constraint. In addition, to help the designer easily
produce traces for constraint checking, we plan to develop
embedded code blocks for trace generation in the form of
libraries, similar to embedded constraint languages. Lastly,
we plan to retarget the backend checker generation for dif-
ferent development environments (e.g. Superlog, VHDL) to
allow tight integration of monitors for those environments
as well.

6. REFERENCES
[1] Openvera assertions white paper. Synopsys, Inc, 2002.

[2] http://www.systemc.org, Mar. 2003.

[3] A. Aziz, F. Balarin, R. Brayton, and
A. Sangiovanni-Vincentelli. Sequential synthesis using
S1S. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 19(10):1149–62, Oct.
2000.

[4] F. Balarin, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogeneous
systems. Technical Report 2001/01 Cadence Berkeley
Laboratories, Nov. 2001.

[5] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno,
R. Passerone, and A. Sangiovanni-Vincentelli.
Constraints specification at higher levels of
abstraction. International Workshop on High Level
Design Validation and Test - HLDVT01, Sept. 2001.

[6] X. Chen, F. Chen, H. Hsieh, F. Balarin, and
Y. Watanabe. Formal verification of embedded system
designs at multiple levels of abstraction. International
Workshop on High Level Design Validation and Test -
HLDVT02, Sept. 2002.

[7] C. Eisner and D. Fisman. Sugar 2.0 proposal
presented to the accellera formal verification technical
committee. Mar. 2002.

[8] P. Godefroid and G. J. Holzmann. On the verification
of temporal properties. Proceedings of IFIP/WG6.1
Symposium on Protocols Specification, Testing, and
Verification, June 1993.

[9] G. J. Holzmann. The model checker spin. IEEE Trans.
on Software Engineering, 23(5):279–258, May 1997.

[10] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design:
orthogonalization of concerns and platform-based
design. IEEE Trans. on Computer-Aided Design,
19(12):1523–1543, Dec. 2000.

[11] E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf,
J. Brunel, W. Kruijtzer, P. Lieverse, and K. Vissers.
Yapi: application modeling for signal processing
systems. Proceedings of the 37th Design Automation
Conference, 2000.

[12] E. J. McCluskey. Logic Design Principles. Prentice
Hall, 1986.

