LCS-TRIM: Dynamic Programming Meets XML Indexing and Querying

S. Tatikonda, S. Parthasarathy, M. Goyder

Presented by Wanxing Xu

Main Idea

- Convert XML documents (tree structure) to sequences (linear structure)
- Do the subsequence matching.
- Do the structure refinement

Approach

- Data representation
- Matching
- Subsequence matching
- Structure matching
- Indexing
- Optimizations
- Labeling Filtering
- Dominant Match Processing

Data Representation

- Convert the XML documents (tree structure) into sequences (linear structure)
- Main idea:
- Numbering the nodes
- Post-order
- In some order, record the number and/or the label of the nodes
- Post-order, Pre-order

Prüfer Sequence

- Constructed by two sequences:
- Numbered Prüfer Sequence (NPS)
- Label Sequence LS
- How to convert?
- Number the nodes by post-order traversal.
- Delete the node with the smallest number:
- To NPS, append the number of its parent.
- To LS, append the label of itself.
- PRIX uses both the number and label of the parent of the deleted-node.

Example

- Post-order numbering

Construct the Sequences

Each entry in
CPS CPS is an edge.
NPS: 29476789 -
LS: FBDBDCAEA
Index: 123456789
PRIX
NPS: 29476789
LPS: BABACAEA
Each entry in PRIX is about the same node.

Approach

- Data representation
- Matching
- Subsequence matching
- Structure matching
- Indexing
- Optimizations
- Labeling Filtering
- Dominant Match Processing

Main Idea

- Theorem 3.1 Consider a tree T and a twig query Q with their label sequences $L S_{T}$ and $L S_{Q}$, respectively. If Q is a subtree of T, then $L S_{Q}$ is a subsequence of $L S_{T}$
- Subtree \rightarrow Subsequence
- Subsequence \rightarrow Subtree?
- NOT sufficient! More conditions needed!
- First find subsequence, then check more conditions and then find the subtrees.

Subsequence Matching

- LCS: Longest Common Subsequence
- Using Dynamic Programming to solve LCS
- Use a matrix $R, R[i, j]$ records the length of the LCS between $s_{1}[0 . . i]$ and $s_{2}[0 . . j]$.

$$
R[i, j]= \begin{cases}0 & i=0, j=0 \\ R[i-1, j-1]+1 & s_{1}[i]=s_{2}[j] \\ \max (R[i-1, j], R[i, j-1]) & s_{1}[i] \neq s_{2}[j]\end{cases}
$$

Example of LCS

$$
R[i, j]= \begin{cases}0 & i=0, j=0 \\ R[i-1, j-1]+1 & s_{1}[i]=s_{2}[j] \\ \max (R[i-1, j], R[i, j-1]) & s_{1}[i] \neq s_{2}[j]\end{cases}
$$

	F	B	D	D	C	A	E	A
B	0	1	1	1	1	1	1	1
D	0	1	2	2	2	2	2	2
A	0	1	2	2	2	3	3	3
E	0	1	2	2	2	3	4	4
C	0	1	2	2	3	3	4	4

- Numbers in red are matches.

F	B	D D		C A		A	
	B	D			A E		C
F	B	D D		C A		EA	
	B	D	D		A		C

11

Subsequence Matching

- Property 3.1 If a label sequence $L S_{Q}$ is a subsequence of another label sequence $L S_{T}$, then $L S_{Q}$ is the longest common subsequence (LCS) of $L S_{Q}$ and $L S_{T}$.
- Each node in the query needs to match one in the document.
- The length of the LCS should be the same as the length of $L S_{Q}$

Subsequence Matching

- Two steps:
- Construct the R matrix, check the length of LCS (whether $L S_{Q}$ is a subsequence of $L S_{T}$)
- Using backtrack to get all the matches
- Complexity
- Time: O(mn)
- Space: $O(m n)$

Example

R Matrix

		F		D				A		
		1	2	3	4	5	6	7		
		0	1	1	1	1	1	1	1	
	2	O	1	2	2	2	2	2		
		0	1	2	2	2				

Subsequence Matches:
M1 $(2,3,7) \quad$ M2(2,5, $)$
M3(4,5,7) M4(2,3,9)
M5 (2,5, 9) M6(4,5, 9)

Structure Matching

Definition: 3.2. Structure Agreement: Consider two sequentures, derived from two trees T_{1} and $T_{2}, S_{1}=\left(\left(A_{1}\right.\right.$, $\left.\left.B_{1}\right) \ldots\left(A_{m}, B_{m}\right)\right)$ and $S_{2}=\left(\left(C_{1}, D_{1}\right) \ldots\left(C_{m}, D_{m}\right)\right)$, where A_{i} 's and C_{i} 's define the structure; B_{i} 's and D_{i} 's provide the labels. Both S_{1} and S_{2} are said to agree on structure at position i if and only if the following three conditions hold:
i) $1 \leq i \leq m$,
ii) B_{i} is equal to D_{i},
iii) If A_{i} is the parent of B_{i} in T_{1} then C_{i} is the parent of D_{i} or the nearest ancestor of C_{i} that is in S_{2} must agree on structure with S_{1} at position $A_{i}{ }^{1}$.

Structure Agreement

- To check two nodes $\left(N P S_{T i}, L S_{T i}\right)$ and $\left(N P S_{Q j}, L S_{Q j}\right)$
- $N P S_{T i}$ and $N P S_{Q j}$ are their parents.
- Either the parents share the same label,
- or the NEAREST ancestor of $N P S_{Q j}$ matches $N P S_{T i}$.
- (Apply some level-wise constraints for wildcards "*", etc).

Example

Order of the Matching

- For each pair of nodes in the document and the query, we want to check whether their parents matches each other.
- In the CPS, we can see that child always appears before its parent
- So, we need to match the nodes from the end of the sequence to the beginning

Algorithm

```
Algorithm 2 Subtree matching
Input: \(\operatorname{CPS}(Q), \operatorname{CPS}(T), S M=\left(i_{1}, \ldots, i_{m}\right)\)
Output: mapping: positions at which \(Q\) matches to a subtree
    in \(T\)
    1: mapping \([m] \leftarrow i_{m}\)
    2: for \(k=m-1\) to 1 do
    3: \(\quad p_{q} \leftarrow N P S_{Q}[k]\)
    4: \(\quad p_{t} \leftarrow N P S_{T}\left[k_{k}\right]\)
    5: if mapping \(\left[p_{q}\right]\) is equal to \(p_{t}\) or is an ancestor of \(p_{t}\) in \(T\)
        then
    6: \(\quad \operatorname{mapping}[k] \leftarrow i_{k}\)
    7: else
    8: \(\quad\) Report that \(Q\) is not an embedded subtree of \(T\)
    9: Report that \(Q\) is an embedded subtree of \(T\)
```


For each pair of nodes...

- We have P_{q} : the parent of the node in Q
- P_{t} : the parent of the node in T
- mapping $\left[P_{q}\right]$ the node in T that is already matched with P_{q} in Q
- P_{t} must be the same or the NEAREST ancestor of mapping $\left[P_{q}\right]$
- NEAREST: search each ancestor of P_{t} bottom up, until the first already mapped node, it should be the same as mapping $\left[P_{q}\right]$

Example

R Matrix

		F		D				A		
		1	2	3	4	5	6	7		
		0	1	1	1	1	1	1	1	
	2	O	1	2	2	2	2	2		
		0	1	2	2	2				

Subsequence Matches:
M1 $(2,3,7) \quad$ M2(2,5, $)$
M3(4,5,7) M4(2,3,9)
M5 (2,5, 9) M6(4,5, 9)

Example

Example

Nearest

- NEAREST: search each ancestor of P_{t} bottom up, until the first already mapped node, it should be the same as $\mathrm{mp}\left[P_{q}\right]$
- Search for the ancestors one by one, we need O (depth of the tree), which is $O(n)$.
- The node scope representation DOES NOT work!

Example

	1	2	3	4	5	6	7	8	9
NPS	2	9	4	7	6	7	8	9	-
LS	F	B	D	B	D	C	A	E	A

M (4, 6, 8, 9) | | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| mp | X | 6 | 8 | 9 |

Q1 matches T4?
$P_{q}=4$
$P_{t}=7$
$m p[4]=9$
From Pt, the first ancestor that already matched is $E(8)$, which is not $A(9)$!

Approach

- Data representation
- Matching
- Subsequence matching
- Structure matching
- Indexing
- Optimizations
- Labeling Filtering
- Dominant Match Processing

Indexing

- For each label, collect the documents where it occurs.
- Only index infrequent labels (indexing frequent labels takes much space but not very helpful)
- α-infrequent: appears in less then a fraction of α trees in the database.
- For a query, find the label which occurs in lest documents, only search among those documents.

Example

- Totally 10,000 documents
- $\alpha=50 \%$
- A occurs in 6,000 documents, so
 not indexed.
- B occurs in 4,000 documents;
- C occurs in 3,000
- E occurs in 3,500
- Use the list of C to do the match.

Approach

- Data representation
- Matching
- Subsequence matching
- Structure matching
- Indexing
- Optimizations
- Labeling Filtering
- Dominant Match Processing

Label Filtering

- The dynamic programming asks for $O(m n)$ in both time and space.
- Eliminate the irrelevant labels (labels not in the query) from the document.

		F	B		B			A			A
		1	2	3	4		5	7			9
B	1	0	1	1	1	1	1	1	1		1
D	2	0	1	2	2	2	2	2	2		2
A		0	1	2	2	2	2	2			3

Query: BDA
Tree: FBDBDCAEA

Ignore the label F, C, E from the tree, because they are not in the query.

$$
O\left(3^{*} 9\right)->O\left(3^{*} 6\right)
$$

Dominant Match

- Dominant match:

$$
\begin{aligned}
& -L S_{T}[i]=L S_{Q}[j] \\
& -R[i, j]=i
\end{aligned}
$$

- Consider only dominant matches, ignore other cells.

		A	B	D	B	D	C	A	E
		1	2	3	4	5	6	7	8

Numbers in red are dominant matches.

Notice that $\mathrm{R}[3,1]$ is only a match, but not dominant. It cannot appears in any result.

Put All Together

- For each query Q :
- Using indexing to get a short list of candidate documents.
- For each document T:
- Using Label Filtering
- Construct R matrix
- Check the length of the LCS
- Back track:
- Find each dominant match
- do the structure match at the same time

```
Algorithm 3 The unified subtree matching algorithm
Input: A database tree \(T\) and a twig query \(Q\)
    labelFilter \((T, Q)\{T\) contains the filtered sequence \(\}\)
    \(R \leftarrow\) computeLcsMatrix \((T, Q)\)
    if \(R[m, n]!=m\) then
        Report that \(Q\) is not a subtree of \(T\)
    \(S M \leftarrow\) null
    processLCS ( \(m, n, m)\)
Function:
processLCS ( Qind, Tind, matchLen )
1: if matchLen \(=0\) then
2: Report \(S M\) as the twig match
    3: for \(i=\) Tind to 1 do
4: \(\quad\) if \(R[\) Qind \(][i]\) is dominant \(\& R[\) Qind \(][\) Tind \(]=\) matchLen
        then
            if isInAgreement \((\operatorname{CPS}(Q), S M\), Qind \()\) then
                        \(S M[\) Qind \(] \leftarrow C P S_{T}[\) Tind \(]\)
                        processLCS ( Qind-1, Tind-1, matchLen-1 )
```


Early prune

- Subsequence matches:
- M1 $(2,3,7) \quad$ M2 $(2,5,7)$
- M3 (4, 5, 7) M4(2, 3, 9)
- M5 (2, 5, 9) M6(4, 5, 9)

	A	B	D	B	D	A	A
		1	2	3	4	5	7

- In the backtrack, say A9 is a match but D5 is not a match, we won't continue to process B4 or B2. Prune M5 and M6 early! Instead, check D3.

Results

- With/without optimization
- Compare with PRIX
- Compare with TwigStack

With/without optimization

- No Opt
- Label Filtering \& Dominant Match
- LCS-TRIM (back tract and structure match together)

Compare with PRIX

Figure 4: Performance comparison with PRIX on different data sets

Figure 5: Performance and Index size comparison on NLM data set

PRIX

- PRIX: subsequence matching + structure refinements (3 phases)

Why?

- PRIX uses B+tree, virtual trie and node scope to do the subsequence match. LCSTRIM uses dynamic programming.
- PRIX takes all the subsequences (false positive intermediate results) to do the structure refinements. LCS-TRIM prunes them very early.

Compare with TwigStack

Conclusion

- Novel sequence based representations
- Using dynamic programming of LCS
- Using inverted tree index
- Using several optimizations
- Prune out false candidate matches early
- Magnitude speedup over PRIX and TwigStack

Thank you!

Questions?

